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1. Introduction

If f is entire, let S(f) denote the singular set of f , that is, the closure of its critical

values and finite asymptotic values. The class of entire functions for which S(f) is a

finite set was denoted S by Eremenko and Lyubich [6] in honor of Andreas Speiser.

We let Sn denote the set of entire functions with exactly n singular values. The

Speiser class is a subclass of the Eremenko-Lyubich class B, consisting of those entire

functions whose singular values are a bounded set in C. The two classes are also

called “finite-type” and “bounded-type” in holomorphic dynamics.

A natural measure of the growth of an entire function is its order:

ρ(f) = lim sup
z→∞

log+ log+ |f(z)|
log+ |z| ,

where log+ r = max(0, log r). The natural parameter spaces of entire functions (at

least for dynamical considerations) are the quasiconformally equivalent functions: we

say f, F are equivalent if there are quasiconformal maps φ, ψ of the plane so that

ψ ◦ f = F ◦ φ.

Eremenko and Lyubich [6] proved that for f ∈ Sn, the collection of functions equiva-

lent to f forms a n+ 2 complex dimensional manifold, and it is natural to ask if the

order is constant on each such manifold. This is true for n = 2 (e.g. Proposition 2.2

of [5] shows ψ, φ can be chosen affine in this case), but we will show:

Theorem 1.1. There are equivalent functions in S3 with different orders.

More generally, we say that f and F are topologically equivalent if ψ ◦ f = F ◦ φ
for some pair of homeomorphisms ψ, φ of R2 to itself. The order conjecture asks if

ρ(f) = ρ(F ) whenever f and F are topologically equivalent. For f ∈ S, topological
equivalence is the same as quasiconformal equivalence (e.g., Proposition 2.2 of [5]),

but in general the two notions can differ. For meromorphic functions, the order

can be defined using the Nevanlinna characteristic, and in this setting Kunzi [11]

constructed a meromorphic function with finite singular set whose order can change

under a topological equivalence. Mori’s theorem (e.g., Theorem III.C in [1]) implies

that a K-quasiconformal equivalence can change the order by at most a factor of K.

Also, functions in B always have order ≥ 1/2 ([2], [12], [13]).
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The order conjecture was formulated by Adam Epstein (e.g., [4], [7]) on the basis of

several examples where ρ(f) can be computed from combinatorial data associated to

f . For example, if f ′′/f ′ is polynomial of degree d then ρ(f) = d and the order is the

same for any entire function topologically equivalent to f . Another example comes

from dynamics: if p is a polynomial of degree d with a repelling fixed point at 0 with

multiplier λ then there is an entire function f (called the Poincaré function) so that

f(0) = 0, f ′(0) = 1 and f(λz) = p(f(z)). This function has order ρ(f) = 1/ logd |λ|
and the singular set of f is the closure of the critical orbits of p. Thus if p is post-

critically finite, f ∈ S. In [5], Epstein and Rempe prove that the order conjecture

holds for such f . If the post-critical set of p is bounded (which is the same as saying

its Julia set is connected), then f ∈ B. By taking two quasiconformally conjugate

polynomials with repelling fixed points at 0, but with multipliers of different absolute

values, they show the order conjecture fails in B.
We say a function f ∈ B has the area property if

∫∫

f−1(K)\D

1

|z|2dxdy <∞,

whenever K is compact subset of C\S(f). The area conjecture asks if every function

in B has this property. This question was first raised by Eremenko and Lyubich

[6] in the special case when f has no finite asymptotic values. Epstein and Rempe

prove in [5] that the Poincaré functions associated to polynomials with Siegel disks

do not have the area property; this gives counterexamples in B. If f ∈ S has the

area property then it also satisfies the order conjecture (e.g., Theorem 1.4 of [5]).

Thus Theorem 1.1 gives a counterexample to the area conjecture in S. Even stronger

examples are given in [3], e.g., a function f ∈ S with S(f) = {−1, 0, 1} and so that

{z : |f(z)| > ǫ} has finite Lebesgue area for any ǫ > 0.

During a visit to Stony Brook in April of 2011, Alex Eremenko asked me a question

about the geometry of polynomials with only two critical values. This led to further

discussions of the classes B and S with him and Lasse Rempe, and the current paper

is among the consequences. I thank both of them for their lucid explanations of

known results and generously sharing their ideas about open problems. I am grateful

to David Drasin for his careful reading of an earlier draft of this paper. His comments

prompted a re-write of several sections and improved the exposition and mathematics



THE ORDER CONJECTURE FAILS IN S 3

throughout the paper. Also thanks to the referee for mathematical corrections and

suggestions to improve the exposition.

We use the notation D for the unit disk, C for the complex numbers, R for the

real numbers and Hr for the right half-plane. When two quantities x, y depend on a

common parameter, x . y means that x is bounded by a multiple of y, independent

of the parameter. We sometimes use the equivalent notation x = O(y). If x . y and

y . x, we write x ≃ y. We let |E| denote the diameter of a set E.

2. The basic idea

We first describe how to construct entire functions with exactly two critical values.

At the end of the section we modify this idea to give a function with three critical

values, and this is the type of function we will use to disprove the order conjecture.

Let U = C \ [−1, 1] and recall that the map

z → cosh(z) =
ez + e−z

2
,

acts as a covering map from Hr to U , with the half-strip

S = {x+ iy : x > 0, |y| < π}

being a fundamental domain. The role of cosh(z) in this paper is analogous to the role

of exp(z) in [6] where Eremenko and Lyubich consider functions whose critical values

are contained in a disk and exp(z) provided the covering map for the complement of

this disk. We will also use the conformal map of S to Hr given by

z → iπ sinh(z/2).

This is symmetric with respect to R and fixes the boundary points −iπ, 0, iπ.
The idea of this paper is to build an entire function starting from a simply connected

subdomain Ω ⊂ S. We will assume that Ω is symmetric with respect to the real line

and that it is obtained from S by removing finite trees rooted along the top and

bottom sides of S. The edges of the trees will be line segments. See Figure 1.

The vertices of ∂Ω form a locally finite set that includes all vertices of the removed

trees (including the points where the trees are attached to the sides of S), but may

include other points on the tree edges or on the sides of S. We assume the origin is a

vertex. Note that ∂Ω is an infinite tree and hence is bipartite, i.e., we can label the
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vertices with +1 and −1 so that no two adjacent vertices having the same label. Let

V+, V− denote the vertices labeled +1 and −1 respectively.

Since cosh is 1-to-1 on S, it is a conformal map from Ω to Ω′ = cosh(Ω). Let

τ : Hr → Ω be a conformal map that is also symmetric and fixes 0. Then

f(z) = cosh(τ−1(cosh−1(z))),(2.1)

is holomorphic from Ω′ to U . The region Ω′ is dense in the plane, so if we knew that

f extended continuously to ∂Ω′, we could deduce it is entire (since the boundary of

Ω′ is a union of smooth arcs, it is removable for continuous, holomorphic functions,

e.g., [9], [10]).

Ω

= cosh(    )ΩΩ Ω

Figure 1. Ω is obtained by removing finite, straight edge trees from
the half-strip S. Ω′ = cosh(Ω) is dense in the plane. Our function f is
holomorphic on Ω′, but is it continuous across the boundary?

However, f is very unlikely to be continuous across ∂Ω′. Suppose z ∈ ∂Ω is an

interior point of one of the trees we have removed from S. Then τ will map at least

two different points of ∂Hr to z. This will cause a discontinuity for f unless the final

cosh in (2.1) maps all τ -preimages of z to the same point in [−1, 1]. In other words,

for f to extend continuously to the whole plane, we need

τ(ix) = τ(iy) ⇒ cosh(ix) = cosh(iy)

⇔ cos(x) = cos(y)

⇔ dist(x, 2πZ) = dist(y, 2πZ)

This will not happen in general, but our goal is to construct examples where is does

happen by replacing the conformal map τ by a quasiconformal map ψ : Hr → Ω with

the essential property

ψ(ix) = ψ(iy) ⇒ cos(x) = cos(y).(2.2)
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When this holds we say ψ “correctly identifies” points. In this case, the function

g(z) = cosh(ψ−1(cosh−1(z)))

is quasiregular on Ω′ and extends continuously across ∂Ω′, and hence is quasiregular

on the whole plane. The measurable Riemann mapping theorem then implies there

is a quasiconformal map φ : C → C so that f = g ◦ φ is entire.

Where are the critical values of f? The function g is locally 1-to-1 on Ω′ and φ

is 1-to-1 everywhere, so f = g ◦ φ has no critical points on Ω′. Thus all its critical

points are in ∂Ω′ and hence all critical values lie in [−1, 1] = f(∂Ω′). The only critical

values due to cosh are ±1; any others must correspond to critical points of ψ−1 on

∂Ω and these can occur only at vertices of ∂Ω. Therefore we also assume

ψ(ix) ∈ V+ ⇔ x ∈ 2πZ, ψ(ix) ∈ V− ⇔ x ∈ π + 2πZ(2.3)

If both and (2.2) and (2.3) hold, then f is entire and only has critical values ±1.

Moreover, (2.2) can be reduced to a much easier condition to check. Let Z be the

partition of iR = ∂Hr into segments with endpoints πiZ.

Lemma 2.1. If (2.3) holds and ψ is linear on each segment in Z, then (2.2) holds.

Proof. Suppose v = ψ(ix) = ψ(iy) and x 6= y. If v is a vertex then by (2.3) either

both x and y are in 2πZ or both are in π+2πZ. In either case, (2.2) holds. If v is in

interior point of an edge e = [z, w] ⊂ ∂Ω, say v = tz+(1−t)w. If the two ψ-preimages

of e containing ix and iy are [ia, ib] and [ic, id] respectively, with ψ(ia) = ψ(ic) = z,

then x = ta+(1− t)b, y = yc+(1− t)d. Since a and c are either both in 2πZ or both

in π + 2πZ, the distances of x and y to 2πZ are the same, which implies (2.2). �

Our counterexample to the order conjecture will have three critical values instead

of two, but the basic idea is the same as above. The only difference is that we will

build the domain Ω so that its boundary vertices can be 3-colored with the labels

{−1, 0, 1} and so that the map

z → cosh(ψ−1(z)),

is well defined at each vertex of ∂Ω and sends each vertex to the value of its label

(each edge of ∂Ω is mapped to segment of length π/2 on ∂Hr). To obtain such a ψ,
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not any 3-coloring will do; there are two conditions that must be met. First, as we

traverse the boundary ∂Ω, the labels must occur in the order

. . . , 1, 0,−1, 0, 1, 0,−1, 0, 1, 0 . . . ,

which is the same order we encounter them when traversing the boundary of U =

C \ [−1, 1]. Second, no leaf of the tree (a vertex of degree 1) can have label 0.

Together, these conditions are necessary and sufficient. Then as before,

g(z) = cosh(ψ−1(cosh−1(z)))

extends to be quasiregular on the plane and the measurable Riemann mapping theo-

rem gives a quasiconformal φ so that f = g◦φ is entire with critical values {−1, 0, 1}.
Note that the critical points with critical value 0 must correspond to vertices of ∂Ω

with label 0 and degree ≥ 3.

3. Exponential partitions

We just described how our construction of an entire function f depends on the

construction of a domain Ω ⊂ S and quasiconformal map ψ : Hr → Ω that correctly

identifies points. The map ψ will be written as a composition ψ = ψ1 ◦ ψ0 where

ψ0 : Hr → S is quasiconformal and piecewise linear on the boundary, and ψ1 will be

piecewise linear from S to Ω. The map ψ1 is the “interesting” part and contains the

essential geometry; ψ0 simply approximates the conformal map from Hr to S. In this

section we describe ψ0.

Since ψ1 will be constructed to be piecewise linear, there is a partition of ∂S into a

collection of segments I so that ψ1 is linear on each I ∈ I (these will be the preimages

under ψ1 of the edges of ∂Ω). The elements of I are taken to be closed line segments

that cover ∂S and are pairwise disjoint except for endpoints. In addition, we will

assume I satisfies

(1) I is symmetric with respect to the real line (i.e., the top and bottom edges of

S are partitioned in exactly the same way).

(2) There is a s > 0 and a constant C <∞ so that for all I ∈ I,

|I| ≃ exp(−sdist(I, I0)).

We will call I an exponential partition of ∂S if both these conditions hold.
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Assume the elements of I on the top edge of S are denoted I1, I2, . . . in left to

right order. The elements on the bottom edge are similarly denoted I−1, I−2, . . . .

Lemma 3.1. If I is an exponential partition, then |Im| ≃ 1
m

for all m ≥ 1.

Proof. For k ≥ 1, let Nk > 0 be the index of a partition element that contains k+ iπ

and let nk = Nk+1 − Nk (this is approximately the number of elements that hit

[k+ iπ, k+1+ iπ]). By assumption, nk ≃ exp(sk) and hence (since a geometric sum

is dominated by its last term) Nk ≃ nk ≃ exp(sk). So for an integer Nk ≤ m ≤ Nk+1,

|Im| ≃ exp(−sk) ≃ 1

nk

≃ 1

Nk

≃ 1

m
.

�

Recall that Z denotes the partition of ∂Hr = iR with endpoints iπZ. For k ≥ 1,

Zk = [(k − 1)π, kπ] ∈ Z and Z−k = −Zk (there is no interval labeled Z0).

Lemma 3.2. Suppose I is an exponential partition. Then there is a quasiconformal

map ψ0 : Hr → S so that I = ψ0(Z) and ψ is linear on each segment in Z.

Proof. Partition Hr as follows. LetW0 be the region bounded by the vertical segment

[−2πi, 2πi] and an arc of the circle |z| = 2π. For k = 1, 2, . . . , let

Wk = Hr ∩ {z : πk ≤ |z| ≤ π(k + 1)},

(this is a half-annulus). Partition S into rectangles by letting Sk, k = 0, 1, . . . be the

points in S that project vertically onto Ik+1 ∈ I. Then it is easy to check that we

can map W0 to S0 by a map that is linear on each interval Z−2, Z−1, Z1, Z2 ⊂ ∂W0

and that is linear from arclength on the circular side of W0 to the right-hand side of

S0. See Figure 2.

Each half-annulusWk, k ≥ 1 can be quasiconformally mapped to Sk by a map that

is linear on each component of ∂Wk ∩ ∂Hr and is linear in the argument on the two

circular sides. It is important to note that the quasiconstant can be chosen indepen-

dent of k, but this is easy to see since both Sk and Wk are generalized quadrilaterals

with modulus approximately k. �
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1

2πWk

Sk

W0 S0

k

1/k

Figure 2. Define ψ0 to be linear on boundary edges and uniformly
quasiconformal.

4. A simple example

The main step in our construction is building the map ψ1 : S → Ω. This map will

be built using piecewise affine maps between combinatorially equivalent infinite tri-

angulations of S and Ω. Although the triangulations are infinite, only a finite number

of different shapes are used (up to Euclidean similarity), and so the quasiconstant

is bounded by the maximum over a finite set of affine maps. In this section we will

build such a map ψ1 in a simple case, in order to introduce the basic idea before

attacking the more complicated construction in the next section.

Triangulations of two polygonal domains Ω1,Ω2 are compatible if we have a 1-to-1

correspondence between the triangulations that preserves interior adjacencies (i.e.,

if two triangles share in edge in Ω1 then the corresponding triangles share an edge

in Ω2). See Figure 3. We can then define a piecewise affine map from Ω1 to Ω2 by

using the unique affine map between corresponding triangles that respects adjacency.

If triangles share an edge on the boundary of Ω2 the corresponding triangles in Ω1

don’t have to be adjacent. This will happen when Ω1 has a Jordan boundary, but Ω2

has slits.

Now for the example. Consider Figure 4. It shows the half-strip S and a subdomain

Ω ⊂ S formed by removing certain vertical slits from S. Both S and Ω are partitioned

into pieces that are numbered 1, 2, 3, . . . moving left to right. The pieces of S are

all squares. The pieces of Ω have two shapes: rectangles and pieces that look like a

letter “C” or its reflection. Figure 4 shows a triangulation for each piece and we can

easily check that corresponding pieces for S and Ω have compatible triangulations.

Using these building blocks we can find compatible triangulations of all of S and Ω
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Ω1

Ω2

Figure 3. Compatible triangulations of two domains. Solid lines
indicate the domain boundaries and dashed lines are the interior edges
of the triangulations. We allow extra vertices either in the interior or
on the boundary. Also note that adjacency only need be preserved
when triangles share an edge inside the domain.

and hence a piecewise linear map from S to Ω. Since we are repeatedly using just two

building blocks, the map is quasiconformal, with constant determined by the most

distorted triangle from a finite set of possibilities. Note that the particular choice of

triangulation is not important, and we have made no attempt to optimize the number

of triangles used or the resulting QC constant.

The map ψ1 is linear on a partition J of ∂S consisting of equal length segments.

We define an exponential partition by dividing the segments on ∂Ω into sub-segments;

about 2n for segments that are between distance n and n+ 1 from the left side of Ω.

Pulling back these edges on ∂Ω via ψ1 gives an exponential partition of ∂S and then

we apply the construction of the Section 3 to build ψ0. If ψ = ψ1 ◦ψ0 : Hr → Ω then

g = cosh ◦ψ−1 ◦ cosh−1

is defined on Ω′ = cosh(Ω) and extends to a quasiregular function on the plane. Thus

there is a φ so that f = g ◦ φ is entire with two critical values.

Also note that f has positive, finite order. It has order ≥ 1/2 simply because

all functions in class B do. To show f has finite order it suffices to show g does;

the quasiconformal correction can only change the order by a multiple depending on

the quasiconformal constant of the correction map φ (i.e., φ is Hölder). The main

property of Ω that we need is that it contains a half-strip {x + iy : x > 0, |y| < w}
for some fixed w > 0.

Suppose x ≥ 2π and let D = D(x, r) be the maximal disk centered at x contained

in Ω. Since Ω is contained in the strip S, we have r ≤ π and ∂D hits ∂Ω at



10 CHRISTOPHER J. BISHOP

ψ1

Ω

S

S

Ω

1,4,5,... 2,3,6,7,...

1 2 3 5 6 74

1 2 3 5 6 74

Figure 4. Constructing a piecewise affine map ψ1 : S → Ω using
compatible triangulations. On the upper left we show partitions of
S and Ω into corresponding subdomains and on the right we show
that corresponding subdomains have compatible triangulations. On
the bottom we insert the triangulations into the pieces to show the
compatible triangulations of S and Ω. The same pattern is repeated
forever.

symmetric points t ± iy with |x − t| ≤ π and y ≥ w. Let Sx be the hyperbolic

geodesic in D connecting these two points. This arc cuts D into two subdomains that

are quasicircles with uniformly bounded constant, and hence a result of Fernández,

Heinonen and Martio [8] implies the image of each of these domains is a quasicircle

with uniformly bounded constant in Hr. This easily implies that γx = ψ−1(Sx) is a

curve in Hr that is symmetric with respect to the real line and satisfies Rx ≃ rx ≃
ψ−1(x) where

Rx = max
z∈γx

|z|, rx = min
z∈γx

|z|.
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(In other words, γ is contained in an annulus around the origin of fixed modulus,

independent of x.) See Figure 5.

Figure 5. For each x we can find a nearby cross-cut of Ω that maps
to an approximate half-circle in Hr, centered at the origin, and an
extremal length argument shows the logarithm of the diameter grows
linearly with x if Ω contains an infinite strip. This implies f has finite
order.

If I is the left side of Ω then the extremal distance from ψ−1(I) to γx in Hr is

comparable to the extremal distance from I to Sx in Ω (since modulus is quasi-

preserved by ψ). The first is easily seen to be comparable to logRx and the second

is comparable to x, since Ω is contained in the half-strip S and contains another

half-strip of positive width. Finally,

ρ(g) ≤ lim sup
x→∞

maxu+iv∈Ω,u<x log |ψ−1(u+ iv)|
x

≤ lim sup
x→∞

logRx+π

x
,

and our previous remarks show the rightmost term is bounded as x→ ∞.

More generally, this argument shows that g (and hence f) will have finite order

whenever the domain Ω contains an infinite half-strip of positive width.

5. The main construction

The domain Ω used in the proof of Theorem 1.1 is illustrated in Figure 6. It consists

of the half-strip S with finite trees removed along the integer points of the top and

bottom edge. The domain is symmetric with respect to the real axis and in most

of our pictures we will only show the lower half to simplify the illustrations. Note
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that there is a half-strip contained in Ω; this implies that the function we eventually

obtain will have positive, finite order by our previous comments.

Figure 6. The domain in cosh coordinates. The domain is symmetric
with respect to the real axis, and the trees are attached at the integer
points. The line segments are further divided into edges by vertices of
degree 2; see Figure 7.

Every removed tree contains a vertical unit line segment attached to ∂S. For n = 1

this segment is the entire tree. For n = 2 we add two segments: another vertical line

segment of length 1 and a diagonal segment of slope 1 and length
√
2 (so the degree

one vertices of the resulting tree are both distance 2 from ∂S). In general, the tree

Tn attached at the nth point is the vertical segment plus a binary tree of depth n− 1

as shown in Figure 6.

The edges of Tn are naturally divided into levels from 0 (attached to ∂S) to n− 1

(adjacent to the leaves of the tree). We form a new tree T ′
n by subdividing edges in

the kth level of Tn into 4k equal sub-edges. See Figure 7. Note that edges in the k-th

level have length ≃ 2−k · 4−k = 8−k. We define the vertices of ∂Ω to correspond to

the vertices of T ′
n. It is these new, shorter edges that will eventually be mapped to

segments of length π/2 on ∂Hr. We also subdivide the edges of ∂Ω on ∂S by adding

vertices where the real parts equal n + 1
2
, n = 1, 2, 3 . . . along the top and bottom

edges of T and adding the points ±iπ/2 to the left side of S.

This subdivision of Tn to obtain T ′
n is important for two reasons. First, when we

define the map ψ1 : S → Ω, these new edges will pull back to an exponential partition

of ∂S, and this allows us to define ψ0 as before. Second, since every edge of Tn of level

k is divided into 4k sub-edges, we can label the vertices of T ′
n so that the vertices of
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Tn all get label 1, except for the root of Tn (the point where it is attached to ∂S) that

gets label 0. Moreover, the roots of the trees are the only vertices labeled zero that

are not degree 2 vertices. Hence these are the only preimages of 0 that are critical

points. This fact will be important when we construct a quasiconformal deformation

that changes the order of our function.

level 0

level 1

level 2

level 3

Figure 7. T ′
n is Tn with extra vertices added. After subdividing, the

new vertices of ∂Ω can be three-colored as shown (black = -1, gray =
0, white = 1). The labels are only shown for levels 0, 1, 2 since edge
lengths decrease exponentially with the level.

Next we have to describe the map ψ1 : S → Ω. Consider the dashed curve γ

in Figure 8. It is horizontal along the top of each tree and has slope 1/2 between

trees (because the horizontal distance between Tn and Tn+1 is 2−n+1 and Tn+1 is 2−n

“taller” than Tn. The curve γ and its reflection across the real line bound a region

Ω1 ⊂ Ω (half of Ω1 is the shaded region in Figure 8). It is easy to map S to Ω1 by

a piecewise linear quasiconformal map that sends S ∩ L affinely to Ω1 ∩ L for every

vertical line L.

The leaves of ∂Ω lie on ∂Ω1 and divide it into segments. We associate each such

segment I to a region QI ⊂ Ω1. See Figure 9. If I is horizontal, then QI is the square

in Ω1 with I as one side. If I has slope 1/2 then QI is the right triangle in Ω1 with

hypotenuse I and vertical and horizontal legs. We also associate to I the component

UI of Ω \ Ω1 that has I on its boundary.

We let WI = QI ∪ UI ∪ I be the union of the regions above and below I. We

will define a map Ω1 → Ω by mapping each region QI to WI . Our map will be the

identity on ∂QI ∩Ω1, and hence extends continuously to all of Ω1 by setting it to the

identity outside all the QI ’s. This map is called a “filling” map for WI .
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Ω1

γ

Figure 8. The first step is to map the half-strip S to the variable
width strip Ω1 by a piecewise linear quasiconformal map. This is easy.

Q
I I

IU

Figure 9. The leaves of ∂Ω partition ∂Ω1 and we associate to each
segment I a region QI above it and a region UI below it.

5

1

2

3

4

Figure 10. The regions QI are mapped to regions Wi that “fill in”
Ω \Ω1. There are two special regions that are used just once each and
three that are used repeatedly. The five types of regions are illustrated.
Regions 1 and 2 are special cases that occur only once each and cases 3,
4 and 5 are called triangular, full and partial tubes respectively. There
is only one type of triangular region, but the full and partial tubes
come in infinitely many versions. However each of these versions is
built from a finite number shapes.
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There are five cases to consider: two special cases that occur once each, and three

cases that occur infinitely often. The two special cases are the first two segments on

γ; the ones that project vertically to [0, 1] and [1, 2]. Figures 11 and 12 show how to

define these maps using triangulations.

Figure 11. The first special case.

Figure 12. The second special case.

The remaining three cases are illustrated in Figures 13-17. We refer to these cases

as triangles (UI is a triangle), partial tubes (UI is not a triangle and does not touch

∂S) and full tubes (UI touches ∂S). See cases 3, 4 and 5 in Figure 10.

The filling map for full tubes is illustrated in Figures 14 and 15. In Figure 14,

the left side shows the region QI divided into a number of subregions; a pentagon

on top, a series of non-convex hexagons and a final triangle. The exact sizes of these

regions is important and will be discussed in the next paragraph; for the moment,

just assume that each of the middle regions (the non-convex hexagons) is similar to

all the others. The regions are labeled with numbers indicating their levels; these are

the same levels we used to subdivide the edges of the tree Tn to obtain the tree T ′
n.
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Figure 13. This shows the filling map for a triangular component.

The right side of Figure 14 shows the region WI divided into subregions corre-

sponding to the subregions of QI : a rectangle on top (this contains QI), a series of

trapezoids, and a square on the bottom. The regions on left and right are numbered

and each subregion on the left is mapped to the corresponding subregion on the right

by a piecewise affine map. The triangulations that define this map are illustrated in

Figure 15. Because we are only using three basic shapes (even though the middle

shape may be used many times), each with a finite triangulation, the maps we build

are clearly uniformly quasiconformal.

There is another property we need to check. The partition of the tree into edges is

supposed to pull back to an exponential partition of the strip. This means that the

vertices along the boundary of a full tube should pull back to a points on I that are

approximately evenly spaced and grow exponentially with the distance of I from the

left side of Ω. Consider Figure 14. The full tube is pictured on the right and divided

into levels (starting with the square on the bottom, which is level 0). The sides of

level k are divided into 4k equal length edges of the tree (see Figure7). These points

pull back to 4k equally spaced points on a subsegment of I (on the left of Figure 14,

the segment is where the boundary of a subregion hits I). In order for the collection

of all preimage points to be equally spaced on I, we need each segment corresponding

to a level k region to be 4 times longer than the segments corresponding to a level

k − 1 region, but this is easy to accomplish. This implies that when the edges of ∂Ω

are pulled back, every preimage in [n, n + 1] has length ≃ 4−n and hence they form

an exponential partition.
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1

2

3

23

1

2

0

1

0

3

Figure 14. This shows the filling maps for the full tubes. We subdi-
vide QI and WI as shown and map the pieces as illustrated in Figure
15. All the filling maps for full tubes are of this form, differing only in
the number of times the central trapezoid piece is repeated. The only
critical feature is that components pieces in QI have diameters that
decay like powers of 4 (this gives an exponential partition of ∂S).

Figure 15. This shows the triangulations defining the filling maps
for the full tubes. The reader should check that they are compatible.

The corresponding pictures for partial tubes are a little simpler. Figure 16 shows

how we cut Qi and WI into corresponding pieces and Figure 17 shows how each
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piece is mapped via a triangulation. The rest of the argument is the same as for the

full tubes (checking the map is uniformly quasiconformal and defines an exponential

partition of the strip).

This completes our construction of the quasiregular map g = cosh ◦ψ−1 ◦ cosh−1

and hence of an entire function f = g ◦φ with three singular values. The next section

will prove f is a counterexample to the order conjecture.

2

2

0

1

3

0

3

1

Figure 16. This shows how to decompose QI and WI into corre-
sponding pieces to construct the filling maps for partial tubes.

Figure 17. This shows how to map corresponding pieces of QI and
WI for partial tubes.
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6. The order conjecture fails

Suppose f is the entire function constructed in the previous section. We claim we

can choose quasiconformal maps τ, σ and an entire function F so that

F ◦ σ = τ ◦ f,

where τ is the identity off a compact set and σ satisfies

|σ(z)| = O(
√

|z|),(6.1)

for all sufficiently large z.

First we check that (6.1) gives the desired counterexample. Taking z = σ(w),

lim
|z|→∞

log+ log+ |F (z)|
log+ |z| = lim sup

|w|→∞

log+ log+ |F (σ(w))|
log+ |σ(w)|

≥ lim sup
|w|→∞

log+ log+ |τ(f(w))|
log+ |√w|

≥ 2 lim sup
|w|→∞

log+ log+ |f(w)|
log+ |w| ,

since f = τ ◦ f when |f | is large enough. Thus the order of F is at least twice the

order of f . Since the order of f is positive and finite, the two orders are different.

Now we prove the claims. First we define τ . Let W = D(1, 2) \ [0, 1]. W is a

topological annulus and is conformally equivalent to the round annulus At = D \ tD
for some t. For K > 1, the map

rK : z → z|z|K−1,

is a K-quasiconformal from At to AtK that is the identity on the outer boundary of At

and decreases the extremal length of the path family that separates the two boundary

components of A by a factor of K. Let WK be the domain of the form D(1, 2) \ [s, 1]
that is conformally equivalent to AtK . Thus rK transfers to a K-quasiconformal map

τ : W → WK that is the identity on the outer boundary of W decreases the extremal

length of the path family that separates the two boundary components of A by a

factor of K. It is easy to check that τ extends continuously across the slit boundary

of W and can be extended by the identity outside W to give a K-quasiconformal

map of the whole plane. This is the map τ we use in our quasiconformal equivalence.



20 CHRISTOPHER J. BISHOP

By the measurable Riemann mapping theorem, there is a K-quasiconformal map σ

of the plane so that F = τ ◦ f ◦ σ is entire. We can assume σ fixes −1, 1,∞.

All that remains is to show that (6.1) holds. Let V = D(1, 2)\ [−1, 1] and consider

inverse images of V under f . By construction, every such preimage contains two

preimages of 0 on its boundary and either

(I) both preimages are critical points,

(II) exactly one preimage is a critical point, or

(III) neither preimage is a critical point.

Case I occurs when the preimages of zero are the roots of two adjacent trees. Case

II only occurs twice and corresponds to the corners of S in cosh coordinates. Case

III occurs for preimages that do not touch ∂S in cosh coordinates. A cartoon of the

different types of preimages is shown (in cosh coordinates) in Figure 18.

II I I I I

III

III III

Figure 18. The support of our dilation lifted to Ω (its easier to see
in Ω than in Ω′ = cosh(Ω)). The light gray is the union of type I and
type II preimages and the darker gray shows a few type III preimages
(this is a sketch, not a computation). The dashed lines represent the
path family Γn whose extremal length is decreased by a factor of K by
our dilatation. The grey dots correspond to preimages of 0.

Let γ0 = [−iπ/2, iπ/2] and for n = 1, 2, . . . let γn be the vertical crosscut of S

that contains the point where the nth tree is attached. Let Γn be the path family

connecting γ0 to γn inside the closure of the type I and type II components. This

family has extremal length ≤Mn for some fixed M .

Applying cosh, γn, n ≥ 1, maps to an ellipse En of bounded eccentricity and

diameter ≃ en. Also, cosh(Γn) is a family of paths connecting [0, 1] to En. Let Vn be

the region bounded by the ellipse En, minus [−1, 1] and let Σn be the path family
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in Vn connecting [−1, 1] to En. Then Σn contains cosh(Γn), and Vn \ (−∞,−1] is

conformally equivalent to a 2π × n rectangle, so if λ denotes extremal length we get

n ≃ λ(Σn) ≤ λ(cosh(Γn)) = λ(Γn) ≃ n.

When we apply the quasiconformal map σ, the extremal length of Γn is reduced by

a factor of K; this is exactly why we choose τ as we did. Hence

λ(σ(Σn)) ≤ λ(σ(cosh(Γn))) ≤
Mn

K
,(6.2)

if K is large enough. The eccentricity of the ellipse En tends to 1 as nր ∞ so σ(En)

is a 2K-quasicircle when n is large enough. Let

R = max
σ(En)

|z|, r = min
σ(En)

|z|.

Since {1 ≤ |z| ≤ r} ⊂ σ(Vn), we have 1
2π

log r ≤ λ(σ(Σn)) ≤Mn/K, and hence

r ≤ exp(2πMn/K) ≤ exp(n/2)

if K ≥ 4πM . Quasiconformal maps are quasisymmetric, so we have R ≤ CK · r for

some constant depending only on K and hence R ≤ CK · en/2. If z ∈ Vn \ Vn−1, then

|σ(z)| ≤ R = O(en/2) = O(e(n−1)/2) = O(
√

|z|),

which is (6.1). This proves Theorem 1.1, i.e., the order conjecture fails in S.
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