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1. Introduction

We answer a question of Bern and Eppstein by proving:

Theorem 1.1. Any simply connected planar domain Ω whose boundary is a simple

n-gon has a quadrilateral mesh with O(n) pieces so that all angles are between 60◦

and 120◦, except that original angles of the polygon with angle < 60◦ remain. The

mesh can be constructed in time O(n).

The theorem is sharp in the sense that no shorter interval of angles suffices for all

polygons: using Euler’s formula, Bern and Eppstein proved (Theorem 5 of [2]) that

any quadrilateral mesh of a polygon with all angles ≥ 120◦ must contain an angle

≥ 120◦. On the other hand, any boundary angle θ > 120◦ must be subdivided by the

mesh in Theorem 1.1 and hence there must be a new angle ≤ θ/2 in the mesh. Thus

taking polygons with an angle θ ց 120◦ shows 60◦ is the optimal lower bound.

It is perhaps best to think of Theorem 1.1 as an existence result. Although we give

a linear time algorithm for finding the mesh, the constant is large and the construc-

tion depends on other linear algorithms, such Chazelle’s linear time triangulation of

polygons, that have not been implemented (as far as I know).

The three main tools in the proof of Theorem 1.1 are conformal maps, thick/thin

decompositions of polygons and hyperbolic tesselations. We will decompose Ω into

O(n) “thick” and “thin” parts. The thin parts have simple shapes and we can easily

construct an explicit mesh in each of them. The thick parts are more complicated,

but we can use a conformal map to transfer a mesh from the unit disk, D, to the thick

parts of Ω with small distortion. The mesh on D is produced using a finite piece of

an infinite tesselation of D by hyperbolic pentagons.

I would like to thank Marshall Bern for asking me the question that lead to Theorem

1.1 and pointing out his paper [2] with David Eppstein. Also thanks to Joe Mitchell

for many helpful conversations on computational geometry. This paper is part of a

series ([3], [4], [5], [6]) that exploits the close connection between the medial axis of a

planar domain, the geometry of its hyperbolic convex hull in H
3
+ and the conformal

map of the domain to the disk. This was originally motivated by a result of Dennis

Sullivan [15] about boundaries of hyperbolic 3-manifolds and its generalization by

David Epstein (only one “p” this time) and Al Marden [9]. Many thanks to those
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authors for the inspiration and insights they have provided. Also many thanks to the

referees for a careful reading of the original manuscript. Their thoughtful comments

and suggestions greatly improved the paper. One of them pointed out reference [11]

where the Riemann mapping theorem is used to prove that any polygon with all

angles ≥ π/5 can be dissected into triangles with all angles ≤ 2π/5.

2. Möbius transformations and hyperbolic geometry

A linear fractional (or Möbius) transformation is a map of the form z → (az +

b)/(cz + d). This is a 1-1, onto, holomorphic map of the Riemann sphere S2 =

C ∪ {∞} to itself. Such maps form a group under composition and are well known

to map circles to circles (if we count straight lines as circles that pass through ∞).

Möbius transforms are conformal, so they preserve angles. Given two sets of distinct

points {z1, z2, z3} and {w1, w2, w3} there is a unique Möbius transformation that sends

wk → zk for k = 1, 2, 3. A Möbius transformation maps the unit disk, D, to itself iff

it is of the form g(z) = λ(z − a)/(1 − āz) for some a ∈ D, |λ| = 1.

The hyperbolic metric on the unit disk is given by

ρ(v, w) = inf

∫
γ

2|dz|
1 − |z|2 ,

where the infimum is over all rectifiable arcs connecting v and w in D. This is a metric

of constant negative curvature. In some sources, the “2” is omitted; we have chosen

this version to be consistent with the trigonometric formulas found in [1]. Geodesics

for this metric are circular arcs that are perpendicular to the boundary (including

diameters). Hyperbolic area is given by 4dxdy/(1 − |z|2)2. The area of a triangle

with geodesic edges is π − α − β − γ, where α, β, γ are the interior angles. Thus the

area of any hyperbolic triangle is ≤ π.

The hyperbolic metric is well known to be invariant under Möbius transformations

of the disk, so it is enough to compute it when one point has been normalized to be

0 and the other rotated to the positive axis. If 0 < x < 1 and ρ = ρ(0, x), then

ρ = log
1 + x

1 − x
, x =

eρ − 1

eρ + 1
.
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It is also convenient to consider the isometric model of the upper half-space, H. In

this case the hyperbolic metric is given by

ρ(v, w) = inf

∫
γ

|dz|
y

,

where z = x + iy, but geodesics are still circular arcs perpendicular to the boundary.

If E ⊂ T = ∂D is closed then T \ E = ∪Ij is a union of open intervals. The

hyperbolic convex hull of E, denoted CH(E), is the region in D bounded by E and

the collection of circular arcs {γj}, where γj is the hyperbolic geodesic with the same

endpoints as Ij. See Figure 1.

Figure 1. Examples of hyperbolic convex hulls. The one on the
left is uniformly perfect, the center is thick with a large η, but not
uniformly prefect, and the right is only thick with a small η (there are
two geodesics that almost touch, but do not share an endpoint).

A closed set E ⊂ T is called η-thick if any two components of ∂CH(E) ∩ D that

don’t share an endpoint are at least hyperbolic distance η apart. If E is η-thick,

then any point in the hull is contained in a hyperbolic ball of radius η that is also

contained in the convex hull. The thickness condition can be written in other ways.

For example, E is η-thick iff non-adjacent complementary intervals have extremal

distance at least δ > 0 (with δ−1 ≃ 2

π
log 1

η
for small δ, η) [6]. A closed set E is

called uniformly perfect if any two components of ∂CH(E)∩D are at least hyperbolic

distance η part. This stronger condition arises many places in function theory, but

will not be used in this paper.
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3. A subdivision of the hyperbolic disk

To prove Theorem 1.1 we will divide the interior of Ω into pieces called “thick”

and “thin” (see [6] and Section 7). The thin pieces will be meshed explicitly, but the

mesh on the thick pieces will be transferred from a quadrilateral mesh of a domain in

the unit disk via a conformal map. Most of our time will be spent constructing the

mesh on the disk. In this section we describe the subdomain and how to subdivide it

into circular arc triangles, quadrilaterals and pentagons. In the following sections we

show how to construct quadrilateral meshes for each subregions that are consistent

along shared boundaries.

A compact hyperbolic polygon is a bounded region in hyperbolic space bounded

by a finite number geodesic segments. The polygon is “right” if every interior angle is

90◦. There are no compact hyperbolic right triangles or quadrilaterals, but there are

hyperbolic right n-gons for every n ≥ 5 and any such can be extended to a tesselation

Tn of hyperbolic space by repeated reflections. See Figure 2 for the case of pentagons

(the only case we use in this paper).

Figure 2. A hyperbolic right pentagon (left) and the its neighbors
in the tesselation T5.

Let L ≈ 1.6169 denote the side length of a hyperbolic right pentagon. We don’t

need the specific value, but it can be computed using γ = π/5, α = β = π/4 in the

second hyperbolic law of cosines (see [1]):

cosh c =
cos α cos β + cos γ

sin α sin β
.

In the tesselation T5, each edge of a pentagon lies on some hyperbolic geodesic.

Each of these geodesics divides T into two arcs and we let I5 denote the collection of

all such arcs.
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Lemma 3.1. There is a c < ∞ so that given any arc J ⊂ T there are I1, I2 ∈ I5

with I1 ⊂ J ⊂ I2 and |I2|/|I1| ≤ c (| · | denotes arclength).

Proof. Let γ be the hyperbolic geodesic with the same endpoints as J . The top point

of γ (i.e., the point closest to 0) is contained in some pentagon of the tesselation. By

taking c larger, we can assume J is as short as we wish, so we may assume this is

not the central pentagon. Let a be the hyperbolic center of this pentagon and let

g(z) = λ(z − a)/(1− āz) where |λ| = 1 is chosen g maps the pentagon to the central

pentagon. This is a Möbius transformation that sends a to 0, maps the diameter D

through a into λD and maps γ to a geodesic γ′ that intersects the central pentagon

of the tesselation. Moreover, since g preserves angles, the angle between γ′ and

D′ = λD is the same as between γ and D, and this is bounded away from 0, since

the intersection point is within distance L of the top point of γ.

Thus γ′ also makes a large angle with D′ and so is some positive distance r from

the point b = −λa = g(0). The inverse of g is f(z) = λ̄(z − b)/(1 − b̄z) and the

derivative of this is (1 − |b|2)/(1 − b̄z)2. From this we see that for |z| = 1,

1 − |b|
|z − b|2 ≤ |f ′(z)| ≤ 2(1 − |b|)

|z − b|2 |,

so that |f ′(z)| ≃ 2(1 − |b|) with a constant that depends only on |z − b|. Thus sets

outside a ball around b will be compressed similar amounts by f .

Choose geodesics γ1, γ2 from the tesselation edges on either side of γ′ so that γ1

separates b from γ′ and has a uniformly bounded distance r from b (we can easily

do this if 1 − |b| = 1 − |z| ≃ |J | is small enough). Apply f to γ1, γ2 and we get two

geodesics of comparable Euclidean size whose base intervals are the desired I1, I2. �

A Carleson triangle in D is a region bounded by two geodesic rays that have a

common endpoint where they meet with interior angle 90◦. Any two such are Möbius

equivalent. A Carleson quadrilateral is bounded by one finite length hyperbolic seg-

ment and two geodesic rays, again with both interior angles equal 90◦. See Figure 3.

It is determined up to isometry by the hyperbolic length of its finite length edge. In

this paper all of our Carleson quadrilaterals with have length L, where L is the side

length of a right pentagon, as above.

We will prove the following:
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Figure 3. A Carleson quadrilateral and triangle.

Lemma 3.2. There is a c < ∞ so that the following holds. Suppose we are given

A > 1 and a finite collection intervals {Ij}N
1 on the unit circle so that the expanded

intervals {AIj} are disjoint (these are the concentric intervals that are A times longer)

and each has length < π. Let E = ∪jIj. We can find intervals {Jj} so that

(1)
√

AIj ⊂ Jj ⊂ c
√

AIj, j = 1, . . . , N .

(2) Let F = ∪jJj and let W ⊂ D be the hyperbolic convex hull of T \F . Then W

has a mesh {Wk} consisting of right hyperbolic pentagons, Carleson quadri-

laterals and Carleson triangles. A pentagon shares an edge only with other

pentagons or the top of a quadrilateral, a quadrilateral shares a top edge only

with pentagons and side edges with triangles and other quadrilaterals, and a

triangle shares edges only with quadrilaterals.

(3) Each component of ∂W ∩ D is an infinite geodesic that is the union of side

edges from two Carleson quadrilaterals and edges from three pentagons.

(4) Every pentagon used in the mesh is a uniformly bounded hyperbolic distance

from the hyperbolic convex hull of E.

(5) Every region Wk in the mesh has diameter bounded by O(dist(Wk, E)) (Eu-

clidean distances).

Proof. For each interval Ij given in the lemma, choose Jj ∈ I5 to be the minimal

interval containing
√

AIj. Then (1) clearly holds by Lemma 3.1.

Let γj be the geodesic with the same endpoints as Jj and let P0 be a pentagon in

T5 that is above γj (i.e, whose interior lies in the component of D \ γj containing 0)

and whose boundary contains the “top” of γj (the point closest to 0). Let P1, P2 be

the elements of T5 that are adjacent to P0 and also above γj. Then the part of γj

covered by the boundaries of these three pentagons contains an interval of hyperbolic

length 2L centered at the top point. Let γ1
j be the geodesic containing the side of P1

that has one endpoint on γj and is not on ∂P0. Let J1
j ∈ I5 be the base interval of



ANGLE BOUNDS FOR QUADRILATERAL MESHES 7

γ1
j . Let J2

j ∈ I5 be the corresponding interval for P2 and let J ′
j = J1

j ∪ Jj ∪ J2
j . See

Figure 4.

J1 J2J

Figure 4. On the left are J, J1, J2. The shaded region is a union of
the pentagons; the white is a union of quadrilaterals and triangles.

Let G = ∪j(J
1
j ∪ Jj ∪ J2

j ) and let {K} be the collection of intervals in I5 that are

compactly contained in T \F , contain a point of T \G and are maximal in the sense

of containment with respect to these properties. These clearly cover all of T\G. Now

add the intervals Jj, J
1
j , J2

j to get a cover of the whole circle. Any open finite cover of

an interval has a subcover with overlaps of at most 2 (if a point is in three intervals

we can keep the ones with leftmost left endpoint and rightmost right endpoint and

throw away the third; repeat until every point is in at most two intervals). For such

a subcover, we mesh W with pentagons above the corresponding geodesics and by

Carleson quadrilaterals and triangles below. See Figure 5. Conditions (2) and (3)

are clear from construction.

Figure 5. An example of meshing a convex hull W with pentagons,
quadrilaterals and triangles. This example is not to scale, since the
white regions should be much smaller than their distances apart.
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If x ∈ T\F and d = dist(x, F ) then apply Lemma 3.1 to an interval of length 1

2
d/c

centered at x. We obtain an element of I5 containing x, missing F and of length

≥ 1

2
d/c. Thus the maximal interval of K containing x has at least this length. This

implies (4).

Every right pentagon P has Euclidean diameter bounded by O(dist(P, T)) =

O(dist(P,E)). Every Carleson quadrilateral R has a top edge along a geodesic γ

with endpoints {a, b} and diam(R) ≃ dist(R, {a, b}). Since γ misses the hyperbolic

convex hull of E, the latter is ≤ dist(Q,R). Every Carleson triangle is adjacent to

two Carleson quadrilaterals of comparable Euclidean size that separate it from E, so

the estimate also holds for these triangles. Thus (5) holds. �

Lemma 3.3. If the collection {Ij}n
1 satisfies the conditions of Lemma 3.2 and if, in

addition, the set E = ∪jIj is a δ-thick set, then the mesh constructed in Lemma 3.2

has O(n) elements, with a constant that depends only on δ.

Proof. Choose a disjoint collection of η-balls in S = CH(E) ∩ W and note that there

are O(n) such balls since S has hyperbolic area O(n) (it is a convex hyperbolic

polygon with O(n) sides, hence has a triangulation into O(n) hyperbolic triangles,

and every hyperbolic triangle has hyperbolic area ≤ π).

Every pentagon used in the proof of Lemma 3.2 is within a bounded hyperbolic

distance D of one of the chosen η-balls, so only O(1) pentagons can be associated to

any one ball (they are disjoint, have a fixed area and all lie in a ball of fixed radius,

hence fixed area). Thus the total number of pentagons used is O(n). Every Carleson

quadrilateral shares an edge with a pentagon and every Carleson triangle shares an

edge with a quadrilateral, so the number of these regions is also O(n). �

4. Meshing the pentagons

In the last section we subdivided the unit disk into hyperbolic pentagons, quadri-

laterals and triangles. Next we want to mesh each of these regions into quadrilaterals

with angles in the interval [60◦, 120◦]. Moreover, along common edges of the regions,

the vertices of the meshes must match up correctly.

For each type of region, we will produce a mesh by quadrilaterals that have circular

arc boundaries and angles within a given range. In most cases the boundary arcs lie

on circles with radius comparable to the region, and the quadrilaterals will be much
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smaller, about 1/N as large, for a large N . If we replace the circular arc edges

by line segments, the angles change by only O(1/N), which still gives angles in the

desired range. The only exceptions will be certain parts of the mesh of the Carleson

triangles, that will require a separate argument to show the “snap-to-a-line” angles

are still between 60◦ and 120◦.

As before, L denotes the sidelength of a hyperbolic right pentagon.

Lemma 4.1. For sufficiently large integers N > 0 the following holds. Suppose P is

a hyperbolic right pentagon. Then there is mesh of P into hyperbolic quadrilaterals

with angles between 72◦ and 108◦. The mesh divides each side of the pentagon into N

segments of length L/N . Each quadrilateral Q in the mesh has hyperbolic diameter

O(1/N) and satisfies diam(Q) = O( 1

N
· diam(P )) in the Euclidean metric. Replacing

the edges of Q by line segments changes angles by only O(1/N).

Proof. Connect the center c of the pentagon by hyperbolic geodesics to the (hyper-

bolic) center of each edge. This divides the pentagon into five quadrilaterals each of

which has 3 right angles and an angle of 72◦ at the center. Consider one of these

quadrilaterals Q with sides S1, S2, S3, S4 where S1, S2 each connects the center of the

pentagon to midpoints of adjacent sides. Then S3, S4 are each half of a side of the

pentagon adjacent at a vertex v, with S3 opposite S1 and S4 opposite S2 (Figure 6).

ey

ex

S2

S1

S4

S3

72

90
90

90

90

φ

a
Q Q’

c

90

v
b

x

y

Figure 6. Definitions used in the mesh of a hyperbolic right penta-
gon. Each pentagon is divided into five quadrilaterals as shown.

Place a point x along S3 and let ex be the geodesic segment from S1 to S3 that

meets S3 at x and makes a 90◦ angle with S3. Similarly define a segment fy that joints

y ∈ S4 to S2. We claim that the segments cross at an angle (labeled φ in Figure 6) that
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is between 72◦ and 90◦. The two segments ex, fy divide Q into four quadrilaterals, one

of which contains the vertex v. This subquadrilateral, Q′ is a Lambert quadrilateral,

i.e., bounded by four hyperbolic geodesic segments and having 3 right angles. The

one non-right angle, φ, is a function of the hyperbolic lengths of the two opposite

sides (in this case a function of a = ρ(x, v) and b = ρ(y, v)),

cos(φ) = sinh a sinh b.

See Theorem 7.17.1 of [1]. Clearly, φ decreases as either a or b increase. For a and b

close to zero we have φ ≈ 90◦ and when a, b take their maximum value (a = b is the

hyperbolic length of S3) we get Q′ = Q and φ = 72◦. Thus φ takes values between

72◦ and 90◦, as claimed.

To define a mesh of Q, take N equally spaced points {xk} ⊂ S3 and {yk} ⊂ S4

and take the union of segments exk
, fyk

. This divides Q into quadrilaterals with

geodesic boundaries and angles between 72◦ and 108◦. Doing this for each of the

five quadrilaterals that make up the hyperbolic right pentagon gives a mesh of the

pentagon. The remaining claims are easy to verify. See Figure 7.

Figure 7. A quadrilateral mesh of a single pentagon and the mesh
on 11 adjoining pentagons. Because vertices are evenly spaced in the
hyperbolic metric, meshing of adjacent pentagons match up.

�

5. Meshing the quadrilaterals

Lemma 5.1. For sufficiently large integers N the following holds. Suppose {d1 <

d2 < · · · < dM} satisfy |dk − dk+1| ≤ 1/N for k = 1, . . . ,M − 1, d1 < 1/N , dM >

N and suppose R is a right Carleson quadrilateral. Then there is mesh of R into

hyperbolic quadrilaterals with angles between 90◦ −O( 1

N
) and 90◦ + O( 1

N
). The mesh
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divides the unique finite (hyperbolic) length side of R into N segments of length L/N .

Each infinite length side of R has vertices exactly at the points that are hyperbolic

distance dk, k = 1, . . . ,m from the finite length side. If the base of R has length

≤ π, then each element Q of the mesh satisfies diam(Q) = O( 1

N
· diam(R)) in the

Euclidean metric. Replacing the edges of Q by lines segments changes angles by at

most O(1/N).

We need a simple preliminary result.

Lemma 5.2. Suppose Q is a right circular quadrilateral, i.e., is bounded by four

circular arcs and all four interior angles are 90◦. Then Q has two orthogonal foliations

by circular arcs. Every leaf of both foliations is perpendicular to the boundary at both

of its endpoints.

Proof. To see this, take two opposite sides. Each lies on a circle and these circles

either intersect in 0, 1 or 2 points or are the same circle. In the first case we can

conjugate by a Möbius transformation so both disks are centered at 0. Then the

two other sides must map to radial segments and the foliations are as claimed. If

the circles intersect in two points, we can assume these points are 0 and ∞ so the

circles are both lines passing through 0 and again the foliations are radial rays and

circles centered at 0. If the opposite sides belong to the same circle, we can conjugate

it to be the real line, with the two sides being arcs symmetric with respect to the

origin. Then the other two sides must be circular arcs centered at 0 and the two

foliations are as before. The last, and exceptional, case is if the two circles intersect

in one point. Then we can conjugate this point to infinity and the intersecting sides

to two parallel lines. The other two sides must map to perpendicular segments and

the region is foliated by perpendicular straight lines. See Figure 8. �

Proof of Lemma 5.1. The two sides of R that lie in D but have infinite hyperbolic

length are geodesic rays that are both perpendicular to the geodesic containing the top

edge of R. Hence they are subarcs of non-intersecting circles (to see this, isometrically

map D → H so the top edge maps to a vertical segment and the geodesic rays map

to arcs of concentric circles). The foliations provided by the previous lemma consist

of (1) hyperbolic geodesics that are perpendicular to the top edge of R (the unique

finite length side) and (2) subarcs of circles that all pass through a, b (the endpoints
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Figure 8. Any right circular quadrilateral is Möbius equivalent to
one of these cases and hence has an orthogonal foliations by circular
arcs.

of the hyperbolic geodesic that contains the top edge of R). We call these the vertical

and horizontal foliations respectively.

To prove the lemma, we simply subdivide the edges of R as described and take the

foliation leaves with these endpoints. The only point that needs to be checked is that

points on the two infinite length sides of R that are the same hyperbolic distance from

the top edge lie on the same horizontal foliation leaf. However, any two horizontal

leaves are equidistant from each other in the hyperbolic metric (to see this, map the

vertices a, b to 0,∞ by an isometry D → H and these leaves become rays, and the

claim is obvious since dilation is an isometry on H). Since the top edge is a horizontal

leaf, we are done. See Figure 9.

Figure 9. A quadrilateral mesh of a Carleson quadrilateral. “Hori-
zontal” edges lie on circles that pass through the same two points on
the boundary (the endpoints of the geodesic contain the top edge).
“Vertical” edges are hyperbolic geodesics perpendicular to the top edge.

�
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6. Meshing the triangles

Unlike our meshes of the Carleson quadrilaterals and right pentagons, our mesh of

the Carleson triangles will use the full interval of angles [60◦, 120◦]. This is easy to

do if we just want to mesh by quadrilaterals with circular arc sides. However, we will

want to conformally map our mesh in D to Ω and then replace the curved edges in

the image by straight line segments. This can change the angles slightly, so we would

end up with angles in [60◦ − ǫ, 120◦ + ǫ] (where ǫ depends on the ratio between the

diameters of our mesh elements and the diameter of T ). To get the sharp result, we

will have to be careful how we use angles near 60◦ and 120◦. To simplify matters,

it will be enough to simply consider one special Carleson triangle T in the upper

half-plane model with vertices at −1, 1, i/(
√

2 − 1). The mesh for any other triangle

will be obtained as a Möbius image of the mesh we construct on this triangle.

The triangle T has one vertex in H, and we refer to this as the “top point”.

Adjacent to the top point are two sides that we call the “left” and “right” sides.

Inside T we will construct an “inner triangle” Ti ⊂ T . The vertices of Ti form an

ordinary equilateral Euclidean triangle, but the edges of Ti itself are circular arcs

meeting at three interior angles of 90◦, and Ti is uniquely determined by this.

Lemma 6.1. The following holds for all sufficiently large integers N . There is a

sequence d1 < d2 < · · · < dM with |dk − dk+1| ≤ 1/N for k = 1, . . . ,M − 1 and

a mesh of T into hyperbolic quadrilaterals with angles between 60◦ and 120◦ so that

the vertices along the left and right edges of T occur exactly at the points distance

dk, k = 1, . . . ,m from the top point. Every quadrilateral Q in the mesh satisfies

diam(Q) = O( 1

N
· diam(T )). The triangle T contains a symmetric right circular

triangle Ti ⊂ T so that outside Ti, only angles in [90◦ −O( 1

N
), 90◦ + O( 1

N
)] are used.

The triangle Ti may be chosen as small as wish compared to T . Replacing edges by

straight line segments gives angles between 60◦ and 120◦.

The inner triangle Ti it is divided into three quadrilaterals by connecting the center

of the triangle to the midpoint of each edge by a straight line. The vertices of Ti and

the midpoints of its edges are connected to points on ∂T by circular arcs that are

perpendicular to the both the boundaries of T and Ti at the points where they meet.

See Figure 10. We mesh each of the nine resulting quadrilaterals using the foliations
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5 6

7 8

v2v1

v3 v4

v v

v v

w

v

c

Figure 10. The outer triangle T is a Carleson triangle in the upper
half-plane with top point w = i/(

√
2 − 1). Its interior is divided into

an inner triangle Ti (shaded) with top point v and nine surrounding
right circular quadrilaterals. The points v1, v2 are equidistant from w
in the hyperbolic metric. The left and right sides of Ti are geodesic
segments and extend to hit R as points v7, v8. The Carleson triangle
with vertices v, v7, v8 is denoted Te.

given in Lemma 5.2, starting at the left and right sides of T at the points given by

{dk}. We assume that this collection contains the distances ρ(w, v1), ρ(w, v3), ρ(w, v5).

When a leaf ends we continue it in the next quadrilateral (assume we know how to

do this for the inner triangle and that the foliation there is symmetric). The path

continues until it either it hits c (the center of the inner triangle), hits [−1, 1] (the

base of T ) or hits the opposite side of T . In the latter case, symmetry implies the

path ends at a point the same distance from the top point as its starting point.

The choice of inner triangle Ti depends only on the choice of its top point. This lies

on the positive imaginary axis, and Ti is chosen to be symmetric with respect to this

line. The diameter of Ti is scaled so that the left and right edges of Ti are hyperbolic

geodesic segments (if the top point has height h above 0, the three vertices of Ti

should form an equilateral triangle of sidelength h(
√

3−1); see Figure 11). Since any

point between the top point of T and the origin can be used, the inner triangle can

be as small as we wish.

We define three foliations on this triangle Ti. For each vertex v, reflect v through

the circular arc on the opposite side to define a point v∗ and foliate Ti by arcs that lie

on circles passing through both v and v∗. Note that each foliation leaf passes through

one of the vertices of Ti and is perpendicular to the opposite side. See Figure 12. The



ANGLE BOUNDS FOR QUADRILATERAL MESHES 15

45 15

45 45

30

a

b

d 0
γ

c

Figure 11. How to scale the inner triangle. Suppose a is height 1
above the real axis and a, b lie on a geodesic γ centered at d that makes
a 45◦ angle with the horizontal at a. The ∆a0d is isosceles with base
angles 45◦, so |ad| = |bd| =

√
2. The line da is perpendicular to γ, so

∆dab is isosceles. Thus |ab| = 2|bd| sin(15◦) =
√

3 − 1.

center of the triangle can be connected to the midpoint of each side by a foliation leaf

that is a straight line, dividing T into three quadrilaterals. Restrict each foliation

to the two quadrilaterals that are not adjacent to the vertex it passes through. This

gives two foliations on each quadrilateral. See Figure 12. Taking a finite set of leaves

for each foliation gives a quadrilateral mesh of the right circular triangle.

Figure 12. Three foliations of a circular right triangle. Each leaf
passes through an associated vertex and is perpendicular to the oppo-
site side. Connecting the center of the triangle to the midpoints of each
side by the straight leaf divides Ti into three quadrilaterals. We then
restrict each foliation to two of the quadrilaterals as shown, and leaves
of the union give the mesh edges.
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Figure 13. The mesh of a Carleson triangle for two different posi-
tions of the inner triangle.

Combining this foliation of the inner triangle with the foliations of the surrounding

quadrilaterals and choosing starting points along the left and right sides of T as

described earlier gives the desired mesh of T . See Figure 13. The only part of the

lemma left to prove is the claim that the angle are in the desired interval when replace

the curved edges by straight segments.

When we replace the circular arc edges in the mesh by straight line segments, It

is not obvious that they all remain in [60◦, 120◦], but we will show that this is true.

Consider a point z in one of the three quadrilaterals and the two foliation paths γ1, γ2

that connect it to the two opposite vertices, v1, v2 respectively. See Figure 14. Let

L1, L2 be the lines through the center c and the points v1, v2. If we think of the

arc γ1 as a graph over the line L1 it is monotonically increasing as we move away

from v1 and remains increasing so as long as we stay inside the triangle (since γ1

is perpendicular the the opposite side of the triangle, the point of greatest distance

from L1 occurs outside the triangle). Thus if we translate L1 to pass through the

point z, we see that γ1 stays on one side of this new line up to z and on the other

side beyond z. Thus any chord of γ1 in the triangle with one endpoint at z also stays

on the same side of the line as the corresponding arc of γ1. Similar for γ2 and L2.

See the right side of Figure 14. Thus if we replace foliation paths by segments, at

each vertex there will be two angles less than 120◦ and two greater than 60◦ (which

are the angles formed by L1 and L2). This completes the proof of Lemma 6.1.
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v2

L 2

v1

γ2
γ

1

L1
c z

z

L +z−c

L +z−c1

2
γ2

γ
1

Figure 14. If we choose any point z of the equilateral triangle
then chords of the foliation paths with endpoint z form angles that
are bounded between 60◦ and 120◦.

7. Meshing the thick parts by conformal maps

The Riemann mapping theorem says that given any simply connected planar do-

main Ω (other than the whole plane) there is a 1-1, onto, holomorphic map of the disk

onto Ω. Moreover, we may map 0 to any point of Ω and specify the argument of the

derivative at 0. Such a mapping is conformal, i.e., it preserves angles locally. More

importantly, a conformal mapping is close to linear on small balls with estimates that

depend on the ball but not on the mapping. Koebe’s estimate (e.g. Cor. 4.4 of [10])

says that if f : D → Ω is conformal then

1

4
|f ′(z)| ≤ dist(z, ∂Ω1)

dist(f(z), ∂Ω2)
≤ |f ′(z)|.

The closely related distortion theorem states (Equation (4.17) of [10]) that if f is

conformal on the unit disk, then

1 − |z|
(1 + |z|)2

≤ |f ′(z)|
|f ′(0)| ≤

1 + |z|
(1 − |z|)3

,

This says that on small balls f ′ is close to constant, and hence that f is close to

linear. More precisely, if f is conformal on a ball B(w, r) then

|f(z) − L(z)| ≤ O(ǫ2|f ′(z)|r),(7.1)

for z ∈ B(w, ǫr), where L(z) = f(w) + (z − w)f ′(w) is a Euclidean similarity.

We are particularly interested in conformal maps onto polygons. In this case f is

given by the Schwarz-Christoffel formula

g(z) = A + C

∫ n−1∏
k=1

(w − zk)
αk−1dw,
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where the interior angles of Ω are {α1π, . . . , αnπ} and the preimages of the vertices are

z = {z1, . . . , zn}. See e.g., [8], [12], [16]. The formula was discovered independently

by Christoffel in 1867 [7] and Schwarz in 1869 [14], [13]. For other references and a

brief history see Section 1.2 of [8]. The difficulty in using the formula is to find the

correct parameters z for a given Ω.

For a conformal map f onto a polygonal region, the points of the prevertex set

z ⊂ T are the only singularities of f on T. The map extends analytically across the

complementary intervals by the Schwarz reflection theorem. Thus for a point w ∈ D,

the map f extends to be conformal on the ball B = B(w, dist(w,E)), and if Q ⊂ B

and diam(Q) ≤ ǫ · dist(Q,E), then there is a linear map L so that

|f(z) − L(z)| ≤ O(ǫdiam(f(Q))),(7.2)

for z ∈ Q. In particular, the images of the vertices of Q map to the vertices of

quadrilateral whose angles differ by only O(ǫ) from the angles of Q. This is what

allows us to map our mesh via a conformal map and obtain a mesh with only slightly

distorted angles. More precisely,

Lemma 7.1. Suppose f : D → Ω is a conformal map onto a polygonal domain with

singular set z and Q ⊂ D is a Euclidean quadrilateral with diam(Q) ≤ ǫ · dist(Q, z).

Then the images of the vertices of Q under f form a quadrilateral with angles differing

by at most O(ǫ) from the corresponding angles of Q.

If we applied this directly to a general polygonal region we could prove that there

is a quadrilateral mesh with angles between 60◦−O(ǫ) and 120◦ +O(ǫ) for any ǫ > 0,

but we would not have the O(n) bound on the number of pieces. Bounding the

number of terms comes from using a special decomposition of Ω and getting rid of

the ǫ’s comes from modifying the conformal map near the inner triangles in our mesh

of D. We will deal with the decomposition first.

A polygonal domain Ω is δ-thick if the corresponding prevertex set z is δ-thick, as

defined in Section 2. Equivalently, any two non-adjacent sides of Ω have extremal

distance at least δ in Ω. Extremal distance is a well know conformal invariant which

roughly measures the distance between two continua compared to their diameters.

For more details about extremal distance and thick domains, see [6].
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Figure 15. A polygon with one hyperbolic thin part (darker) and
six parabolic thin parts.

Figure 16. A polygon with five hyperbolic thin parts. This figure
is not to scale. The channel on the right is not thin because the upper
edge is made up of numerous short edges; the extremal distance from
any of these to the lower edge is bounded away from zero.

A subdomain Ω′ ⊂ Ω is δ-thin if (1) ∂Ω′∩∂Ω consists of two segments S1, S2 (each

a subset of distinct edges of Ω), (2) ∂Ω′ ∩ Ω consists of two polygonal arcs, each

inscribed in an approximate circle and (3) the extremal distance between S1 and S2

in Ω′ is ≤ δ. A thin part of Ω is called parabolic if the sides S1, S2 lie on adjacent

sides of Ω is called hyperbolic otherwise. See Figures 15 and 16. The following result

is proven in [6].

Lemma 7.2. There is an δ0 > 0 and 0 < C < ∞ so that if δ < δ0 then the following

holds. Given a simply connected, polygonal domain Ω we can write Ω is a union

of subdomains {Ωj} belonging to two families N and K. The elements of N are

O(δ)-thin polygons and the elements of K are δ-thick. The number of edges in all the

pieces put together is O(n) and all the pieces can be computed in time O(n) (constant

depends on ǫ). A piece can only intersect a piece of the opposite type. Any such

intersection is a 4δ-thin polygon.

Suppose Ω1 is one of the thick parts, and let f : D → Ω1 be a conformal map

with the origin mapping to a point outside of all the thin parts hitting Ω1. Note that
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Ω2

1

1Ω

Ω
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3

4

Figure 17. An overlapping thick piece, Ω2, and thin piece, Ω1 and
crosscuts γ1 = ∂Ω1 ∩ Ω2, γ2 = ∂Ω2 ∩ Ω1. The shaded region is Ω3 =
Ω1 ∩ Ω2. This region is divided into three sections and in the center
section is denoted Ω4.

∂Ω1 ∩ Ω consists of crosscuts {γj} and let {Ij} be the preimages under f of these

boundary arcs. Each γj has an associated crosscut γ′
j that is a boundary arc of the

thin part containing γj. The preimage of γ′
j defines a crosscut in D whose endpoints

define an interval that contains AIj of Ij where A ≃ exp(π/4δ). These larger intervals

are disjoint (since none of the thin parts intersect) and f(0) can be chosen so they

all have length < π.

Thus we can apply Lemma 3.2 to construct a domain W1 ⊂ D and a quadrilateral

mesh on it. Suppose ∂Ω1 has n1 sides. Since Ω1 is δ-thick, Lemma 3.3 implies the

mesh of W1 has O(n1) elements, with a constant depending on δ. Moreover, for any

ǫ > 0 we may assume Lemma 7.1 applies to all the quadrilaterals in our mesh of W1

if we take ǫ = O(1/N) where N is in Lemmas 4.1, 5.1 and 6.1). Thus f(W1) ⊂ Ω1

has a mesh with O(n1) quadrilaterals, the constant depending on δ and N , which we

will choose independent of Ω. If N is large enough, then all angles are in the desired

range, except possibly for the quadrilaterals corresponding to the inner triangles.

This determine the choice of N .

We also want to choose δ > 0 independent of Ω. As above, suppose Ω1 is a thick

piece and that it intersects a thin piece Ω2. The intersection, Ω3 = Ω1 ∩ Ω2 is a

4δ-thin part and can be divided into three disjoint 12δ-thin parts as illustrated in

Figure 17. Let Ω4 denote the “middle” part (the one separated from both γ1 and γ2).

For points inside Ω4, the conformal maps of the disk to Ω1 and Ω3 are very close to

each other if δ is small enough. The following result (Lemma 24 of [6]) makes this

precise:
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Lemma 7.3. Suppose f : H → Ω1 is conformal. We can choose a conformal map

g : H → Ω3 so that for z ∈ f−1(Ω4), and uniform c > 0, C < ∞,

|f(z) − g(z)| ≤ C exp(−c/δ) max(diam(γ1), diam(γ2)).

Since Ω3 is a thin part, we can renormalize our maps so that f(i) = g(i) is the

center of Ω4 and the preimages of the vertices of Ω3 under g can be grouped into

two parts: those in a small interval {|x| < η} and those outside a large interval

{|x| > 1/η}, where η tends to zero as δ tends to zero.

The corresponding terms of the Schwarz-Christoffel formula can be grouped as

g′(w) = B
∏

|zk|<η

wαk−1(1 − zk

w
)αk−1

∏
|zj |>1/η

(1 − w

zj

)αj−1 ≃ Bw
P

k:|zk|<η αk−1 = Bwβ,

where B is constant, and the dropped terms are close to 1 if η is close to 0. Thus g

approximates a power function. This implies that g, and hence f , maps the circular

arc {|z| = 1} ∩H to a smooth crosscut of Ω4 that approximates a circular arc that is

close to perpendicular to the boundary, and that f followed by radial projection onto

this arc preserves the ordering of points and multiplies the distances between them

by approximately a constant factor (with error that tends to zero with δ). Figure 18.

This is one condition that determines our choice of δ. Another will be given in the

final section when we mesh hyperbolic thin parts.

Figure 18. Inside the middle of the overlap of a thick and thin part,
the conformal map approximates a power function. Points on a circular
arc in the disk are mapped to points that lie on an approximate circular
arc and order is preserved.

We now transfer the mesh from W1 to f(W1) ⊂ Ω1. The unmeshed portions of Ω

are now all subsets of thin parts bounded by crosscuts that are almost circular arcs.

Moreover, the number of mesh vertices on each of theses crosscuts is the same by (3)

of Lemma 3.2 (namely 3N +2M where N is from Lemma 4.1 and M is from Lemmas
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5.1 and 6.1). The mesh has all angles in [60◦, 120◦], except those corresponding to the

inner triangles in the Carleson triangles, where they may be O(ǫ) larger or smaller.

To fix this, we replace the conformal map by a linear map in the inner triangles.

Map each Carleson triangle in D used in the mesh of W1, to the Carleson triangle T

in H discussed in Section 6 using a Möbius transformation τ . Then g = fk ◦ τ−1 is a

conformal map of T into a part of f(W1) and we transfer our mesh of T outside the

inner triangle Ti via this map. This agrees with our previous definition. In the inner

triangle Ti we use the linear map h(z) = g(c)+(z−c)g′(c) to transfer the mesh. This

preserves angles exactly and so the image quadrilaterals have angles in [60◦, 120◦].

For quadrilaterals along the boundary of Ti we apply h to the vertices on ∂Ti and g

to the vertices in T \ Ti. Along the boundary of Ti, |h(z)− g(z)| = O(η2)diam(g(Ti))

where η = diam(Ti)/dist(Ti, z) = O(diam(Ti)/diam(T )). Since the quadrilaterals

meshing T along ∂Ti have Euclidean diameter ≃ η, and angles all near 90◦, we see

that the angles of the image quadrilaterals also have angles near 90◦ if η is small

enough, i.e., if the inner triangle is small enough with respect to the outer triangle.

This determines the choice of the inner triangle.

This completes the proof that the desired mesh exists, except for meshing the thin

parts, which is done in the next section. However, this is not quite a linear time

algorithm for computing the mesh, since we have used evaluations of conformal maps

without an estimate of the work involved. We address this now.

The exact conformal map onto a general polygon probably can’t be computed in

finite time, but we can compute an approximate map onto a simple n-gon in time

O(n) with a constant depending only on the desired accuracy. In [6] I show that

a (1 + ǫ)-quasiconformal map from D to Ω can be computed and evaluated at n

points in time O(n) where the constant depends only on ǫ. I will refer to [6] for the

definition and relevant properties of quasiconformal mappings, but the point is that

if f : D → Ω is conformal and g : D → Ω is the (1+ ǫ)-quasiconformal approximation

constructed in [6], and if we have a Euclidean quadrilateral Q in our mesh, then the

g-images of the vertices of Q give angles that are O(ǫ) close to the angles in the f

image. Thus using g to transfer the mesh vertices works just as well as f . The fast

Riemann mapping theorem given in [6] implies:
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Theorem 7.4. Suppose we are given a thick simply connected region Ω bounded by a

simple n-gon and an ǫ > 0. We can compute the thick/thin decomposition of Ω, the

corresponding domain W and its quadrilateral mesh and a map g on vertices of the

mesh that extends to a (1 + ǫ)-quasiconformal map of the disk to Ω. The total work

is O(n) where the constant may depend on ǫ.

In fact, we do not need the full strength of the result in [6], giving the dependence

on ǫ, since we only need to apply the result for a small, but fixed, ǫ. Moreover, we

only need the result for thick polygons, which is an easier case of the theorem.

8. Meshing the thin parts

We are now done with the proof of Theorem 1.1 except for meshing thin parts.

Each such thin part is either bounded by two adjacent edges of Ω and an almost

circular crosscut γ (the parabolic case) or by two non-adjacent edges and two almost

circular crosscuts γ1, γ2 (the hyperbolic case).

We start with parabolic thin parts where the two adjacent edges of Ω meet at

vertex v with angle θ ≤ 120◦. The crosscut γ defines a neighborhood of v in Ω that

is approximately a sector, and we define a true circular sector S with vertex v of

comparable, but smaller, size. See Figure 19. This sector is divided into pieces using

circular arcs concentric with v and radial segments, as shown in the left of Figure

19. There are several levels, with the width of the level decreasing by a factor of 2

as we move away from v, and we split each level with radial segments in order to

increase the number of vertices on the outer edge of the sector. This can be done so

that if we divide S into four equal sectors (each of angle θ/4 ≤ 30◦) and add extra

vertices to the centers of some arcs, then the number of points on the outer edge in

each subsector is the same as the number of vertices on γ in the same subsector.

If we list the points on γ and on the outer edge of the sector in order, then corre-

sponding points lie in the same subsector and can be joined by segments that make

angle between 90◦ − θ/2− ǫ ≥ 75◦ − ǫ and 105◦ + ǫ with the chords of the outer edge

of the sector. See Figure 20. A similar estimate holds for the chords on γ (with a

larger ǫ since γ is only an approximate circle). Here ǫ tends to zero as S shrinks with

respect to γ. We simply choose a relative size for S that causes these angles to be

between 60◦ and 120◦.
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v

γ

v

γ

Figure 19. The crosscut γ is defines a neighborhood of the vertex v.
We define a sector of comparable size and partition the sector, so that
the number of vertices on the outer edge approximates the number of
points on the crosscut γ. The pieces are then meshed: Mesh 1 is used
in dark shaded region, Mesh 2 (or it reflection) the white regions and
segments only in the lighter shaded regions. The number of vertices
on the outer edge is exactly the number on γ and corresponding points
are joined by segments.

θ1

θ2

120

120120

θ

Mesh 1

0 < θ ≤ 120

60 ≤ θ1 = 180 − 60 − 1

2
θ ≤ 120

60 ≤ θ2 =
1

2
(180 − 1

2
θ) ≤ 90

θ1

θ 2

θ3

θ4

θ5

θ 60 60

120
120 90

90

Mesh 2

0 ≤ θ ≤ 60

90 ≤ θ1 = 180 − 1

2
(180 − θ) ≤ 120

60 ≤ θ2 = 360 − 60 − 2θ1 ≤ 120

75 ≤ θ3 = 90 − 1

4
θ ≤ 90

60 ≤ θ4 = 90 − 1

2
θ ≤ 90

90 ≤ θ5 = 360 − 120 − 60 − θ4 ≤ 120

We then have to mesh S so that the mesh vertices on the outer edge are exactly

the ones given above. We do this by applying the illustrated constructions in each
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ε

90−φ−ε

90+φ+ε

2φ 90+φ

Figure 20. The connecting segments between γ and the outer edge of
S lie inside a sector of angle 2φ ≤ 30. If the S is small enough compared
to γ the angle marked ǫ is as small as we wish, say ǫ < 10◦. Then the
angles formed with the chords of the outer edge of S are between 65◦

and 115◦. The angles with the chords along γ are slightly smaller/larger
since γ is only an approximate circle, but the difference is as small as
wish by taking the parameter δ in our thick/thin decomposition small
enough.

part of the sector. Mesh 1 is used only in the piece adjacent to v and the equations

below the figure show that all the new angles are in the correct range. Mesh 2 (or its

reflection) are used in all the pieces that have one more vertex on their outer edge

than on the inner edge (we use reflections to make the vertices on the radial edges

match up). Otherwise we simply use chords of circles concentric with v to connect

edge vertices of parts where mesh 2 was used. See the right side of Figure 19.

If the interior angle at v is 120◦ ≤ θ < 240◦ then we bisect the angle as part of our

partition of the sector. If 240◦ ≤ θ ≤ 360◦, then we trisect the angle. See Figure 21.

Figure 21. If the vertex has interior angle between 120◦ and 240◦

then we bisect the angle as part of the sector partition and mesh each
piece as before.
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A hyperbolic thin part is bounded by two straight line segments in ∂Ω and two

almost circular crosscuts γ1, γ2. Both crosscuts contain the same number, P , of

vertices from the meshes of the corresponding thick pieces. If the two straight sides

are parallel or lie on lines that intersect with small angle, then just connecting each

point on γ1 to the corresponding point on γ2 will give angles in the desired range. In

general, however, this is not the case, but is easily fixed by adding a bounded number

of circular crosscuts separating γ1, γ2 and using a polygonal chain with vertices on

these crosscuts to connect each vertex on γ1 to the corresponding vertex on γ2. It is

easy to see that this can be done with angles close to 90◦ if the number of intermediate

crosscuts is large enough and δ (the degree if thinness) is small enough. See Figure

22. This places an additional constraint on the choice of δ.

Figure 22. By adding a bounded number of circular crosscuts to a
hyperbolic thin part we can connect any P points on γ1 to any P points
on γ2 with a mesh using angles near 90◦. The arcs look like logarithmic
spirals. Indeed, we can think of this mesh as approximating the image
of the lower picture under the complex exponential map.

In addition to the angle bounds, every quadrilateral in the construction can be

chosen to have bounded geometry (i.e., all four edges of comparable length with

uniform constants) except in two cases. First, when we mesh a parabolic thin part

with angle θ ≪ 1, the piece containing the vertex has two sides with length only

O(θ) as long as the other two. Second, when meshing a hyperbolic thin part we use

long, narrow pieces, but if the long sides have extremal distance δ, we can refine the

mesh by subdividing each such piece into O(1/δ) bounded geometry quadrilaterals.

Thus if the hyperbolic thin parts of Ω have “thinnesses” {δk}, then we can mesh Ω
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by O(n +
∑

k δ−1

k ) quadrilaterals with angles in [60◦, 120◦] and bounded geometry,

except for the pieces containing vertices with small angles. If Ω has no small angles,

this gives the smallest (up to a constant factor), bounded geometry mesh of Ω.
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