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Conformal removability is hard

Christopher J. Bishop

Abstract. A planar compact set � is called conformally removable if every homeomorphism of the
plane to itself that is conformal off � is conformal everywhere, and hence linear. Characterizing such
sets is notoriously difficult and in this paper, we partially explain this by showing that the collection
of conformally removable subsets of ( = [0,1]2 is not a Borel subset of the space of compact subsets
of ( with its Hausdorff metric. We give some similar results for other classes of removable sets and
pose a number of open problems related to removability and conformal welding, using the language
of descriptive set theory.

1. Introduction

Several well known problems in classical complex analysis have remained open for nearly
a century and seem intractable. Two of these are to characterize the compact planar sets
that are removable for conformal homeomorphisms, and to characterize conformal weld-
ing homeomorphisms among all circle homeomorphisms. The purpose of this paper is to
partially explain the difficulty of these problems by proving that the collection of confor-
mally removable sets is not a Borel subset of the space of all planar compact sets with the
Hausdorff metric. Much of the paper is a survey of the relevant ideas from complex anal-
ysis and descriptive set theory, and a recasting of known results into new forms. However,
we also present a new result regarding two special classes of removable Jordan curves,
and we discuss several new open problems at the interface of classical complex analysis
and descriptive set theory. We start by recalling some relevant definitions.

A planar compact set � is called removable for a property % if every function with
property % on Ω = �2 = C \ � is the restriction of a function on C with this property.
For example, if % is the property of being a bounded holomorphic function, then � is
removable if and only if every bounded holomorphic function on its complement extends
to be bounded and holomorphic on the whole plane (and hence is constant by Liouville’s
theorem). A standard result in many introductory complex variable classes is the Riemann
removable singularity theorem, that says single points are removable in this sense. While
there are a wide variety of properties that could be considered, most attention has been
devoted to the following cases:

Mathematics Subject Classification 2020: 30C35 (primary); 28A05 (secondary).
Keywords: conformally removable, conformal welding, Borel sets, analytic sets, well-founded trees.



2 C.J. Bishop

• �∞-removable: % = bounded and holomorphic,
• �-removable: % = �∞ and extends continuously to � ,
• (-removable: % = holomorphic and 1-to-1 (also known as conformal or schlicht),
• ��-removable: % = conformal and extends to a homeomorphism of C.
For an excellent survey of what is known about each of these classes, see Malik Younsi’s
2015 paper [64].

The basic problem is to find "geometric" characterizations of removable sets. For
example, Xavier Tolsa has given a characterization of �∞-removable sets in terms of the
types of positive measures supported on the set (see Section 2). Ahlfors and Beurling [1]
gave a characterization of (-removable sets as "NED sets" (negligible sets for extremal
distance; the precise definition will be given at the end of Section 7). On the other hand,
although there are various known sufficient conditions and necessary conditions, e.g., [30],
[32], [33], there is no simple characterization of �-removable or��-removable sets. Thus
it appears that characterizing these sets is "harder" than characterizing �∞-removable or
(-removable sets. The following is a precise formulation of this idea (� X and Borel sets
will be defined later in this section; for the moment think of � X as "relatively simple" and
not Borel as "very complicated").

Theorem 1.1. Let ( = [0, 1]2 be the unit square in C and let 2( denote the hyperspace of
(, i.e., the compact metric space consisting of all compact subsets of ( with the Hausdorff
metric. Within this metric space, the collection of

(1) �∞-removable subsets is a � X ,
(2) (-removable subsets is a � X ,
(3) �-removable subsets is not Borel,
(4) ��-removable subsets is not Borel.

Thus, in some sense, removability for conformal homeomorphisms is distinctly more
complicated than for bounded holomorphic functions. It turns out that the proof of parts
(1) and (2) are fairly elementary, and that parts (3) and (4) follow from well known results
in descriptive set theory and complex analysis.

Suppose Γ is a closed Jordan curve with bounded complementary component Ω and
unbounded component Ω∗, there are conformal maps 5 : D = {|I | < 1} → Ω and 6 : D∗ =
{|I | > 1} → Ω∗. Both these maps extend homeomorphically to the circle T = mD = {|I | =
1}, so ℎ = 6−1 ◦ 5 is a homeomorphism of the circle to itself. Such a map is called a
conformal welding. A single curve Γ can give rise to several weldings due to different
choices of the conformal maps 5 and 6 but all such maps are related by compositions with
Möbius transformations of the circle. Similarly, two curves that are Möbius images of each
other will have the same set of associated weldings. In fact, this is true for any image of
a curve Γ under a homeomorphism of the sphere that is conformal off Γ. (For brevity, we
call this a ��-image of Γ.) For a ��-removable curve, such a map must be a Möbius
transformation, so conformally removable curves (modulo Möbius transformations of the
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2-sphere) are uniquely determined by their welding (modulo Möbius transformations of
the circle).

It is very tempting to claim that a non-removable curve is not uniquely determined by
its welding, but this is still open; it is possible that there is some non-removable curve Γ
so that any ��-image of Γ is also a Möbius image. Very likely there is no such curve.
Indeed, an even stronger conjecture is that any conformally non-removable curve has a
��-image of positive area. Combined with the measurable Riemann mapping theorem
(e.g., Theorem V.B.1 of [2], or Theorem 5.3.2 of [4]), this conjecture would imply that
every non-removable curve has a ��-image that is not a Möbius image. We will say more
about these problems in Section 10.

It is known that not all circle homeomorphisms are weldings, e.g., examples are given
in [9] and [49], and these examples are described in Section 10. Thus the map from curves
to circle homeomorphisms is not onto. However, weldings form a "large" subset in several
senses. For example, conformal weldings are dense in all circle homeomorphisms. This
is easy for the uniform metric, since every circle diffeomorphism is a welding, but they
are also dense in a much stricter sense: for any n > 0, any circle homeomorphism can be
altered on set of length n to become a conformal welding. See Theorem 1 of [9]. More-
over, weldings generate all circle homeomorphisms, i.e., any circle homeomorphism is
the composition of two conformal weldings, [55]. It follows from a result of Pugh and Wu
that conformal weldings contain a residual set in the space of all circle homeomorphisms
(see Section 10 for details). However, it is not known if weldings are a Borel subset of
circle homeomorphisms. It follows from general results about Borel sets (to be stated
more precisely in Section 3), that if the map from curves to weldings were injective, then
conformal weldings would be a Borel subset of circle homeomorphisms. Thus the ques-
tion of whether conformal weldings are a Borel subset is closely linked to understanding
the failure of injectivity for this map, and it seems likely that injectivity fails exactly for
��-non-removable curves, creating a strong link between these problems. Moreover, the
collection of non-removable curves is quite complex, as indicated by the following result.

Theorem 1.2. As above, let ( = [0, 1]2 be the unit square in C and let 2( denote the
hyperspace of (, i.e., the compact metric space consisting of all compact subsets of (
with the Hausdorff metric. Within this metric space, the collection of �-removable closed
Jordan curves is not Borel. Similarly, the collection of ��-removable Jordan curves is
not Borel.

Next, we define a few terms that we have been using. Given a compact set  , we define
the Hausdorff distance between compact subsets  1,  2 as

3� ( 1,  2) = inf{n :  2 ⊂  1 (n),  1 ⊂  2 (n)},

where  9 (n) = {I : dist(I,  9 ) < n} is the open n-neighborhood of  9 , 9 = 1, 2. This
defines a compact metric space consisting of all compact subsets of  , called the Haus-
dorff hyperspace of  and denoted 2 (e.g., see Theorem A.2.2 of [10]). In this paper,
we mainly deal with three examples of  : the unit interval � = [0, 1] ⊂ R, the unit square
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( = [0, 1]2 ⊂ R2 = C, or the Riemann sphere S. The collection of Borel sets is the smallest
f-algebra containing the open sets (a f-algebra is closed under countable unions, count-
able intersections and complements). An �f set is a countable union of closed sets; a
� X is a countable intersection of open sets (this terminology originates with Hausdorff in
1914). These are the lowest level of a hierarchy of Borel sets, indexed by the countable
ordinals. A Borel map is one for which the preimage of any open set is a Borel set.

Analytic sets (also known as Suslin sets) are continuous images of Borel sets, but they
need not be Borel themselves (more about this later). The complement of an analytic set is
called co-analytic. The sets in parts (3) and (4) of Theorem 1.1, and in Theorem 1.2, turn
out to be co-analytic complete, a condition we will define in Section 5, and that implies
that they are non-Borel in a strong sense.

The removable sets in the first three cases of Theorem 1.1 all form f-ideals of com-
pact sets, i.e., they are closed under taking compact subsets and under compact countable
unions. The subset property is obvious, and the fact that a compact set that is a countable
union of compact removable sets is also removable is proven in [64] for each of these
three classes. The dichotomy theorem for co-analytic f-ideals (e.g., Theorem IV.33.3 in
[35]) then says these collections must be either � X or co-analytic complete in 2( . The-
orem 1.1 indicates which possibility occurs in each case. It is not known whether the
��-removable sets form a f-ideal; indeed, it is not even known if the union of two over-
lapping ��-removable sets is ��-removable. If the sets are disjoint, then this is true, but
is remains open even if both sets are Jordan arcs sharing a single endpoint. The proof of
Theorem 1.1 shows that the collection of ��-removable sets is co-analytic complete, and
this fact adds some additional evidence that these sets may form a f-ideal.

Although it is a basic theorem of descriptive set theory that every uncountable Polish
space - contains analytic and co-analytic sets that are not Borel (see Section 4), it is very
interesting to obtain "natural" examples. For example, if - = � ( [0, 1]) (continuous func-
tions on [0, 1] with the supremum norm) the following subsets of functions are all known
to be co-analytic complete, and hence non-Borel:
• everywhere differentiable [47],
• differentiable except on a finite set [57] or countable set [27],
• nowhere differentiable [46],
• everywhere convergent Fourier series [3].
For the space � ( [0, 1])N of sequences of continuous functions on [0, 1] the space CN of
everywhere convergent sequences is co-analytic complete, as is the space CN0 of sequences
converging to zero everywhere. See Theorem IV.33.11 of [35] by Kechris. A famous result
of Hurewicz [31] says that the collection of countable, compact subsets of � = [0, 1] is co-
analytic but not Borel in 2� with its Hausdorff metric. See Theorem 5.6. Other known
examples of non-Borel subsets of 2� are:
• sets of uniqueness [36],
• sets of strict multiplicity [34].
A closed set � ⊂ T is a set of uniqueness if any trigonometric series that converges to zero
everywhere off � must be the all zeros series. � is a set of strict multiplicity if it supports
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a measure whose Fourier coefficients tend to zero; the Fourier series of such a measure
shows that its support is not a set of uniqueness in a strong way. These particular examples
have an intimate connection to the foundations of modern mathematics: Cantor showed
that finite sets are sets of uniqueness, and the problem of extending this to infinite sets led
him to the creation of set theory. For more about this fascinating episode in the history of
mathematics, see e.g., [17], [18], [44], [58]. For further "natural" examples of non-Borel
sets from analysis and topology, see [6] by Howard Becker.

This note was prompted by email discussions with Guillaume Baverez, in which he
proposed a possible characterization of ��-removable Jordan curves in terms of their
conformal weldings. I doubted such a concise criterion could be given, and eventually
I found a counterexample to his conjecture, but the interchange raised the question of
quantifying the difficulty of the problem. This paper was written in the hope that gathering
the basic facts needed from descriptive set theory might be of interest to fellow complex
analysts, and perhaps motivate some of them to attack other variants of these problems,
e.g., those discussed in Sections 7, 10 and 11.

2. N∞-removability is "easy"

As we shall explain below, identifying removable sets isn’t exactly easy in the usual sense,
but in terms of descriptive set theory the collection of such sets is pretty simple.

Lemma 2.1. The collection of �∞-non-removable subsets of ( = [0, 1]2 is an �f subset
of 2( . The �∞-removable sets are therefore a � X subset.

Proof. Suppose � ⊂ [0, 1]2 is non-removable for �∞. Then there is a non-constant,
bounded holomorphic function 5 defined on the complement of � . Near infinity, 5 has
a Laurent expansion

5 (I) = 20 +
21
I
+ 22

I2
+ . . .

and this has at least one non-zero coefficient 2: for some : ≥ 1. If 21 = 0, the function

51 (I) = I( 5 (I) − 20) =
22
I
+ 23
I2
+ . . .

is also bounded, non constant and holomorphic off � . Continuing in this way, we see that
we eventually obtain a bounded holomorphic function on Ω = C \ � that has non-zero
coefficient 21 in its Laurent expansion.

Let -= be the collection of non-removable sets in [0,1]2 whose complements support a
holomorphic function whose absolute value is bounded by 1 and whose Laurent coefficient
satisfies |21 | ≥ 1/=. We claim -= is a closed set in 2( . Fix = and suppose { 9 } ⊂ -=
are compact sets converging to  in the Hausdorff metric. Assume 5 9 is the holomorphic
function on  2

9
attesting to its membership in -=. Each compact disk � in the complement

of  is eventually contained in the complements of the  9 for 9 large enough. Since
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| 5 9 | ≤ 1 for all 9 , Montel’s theorem (e.g. Theorem 10.13 in [45]) implies that we may
extract a subsequence that converges to a holomorphic function 5� on �. Covering  2 by
a countable union of such disks and applying a diagonalization argument, we may extract a
subsequence converging to a holomorphic function 5 bounded by 1. Applying the Cauchy
integral formula to a fixed circle surrounding [0, 1]2 we see that the Laurent coefficients
of 5 9 converge to the Laurent coefficients of 5 and hence |21 ( 5 ) | ≥ 1/=. Thus  ∈ -=.
Since every non-removable set is in some -=, the collection of all non-removable sets is
an �f in 2( .

The proof that (-removable sets form a � X is very similar, but now the trick of replac-
ing 5 (I) by I( 5 (I) − 20) to get |21 | > 0 might not give a 1-to-1 map. Instead, we may
assume the map is conformal off � and has an expansion 5 (I) = I + 21/I + 22/I2 + . . . so
that 2: ≠ 0 for some : . Thus it suffices to prove each member of the countable family  =,:
where |2: | ≥ 1/= is closed. We proceed as before, but now we justify the use of Montel’s
theorem slightly differently. Since 5 9 is univalent on {|I | > 2} and is normalized so that
5 ′(∞) = 1, Koebe’s distortion theorem (Theorem I.4.1 of [24]) implies 5 9 ({|I | > A}) con-
tains {|I | > 4A} for sufficiently large A . Thus 5 9 is uniformly bounded on {|I | ≤ A} for any
A > 0, and hence is uniformly bounded on any compact disk � ⊂ C. Thus we can apply
Montel’s theorem on �, and complete the proof as before.

Of course, just because �∞-non-removable sets are Borel in 2( does not mean that it
is an easy task to find an elegant characterization of them. Indeed, it is a deep result of
Xavier Tolsa [61] that � is non-removable for bounded holomorphic functions if and only
if � supports a positive measure ` of linear growth, i.e.,

`(� (G, A)) ≤ "A, (2.1)

(for some " < ∞ and all G ∈ R2, A > 0) and it has finite Menger curvature:

22 (`) =
∫ ∫ ∫

22 (G, H, I)3`(G)3`(H)3`(I) < ∞, (2.2)

where 1/2(G, H, I) is the radius of the unique circle passing through G, H and I (linear
growth implies (3`)3 gives zero measure to the set were two or more of G, H, I agree).

3. Analytic sets

A topological space - is called Polish if it is separable (has a countable dense set) and
has a compatible metric that makes it complete (Cauchy sequences converge). Standard
examples include Euclidean space R=, the continuous functions on [0, 1] with the supre-
mum norm, � ( [0, 1]), and the collection of compact subsets of a compact set  ⊂ R=
with the Hausdorff metric. Another important example is the Baire space NN of infinite
sequences of positive integers equipped with the metric given by 3 ((0=), (1=)) = 4−<,
where < = max{= ≥ 0 : 0: = 1: for all 1 ≤ : ≤ =}. One can show NN is homeomorphic
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to the irrational numbers (with the usual topology) although they are different as metric
spaces (one is complete and the other is not). Every Polish space is the continuous image
of the Baire space (Lemma B.1.2, [10]).

As stated in the introduction, the Borel sets in a topological space form the smallest
f-algebra (i.e., closed under complements and countable unions and intersections) that
contains the open sets. A map is called Borel if the inverse image of any open set is a
Borel set. If follows that the preimage of any Borel set under a Borel map is also Borel,
and hence that the composition of Borel maps is a Borel map.

If - is a Polish space, then � ⊂ - is called analytic if there is another Polish space .
and a Borel set � ⊂ - × . so that � is the projection of � onto �, i.e.,

� = {G ∈ - : ∃ H ∈ . such that (G, H) ∈ �}.

Clearly, any Borel set � ⊂ - is a projection of the Borel set � × - ⊂ - × - , so Borel sets
are clearly analytic. However, it is known that any uncountable Polish space contains an
analytic set that is not Borel (see Lemma 4.1), and several explicit examples were already
mentioned in Section 1.

Analytic sets are closed under countable unions and intersections (see [35] or Appendix
B of [10]) but are generally not closed under taking complements, thus they do not usually
form a f-algebra. If � ⊂ - is analytic, then �2 = - \ � is called co-analytic. Borel images
and preimages of analytic sets are also analytic. In descriptive set theory, analytic sets are
denoted �1

1 and co-analytic sets�
1
1 (using light-faced characters refers to something else).

These form the simplest elements of the projective hierarchy of sets, much as closed and
open sets are the simplest sets of the Borel hierarchy. Analytic and co-analytic sets can be
quite complicated, e.g., although every uncountable analytic set contains a perfect subset,
Gödel [28] showed that this question for co-analytic sets is undecidable (similar to his
results for the Axiom of Choice and the Continuum Hypothesis). Similarly, all analytic
sets are Lebesgue measurable, but proving general projective sets are measurable requires
additional axioms, e.g., the assumption that certain "large cardinals" exist, e.g., see Steel’s
article [59].

There are several equivalent characterizations of analytic sets, including (see Section
11.3 of [11])

(1) � is the projection of a closed set in - × NN,
(2) � is the continuous image of NN,
(3) � is a continuous image of a Polish space,
(4) � is the continuous image of a Borel subset of a Polish space,
(5) � is the Borel image of a Borel subset of a Polish space.

In comparison, Borel subsets of a Polish space are characterized as follows (see Theorem
11.12 of [11])

(1) a continuous 1-to-1 image of NN,
(2) a continuous 1-to-1 image of a Borel subset of a Polish space,
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(3) a 1-to-1 projection of a closed set in - × NN,
(4) both a co-analytic and analytic set (see below).
Analytic sets are also known as Suslin sets in honor of Mikhail Yakovlevich Suslin,

who proved that a set is Borel if and only it is both analytic and co-analytic. While a
research student of Lusin in 1917, Suslin constructed a Borel set in the plane whose pro-
jection on the real axis is not Borel, contradicting a claim in a 1905 paper of Lebesgue
(Cooke [17] refers to Lebesgue’s error as "one of the most fruitful mistakes in all the his-
tory of analysis"). Suslin died of typhus in 1919 at the age of 24, having published just
one 4-page paper while alive, and one posthumously with Sierpinski. His work was fur-
ther developed by Lusin1, Sierpinski2 and others, and Suslin’s legacy remains very active
a century later.

To prove that the conformally non-removable subsets of ( = [0, 1]2 form an analytic
subset of the hyperspace of (, we first record a few simple facts.

Lemma 3.1. For any Borel map 5 : - → . between Polish spaces, the graph of 5 is a
Borel set in - × . .

Proof. It suffices to prove the complement of the graph is Borel. Since . is separable,
there is a countable basis {�: } for the topology. Thus given any G ∈ - and H ∈ . so that
H ≠ 5 (G) there is a basis element �: so that 5 (G) ∈ �: and H ∉ �: . In other words, (G, H)
is contained in the Borel product set 5 −1 (�: ) × (. \ �: ) ⊂ - × . and this set is disjoint
from the whole graph of 5 . Thus the complement of the graph of 5 is a countable union
of Borel sets, and hence it is Borel itself.

Lemma 3.2. Suppose  ⊂ C is a compact set and suppose � is an analytic subset of 2 

(i.e, � is a collection of compact subsets of  ). Then the collection of compact subsets of
 that each contain some element of � (i.e., the collection of supersets of �) is also an
analytic subset of 2 .

Proof. Since � is analytic, it is the continuous image of some Polish space - , say � =
5 (-). Define a map q : - × 2 → 2 × 2 → 2 by (G, �) ↦→ ( 5 (G), �) ↦→ 5 (G) ∪ � .
The first map in the composition is continuous since 5 is assumed to be continuous. The
second map is continuous since it is easy to check that taking unions is a continuous
map from 2 × 2 → 2 . Thus q(- × 2 ) is the continuous image of a Polish space
(because products of Polish spaces are also Polish), and hence it is an analytic subset of
2 . However, the image is exactly the collection of all possible unions of sets in � with

1In 1936 Lusin was the victim of a political attack that included charges of taking credit for Suslin’s
work and publishing too much in Western journals. Lusin survived the incident and was officially rehabil-
itated in 2012. See [21], [42]. However, Lusin’s thesis advisor, Egorov, died in 1931 following a hunger
strike in prison after similar attacks.

2According to [17], although Sierpinski was technically under arrest in Moscow during World War I as
an Austrian citizen, he was allowed to participate in the academic life of Moscow University.
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compact subsets of  , and hence it is precisely the collection of all supersets elements of
� (compact subsets of  containing an element of �).

For a compact set  ⊂ C, we say* ⊂  is relatively open in  if* =  ∩+ for some
open set + ⊂ C.

Lemma 3.3. Suppose - is a Polish space. Suppose  ⊂ C is compact and that each
relatively open * ⊂  is associated to a closed set - (*) ⊂ - . Moreover, assume that
∩U- (*U) = - (∪U*U) for any collection of relatively open subsets {*U} of  . Then the
map Λ from points of - to compact subsets of  defined by

Λ : G →  G =  \ ∪{* : G ∈ - (*)},

is a Borel map from - to 2 .

Proof. Note that if + ⊂ , are relatively open sets, then + ∪, = , , and hence

- (+) ⊃ - (+) ∩ - (,) = - (+ ∪,) = - (,),

so our map has a "reverse monotone" property. For each closed set � ⊂  and n > 0
consider the open ball in 2 

�(�, n) = {� ⊂  : 3� (�, �) < n}

These form a basis of the topology of the hyperspace 2 , so it suffices to show preimages
of such sets are Borel. Each such set is a countable union of closed balls

�(�, X) = {� ⊂  : 3� (�, �) ≤ X},

for some sequence of X’s tending up to n . Thus it suffices to show that sets of the form
Λ−1 (�(�, X)) are Borel, i.e., {G ∈ - : 3� ( G , �) ≤ X)} is a Borel subset of - .

Let # (�, X) = {H ∈ C : dist(H, �) ≤ X} and similarly for # ( G , X). It is easy to check
that the condition 3� ( G , �) ≤ X holds for some G ∈ - if and only if G is in the intersection
of the sets .1 = {G :  G ⊂ # (�, X)} and .2 = {G : � ⊂ # ( G , X)}. Hence it suffices to show
both .1 and .2 are Borel.

First consider .1. We claim that G ∈ .1 if and only if G ∈ - (*) where * = {I :
dist(I, �) > X}. Suppose G ∈ - (*). Then  G is in the complement of*, and hence every
point of  G is within distance X of � , i.e.,  G ⊂ # (�, X). Hence G ∈.1. Conversely, suppose
G ∈ .1. Then any point H ∈ * is strictly more than distance X from � and so H cannot be in
 G . Therefore H is in one of the relatively open sets (call it *H) that was subtracted from
 in the definition of  G , and hence G ∈ - (*H). Thus G ⊂ ∩H∈* - (*H) = - (∪H∈**H).
Since every point of * is in this union, we have * ⊂ ∪H∈**H , so ∩H∈* - (*H) ⊂ - (*)
by the reverse monotone property. By assumption, - (*) is a closed subset of - , so .1 is
closed, and hence it is Borel.

Next we consider .2. The complement - \ .2 consists of points G so that � contains
some point H that is strictly more than distance X from  G , i.e.,  G misses some closed
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disk � ′ = {I : |I ∈ C : |I − H | ≤ X}. Thus the compact set  G is a positive distance from
� ′ and hence it also misses some closed disk � ⊃ � ′ that is centered at a rational point
of the plane and that has rational radius > X. For each point I ∈ � ∩  , I ∉  G implies
G ∈ - (*I) for some relatively open set*I ⊂  containing I, hence G ∈ ∩I∈�∩ - (*I) =
- (∪I∈�∩ *I) = - (+�) where +� is some relatively open set containing � ∩  but dis-
joint from  G . For each rational closed disk chosen in this way, the corresponding set
- (+�) is closed. If G ∈ - \ .2, then it is in one of these closed sets and hence - \ .2 is
contained in the union of these countably many closed sets. Conversely, if G is in some
- (+�), then  G omits � and hence every point of  G is strictly more than distance X
from some point of � . Thus - \ .2 = ∪�- (+�) is �f , and hence .2 is also Borel, as
desired.

Next we want to specialize to the case when - is the space of homeomorphisms of
the 2-sphere to itself that are holomorphic off ( = [0, 1]2 and normalized to be ℎ(I) =
I + $ (1/|I |) at infinity. The space of homeomorphisms of a compact Polish space (like
the 2-sphere) is always a Polish space itself, but in this case we can be more explicit and
take the metric 3 ( 5 , 6) = sup | 5 − 6 | + sup | 5 −1 − 6−1 |, where distances are measured in
the spherical metric. It is not completely trivial to find a countable dense subset, but we
sketch a proof, leaving a few details for the reader to verify.

Lemma 3.4. Let - denote the collection of homeomorphisms of the 2-sphere S2 to itself
that are holomorphic off ( = [0, 1]2 and normalized to equal I +$ (1/|I |) at infinity. Then
- contains a countable dense subset, i.e., any element of - can be uniformly approximated
by elements of this subset.

Proof. First, by replacing 5 (I) by 5 (AI) where A > 1 is very close to 1, we may assume 5
is also holomorphic on a neighborhood of m(, and thus each edge of m(maps to an analytic
arc under 5 . For = a positive integer, consider the vertices+= of a (1/=) × (1/=) square grid
�= inside (. If = is sufficiently large, then the points 5 (+= ∩ m(), taken in order around
m(, define the vertices of a simple closed polygon %, and the Riemann map 6 from the
exterior of ( to the exterior of % (fixing ∞) uniformly approximates 5 . By perturbing the
vertices of this polygon slightly, we may assume these vertices have rational coordinates,
and that the map 6 still uniformly approximates 5 . The fact that 6 uniformly approximates
5 uniformly on compact sets outside ( follows from the Carathéodory kernel convergence
theorem (e.g., Theorem 8.11 of [45]), and uniform convergence up to the boundary follows
from Rado’s theorem (e.g., Theorem II.5.2 of [29]).

Next consider the vertices of the grid �= that are in the interior of (. Choose [ �
1/=, and within an [-neighborhood of each interior vertex {, perturb 5 so that 5 ({) has
rational coordinates, and the new map (still called 5 ) approximates the old one. For each
edge 4 of �= connecting two vertices { and | of �= we want to approximate 5 (4) by a
finite polygonal path from { to | whose vertices all have rational coordinates, and then
map the edges of �= to their corresponding polygonal arcs. If = is large enough, then
for any fixed n > 0 the image under 5 of each square in �= has diameter less than n/2.
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Thus we if can approximate each arc 5 (4) to within n/4 by a polygonal arc, then any
homeomorphic extension of 5 that maps the edges of �= to their corresponding polygonal
arcs will approximate 5 to within n .

If = is large enough and [ is small enough, we may assume all the image vertices are
distinct, and are pairwise separated by a distance of at least some X > 0. For each vertex
of �= let �{ denote the circle of radius X/100 around 5 ({). Each interior vertex is the
endpoints of four edges 41, 42, 43, 44 of �=, and for each 9 = 1, 2, 3, 4, we choose the last
point ? 9 of 4 9 on �{ (here, the "last point" means the last time we hit the circle as we
travel along 4 9 from { to the other endpoint of 4 9 ). We can then connect { to each of the
four points ?1, ?2, ?3, ?4 by line segments that meet only at {. We do the same for vertices
on m(, but now there may only be two or three adjacent edges to consider.

We then approximate the subarc of 4: from ?: to the corresponding point @ 9 on the
circle around the other endpoint | of 4: . These subarcs are all compact and pairwise
disjoint, so they are all a positive distance from each other. Thus we can approximate
each in the Hausdorff metric by pairwise disjoint polygonal arcs, all lying outside all of
the circles �{ . Having done this, we can then slightly perturb the arcs to assure that the
vertices all have rational coordinates (we do not change the coordinates corresponding to
images of vertices of �=, as these are already rational).

Now map each edge of the grid �= homeomorphically to the corresponding polygo-
nal using the map that agrees with our previous choices on the vertices of �=, and that
multiplies arclength by a constant factor. Finally, extend this map on the edges of �= to a
homeomorphism of each square of �= to the corresponding polygonal region defined by
the images of the edges, e.g., using conformal maps, we can reduce to extending a circle
homeomorphism ℎ to a homeomorphism of the interior disk, which is trivial by the "radial
extensionl" I → ℎ(I/|I |) · |I |. Our mappings on adjacent squares agree on the common
boundary segments, so they define a homeomorphism of ( that agrees on m( with our
holomorphic approximation. The final homeomorphism might not have the precise nor-
malization I + $ (1/I) near infinity, but it is very close to this, and we can impose this
form with a small dilation and translation. The resulting collection of maps is countable,
since each map is determined by a finite collection of rational numbers and a forced renor-
malization. We leave to the reader the verification that the inverse of the homeomorphisms
we have constructed approximate the inverse of 5 .

Lemma 3.5. The ��-non-removable subsets of ( = [0, 1]2 form an analytic subset of the
hyperspace of [0, 1]2. Thus the removable sets are co-analytic.

Proof. Let - be the space of homeomorphisms of the 2-sphere to itself that are holomor-
phic off ( = [0, 1]2 and normalized to be ℎ(I) = I + $ (1/|I |) at infinity. For each open
set * ⊂ C let - (*) be the elements of - that are holomorphic on *. Since uniform lim-
its of holomorphic functions are holomorphic, this is a closed subset of - . Moreover, if
ℎ is holomorphic on each set in a collection {*U}, then it is holomorphic on the union
so - (∪U*U) = ∩U- (*U). All the functions in this set may be holomorphic on a strictly
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larger set, e.g., if the union has removable complement, but this equality still holds, and
simply gives an example where - (+) = - (,) even if + is strictly contained in, .

For each ℎ ∈ - , and let *ℎ = C \  ℎ be the largest open set so that ℎ is holomorphic
on some neighborhood of every I ∈*ℎ (alternatively,*ℎ is the interior of the set of points
where ℎ′(I) exists). Lemma 3.3 says that ℎ ↦→  ℎ from - to . = 2 is a Borel map, and
Lemma 3.1 says its graph {(ℎ,  ℎ)} is a Borel set in - ×. . Hence the projection onto the
second coordinate gives an analytic set � = { ℎ : ℎ ∈ -} (projections of Borel sets are
analytic). By definition, a compact subset of  is conformally non-removable if and only
if it contains a non-empty set in �. Removing a point from an analytic set gives another
analytic set, so by Lemma 3.2 the supersets of non-empty elements of � form another
analytic set. Thus conformally non-removable sets are analytic in 2 .

Lemma 3.6. The �-removable subsets of ( = [0, 1]2 are co-analytic in 2( .

Proof. This is exactly the same as the proof of Lemma 3.5, except that now we work in
the Polish space of all continuous functions on the Riemann sphere that are holomorphic
off [0, 1]2, normalized to have supremum norm 1. This space is complete with the usual
supremummetric, and a countable dense set is not hard to construct, e.g., one can copy the
proof of Lemma 3.4 up to the point where we approximate by a function taking rational
values on the vertices of the grid �=, then triangulate these vertices and and use affine
maps on the triangles. (This is much easier than previously, because we do not need to
produce 1-to-1 maps.) As before, the map sending each such function to the complement
of the set where it is holomorphic is a Borel mapping of this Polish space into 2( , and the
projection of its graph onto the second coordinate gives an analytic subset of 2( . Taking
all supersets of all non-empty projections gives all �-non-removable sets, and shows this
collection is analytic.

4. Analytic non-Borel sets exist

The following is standard result, but we include the simple proof for completeness. We
follow the argument in Section 11.5 of [11].

Lemma 4.1. NN contains an analytic set that is not Borel. Thus the complement of this
set is co-analytic and not Borel.

Proof. This is a diagonalization argument. We claim it that suffices to show there is an
analytic subset - ⊂ NN × NN so that every analytic subset � ⊂ NN occurs as a slice � =
-H = {G ∈ NN : (G, H) ∈ -}, for some H. Given such a set - , then

� = {G ∈ NN : (G, G) ∈ -}

is the projection of the intersection of - with the (closed) diagonal of NN ×NN and hence
is the continuous image of an analytic set, and therefore is itself analytic. The comple-
mentary set �2 = {G ∈ NN : (G, G) ∉ -} is automatically co-analytic, and if �2 were also
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analytic, then it would be equal to a slice -H of - for some H. Thus,

-H = {G : (G, H) ∈ -} = �2 = {G : (G, G) ∉ -}.

However, in this case

H ∈ � ⇒ (H, H) ∈ - ⇒ H ∈ -H = �2

and
H ∈ �2 ⇒ (H, H) ∉ - ⇒ H ∉ -H = �

2 ⇒ H ∈ �,

so assuming either H ∈ � or H ∈ �2 both lead to contradictions. Thus �2 can’t be analytic,
and hence neither � nor �2 is Borel (since Borel sets are closed under complements, and
all Borel sets are analytic). Thus we have reduced proving the existence of a non-Borel
analytic set to finding an analytic set - ⊂ NN ×NN which has every analytic subset of NN

as a slice.
First we show this is possible for closed slices. The idea is that we can encode any

closed set by the list of open basis elements it misses. More precisely, if . is a Polish
with a countable basis {�: } for the topology, and if H ∈ . , then let ((H) ⊂ N be the set
of all natural numbers : with H ∉ �: . Then set ) (H) ⊂ NN to be the collection of all the
sequences with elements in ((H), i.e., ) (H) = ((H)N.

Consider the set / = {(H, B) ⊂ . × NN : H ∈ ., B ∈ ) (H)}. First, we claim that every
closed set � ⊂ . occurs as a slice of / . To prove this, let ((�) ⊂ N be the set indices
: of basis elements �: missing �. Fix the second coordinate of / to be some sequence
B ∈ NN whose union of elements is exactly the countable set ((�). If (H, B) is any point
in this slice, then we must have B ∈ ((H), and so H misses every open basis set �: that
misses � (and possible others), so H ∈ �. Conversely, if H ∈ �, then ((�) ⊂ ((H), so
B ∈ ((�)N ⊂ ((H)N, and hence (H, B) is in / . This proves every closed set � ⊂ . occurs
as a slice of / .

Next, we claim / is a closed subset of . × NN. Consider H= → H in . and I= ∈ ) (H=)
with I= → I in NN. We need to show I ∈ ) (H). If H= → H and H= ∉ �: for large =, then
H ∉ �: , since �2: is closed. Hence an integer is in ((H) if it is in ((H=) for all sufficiently
large = (the converse need not be true). Since I= → I in NN, it converges coordinate-wise,
and so if the :th coordinate of I= is in ((H) for all large enough =, the same is true for I,
i.e., I ∈ ) (H), as desired, proving / is closed.

Finally, to obtain every analytic subset ofNN as a slice, we apply the previous argument
to . = NN × NN to get a closed set - ⊂ . × NN = (NN × NN) × NN so that every closed
subset of (NN)2 occurs as a slice of - . Hence every analytic subset of NN occurs when we
project - onto the first coordinate. Projections of analytic sets are analytic, so projecting
- onto the first and third coordinates gives an analytic subset of NN × NN, whose first
coordinate ranges over all analytic subsets of NN.

Note that this implies the cardinality of the analytic subsets of a Polish space is at most
the cardinality of NN, i.e., the same as R, the continuum 2. Since single points are analytic
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sets, the analytic subsets of R have cardinality exactly 2. In particular, the collection of all
Borel subsets of R also has cardinality 2.

5. Co-analytic complete sets

A co-analytic subset � ⊂ - of a Polish space is called co-analytic complete if for any
co-analytic set � of NN there is a Borel map 5 : NN → - so that 5 (H) ∈ � if and only if
H ∈ �, i.e., � = 5 −1 (�). Thus membership in � can be reduced to checking membership
in �.

Lemma 5.1. If 5 : - → . is a Borel map between Polish spaces, if � is co-analytic, and
if 5 −1 (�) is co-analytic complete in - , then � is co-analytic complete in . .

Proof. If � ⊂ NN is co-analytic, then there is a Borel map 6 : NN → - so that � =
6−1 ( 5 −1 (�)), since 5 −1 (�) is co-analytic complete. Thus ℎ = 5 ◦ 6 is a Borel map from
NN to . and � = ℎ−1 (�). Hence any co-analytic set � in NN is a Borel preimage of �, and
hence � is co-analytic complete.

Lemma 5.2. A co-analytic complete set cannot be Borel.

Proof. Let � ⊂ NN be a non-Borel, co-analytic set (such exist by Lemma 4.1). If � ⊂ . is
co-analytic complete, then, by definition, there is a Borel 5 : NN→ . so that � = 5 −1 (�).
But Borel inverse images of Borel sets are Borel, so � cannot be Borel since � is not.

Therefore a simple strategy for proving � ⊂ - is not Borel is to find a Borel map
5 : . → - so that � = 5 −1 (�) ⊂ . is a known co-analytic complete set in . . If � is
co-analytic, then Lemmas 5.1 and 5.2 imply � is not Borel. If � is not co-analytic, then
it is automatically not Borel (all Borel sets are both analytic and co-analytic). To make
this work, we need one co-analytic complete set to start from. A standard choice is the
collection of well-founded trees, which we define next.

LetN∗ be the set of finite sequences of natural numbers (including the empty sequence).
A tree ) is a subset of N∗ that is closed under removing the final element, i.e., if a finite
sequence is in ) , so is every initial segment, including the empty one (this labels the
root vertex of )). An infinite branch of ) is an element of NN, all of whose finite initial
segments belong to ) . The set of all infinite branches of ) is denoted [)] (this is also
sometimes called the boundary of ) and denoted m) , but we will not use this alternate
notation). A tree is well-founded if it has no infinite branches. Finite trees are obviously
well-founded, and the infinite set of finite sequences (=, = − 1, = − 2, . . . , 1) with = ∈ N,
together with all initial segments of these sequences, form an infinite well-founded tree.
See Figure 1.
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Figure 1. An example of a well-founded tree. It is an infinite tree, but has no infinite branches.

The sequence spaces 2N and NN each have a product topology which is metrizable
with the metric

3 ({0: }, {1: }) =
∞∑
:=1

|0: − 1: |
2: (1 + |0: − 1: |)

.

Since N∗ is countable and a subset can be identified with its indicator function, any tree
can be identified with a point of 2N, i.e., the Cantor set of infinite binary sequences. In
fact, the set of all trees corresponds to a closed subset of 2N, that we will denote -) . Thus
-) is a Polish space itself (it is also a Cantor set, since no tree is isolated in the induced
topology). However, we will show that the collection of well-founded trees is co-analytic
complete, and hence non-Borel, in this space. To prove this, we will use the following
result (Lemma 11.22 of [11]).

Lemma 5.3. Every closed set in NN is of the form [)] for some tree ) . For every analytic
set � ⊂ NN there is a tree ) so that 0 = (01, 02, . . . ) ∈ � if and only if there is some
1 = (11, 12, . . . ) ∈ NN so that the "weaving map" satisfies

, (0, 1) = (01, 11, 02, 12, . . . ) ∈ [)] .

Proof. The first part is straightforward (this argument was suggested by Dimitrios Nta-
lampekos, shortening the original proof). Suppose  ⊂ NN is closed, and let ) be the
tree of all finite initial segments of all elements in  . By definition, each element of  
corresponds to an infinite branch of the tree ) . Conversely, if G = (G1, . . . , G=, . . . ) ∈ NN
corresponds to an infinite branch of ) , then we wish to show that G ∈  . By the definition
of ) , for each fixed = ∈ N we can find a sequence H(=) ∈  whose first = entries agree
with (G1, . . . , G=) (because each initial segment has "children"). Thus, H(=) converges to G
in the product topology of NN. Since  is closed, we have G ∈  .
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To prove the second part of the lemma, note that NN × NN is homeomorphic to NN by
the 1-1, continuous map that interweaves sequences:

, : (01, 02, . . . ) × (11, 12, . . . ) ↦→ (01, 11, 02, 12, . . . ).

Thus, if � has the form given in the lemma, then it is the projection onto the first coordinate
of the closed set ,−1 ( [)]) ⊂ NN × NN, and hence � is analytic (note that ,−1 ( [)]) is
closed since [)] is closed and, is a homeomorphism).

Conversely, if � is analytic, then it is a continuous image � = 5 (NN) and hence �
is the projection of the closed set ( 5 (G), G) ∈ NN × NN (recall that graphs of continuous
functions are closed sets). Since, is a homeomorphism, the,-image of this closed graph
gives a closed set in NN. Applying the first part of this lemma gives a tree ) corresponding
to � that satisfies the interweaving condition in the lemma.

Note that we have actually proved something stronger than was claimed: � is analytic
if and only if there exists a tree ) so that � is the projection of ,−1 ( [)]) to the first
coordinate. Also note that the weaving map , : NN × NN → NN used above can also be
defined as a map, : NN × N∗ → N∗ by truncating {0=} as follows:

, ({0: }∞1 , {1: }
=
1 ) = (01, 11, 02, 12, . . . , 0=, 1=) ∈ N∗.

We will use this definition in the proof Lemma 5.5 below.

Lemma 5.4. The well-founded trees are a co-analytic subset of -) .

Proof. It suffices to prove the ill-founded trees (those containing an infinite branch) form
an analytic set. Consider the set / = {(), G)} ⊂ -) × NN such that G is an infinite branch
of ) . The projection of / onto the first coordinate gives all ill-founded trees, so these trees
will form an analytic set if / is closed in -) ×NN. Suppose)=→) ∈ -) and G=→ G ∈NN
in the product topologies. Then any initial segment of G is an initial segment of G= for all
sufficiently large =. Thus this segment is a vertex of )= for all large enough )= and hence
also of ) . Since every initial segment of G is a vertex of ) , G is an infinite branch of ) .
Thus / is closed, ill-founded trees are analytic and well-founded trees are co-analytic.

Lemma 5.5. The well-founded trees are a co-analytic complete subset of -) .

Proof. Recall that -) ⊂ 2N denotes the set of trees. By Lemma 5.4, the well founded trees
are co-analytic, so it suffices to verify the other part of the definition: given any co-analytic
set � ⊂ NN, there is a Borel map of NN to -) so that � is the inverse image of the well
founded trees.

Let � = �2 . By definition, � is analytic, so by Lemma 5.3 there is a tree ) so that
0 = (01, 02, . . . ) ∈ � if and only if, (0, 1) ∈ [)] for some 1 = (11, 12, . . . ) ∈ NN. Using
) , we define a map NN → -) as follows. For 0 = (01, 02, . . . ), we let ) (0) denote the
collection of all finite sequences {1: }=1 (including the empty sequence) so that, (0, 1) ∈ )
(, as defined just before Lemma 5.4). Clearly ) (0) is a tree. Moreover, a sequence 0 ∈ NN
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belongs to � = �2 if and only if, (0, 1) ∉ [)] for all 1 ∈ NN. Thus 0 ∈ �2 if and only if
) (0) has no infinite branches, i.e., if and only if ) (0) is a well-founded tree.

To finish the proof, we verify that the map 0 ↦→) (0) is Borel. Recall that -) ⊂ 2N, and
that a basis for the topology consists of specifying a finite initial segment of a sequence,
and allowing the remaining elements to be free. The inverse image of such a basis element
is the collection of all infinite sequences 0 ∈ NN, so that

(1) interweaving the initial elements of 0 with the specified elements of the basis gives
a finite string in ) , and

(2) there is some continuation of the specified elements to an infinite sequence so that
interweaving is a branch of ) .

Thus 0 is simply the sequence of odd coordinates of branches of ) that passes through
the specified vertex. The collection of all such sequences is a closed set in NN. Hence the
inverse image of a general open set in 2N is a countable union of closed sets, and hence
the mapping 0 → ) (0) is Borel.

Theorem 5.6 (Hurewicz, [31]). The compact countable subsets of � = [0, 1] are co-
analytic complete in 2� .

Proof. First we must show this collection is co-analytic or, equivalently, that the uncount-
able compact subsets of � form an analytic subset of 2� . We use the fact that every compact,
uncountable set  supports a non-atomic probability measure `, and hence the function
5 (G) = `( [0, G]) is continuous, increasing, 5 (0) = 0, 5 (1) = 1 and is constant on each
connect component of [0, 1] \  . Consider the set / = {( , 5 )} ⊂ 2� × � ( [0, 1]), where
5 and  are related as above: 5 is continuous, 5 (0) = 0, 5 (1) = 1 and 5 is constant on the
complementary components of  . Projection onto the first coordinate gives all uncount-
able compact sets, so it suffices to show / is closed. Thus we need to show that if  =→  

in the Hausdorff metric, and if 5=→ 5 uniformly, then 5 is constant on the complementary
components of  . However, any two points G < H in such a component define a compact
interval [G, H] that is a positive distance from  , and hence is outside of  = for large
enough =, and thus 5= (G) = 5= (H) for all large enough =. Taking limits gives 5 (G) = 5 (H),
as desired.

Next we show the collection of compact, countable sets is co-analytic complete. By
Lemma 5.1, it suffices to show that there is a continuous map from the space of trees,
-) , into 2� , so that the image of a tree ) is a countable subset of � if and only if ) is
well-founded. For each = = 1, 2, . . ., let �= = {G ∈ [0, 1] : 1

2=+1 ≤ |G −
1
2 | ≤

1
2= }. Then the

�= are all disjoint and each set consists of two compact intervals. For any ( ⊂ N, define

�( = {
1
2
} ∪

⋃
=∈(

�=.

This is a compact subset of [0, 1], and equals {1/2} if and only if ( is empty.
Suppose we are given a tree ) . The root vertex (labeled by the empty string) is asso-

ciated to �0 = �∅ = [0, 1]. In general, suppose �= is a compact subset of [0, 1] whose
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connected components are a countable number of points labeled by strings of length < =,
and a countable number of non-trivial closed intervals �B labeled by strings of length =.
All strings that occur as labels of intervals in �= correspond to labels of vertices in level
= of ) , and for each such label, 2= intervals in �= will have that label. To construct �=+1
from �=, we keep every point component from �= (and leave the label the same) and
replace each interval component �B labeled by a string B of length = by !( (�(), where (
is the set of integers that can be appended to ( to give a length = + 1 string in ) (i.e., these
correspond to the edges leading out of vertex B), where �( is as above, and where !( is
a linear map from � to �B . Since each �= consists of two intervals, each =th generation
interval with a given label gives rise to two intervals in the next generation with identical
labels. Let �) = ∩�=. Since the �= are nested compact sets, this is a non-empty compact
subset of [0, 1].

If ) has an infinite branch, then following this branch through the construction gives a
Cantor subset of � , hence � is uncountable. Conversely, if � is uncountable, then � ∩ �1
must be uncountable for one of the countably many connected components of �1. Then
� ∩ �2 must be uncountable for one of the countably many components of �2 contained
in �1. Continuing in this way, we obtain nested, non-degenerate components �1 ⊃ �2 ⊃
�3 ⊃ . . . whose labels form an infinite branch of ) , so ) is not well-founded. It is easy
to check that the map from trees to sets, described above, is continuous: if two trees are
very close, then the construction of the corresponding sets is the same, except inside a
union of intervals, each of which have small length, so the sets are close in the Hausdorff
metric.

The endpoints of all the components of �= in the previous proof are rational numbers.
Thus we could reformulate the result to say that compact subsets of Q ∩ � are co-analytic
complete in 2� (one first uses Lemma 3.2 to show that the collection of compact sets
containing at least one irrational number is analytic in 2� , so the compact subsets of Q
is co-analytic).. Theorem 5.6 also gives a rather concrete example of a non-Borel set in
[0, 1]. Let {A=} be an enumeration of Q ∩ [0, 1] and for  ∈ 2� define

5 ( ) =
∑
A=∉ 

3−=.

Clearly 5 is 1-to-1 (since distinct sums of powers of 3 are distinct). The sets { : 5 ( ) >
U} are easily checked be open in 2� , so 5 is Borel. Thus

- = { 5 ( ) :  ⊂ Q ∩ [0, 1] and is compact } ⊂ [0, 1]

cannot be Borel. An earlier "explicit" non-Borel set, given in terms of continued fractions
expansions, is due to Lusin [43]

Dimitrios Ntalampekos pointed out that the existence of a non-Borel set depends on
the Axiom of Choice, and he asked where we have used this. In fact, we have utilized
it from the beginning, as many of the basic facts about analytic sets depend on choice,
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e.g., Suslin’s proof that a set that is both analytic and co-analytic must be Borel. With-
out choice, it is consistent with Zermelo-Fraenkel set theory that the real numbers are a
countable union of countable sets, in which case every subset of the reals is Borel. For a
discussion (and citations) of "how much" choice is needed to construct non-Borel sets, see
the Math Overflow discussion [13]. Also see [22] for a related development of measure
theory without the Axiom of Choice.

6. G-removable sets are co-analytic complete

We start with a well known fact from complex analysis.

Lemma 6.1. If � ⊂ [0, 1] has positive length, then it is �∞-non-removable.

Proof. If � is an interval, then we simply apply the Riemann mapping theorem to confor-
mally map the complement of � (on the sphere) to the unit disk. This gives a non-constant
bounded holomorphic function on the complement.

The general case was proven by Ahlfors and Beurling in [1] (or see Section I.6 of
Garnett’s book [23]). Note that if | = D + 8{

� (|) =
∫
�

3I

I − | =

∫
�

3C

C − (D + 8{)

=

∫
�

(C − D + 8{) 3C
(C − D − 8{) (C − D + 8{)

=

∫
�

C − D
(C − D)2 + {2

3C + 8
∫
�

{

(C − D)2 + {2
3C

is holomorphic onΩ= �2 , has imaginary part in [−c, c], and Laurent expansion ℓ(�)/I +
22/I2 + . . . near infinity. Thus � = exp(�/2) takes values in the right half-plane, (� −
1)/(� + 1) mapsΩ holomorphically into the disk, and one can compute its leading Laurent
coefficient to be 21 = ℓ(�)/4 > 0.

Extending this result from subsets of R to subsets of graphs Γ = {(G, 5 (G)} ⊂ R2 of
real Lipschitz functions 5 was a major breakthrough by Alberto Calderón [14], when he
proved the ! ? boundedness of the Cauchy integral operator on Lipschitz graphs. This led
to many important developments in in harmonic analysis and geometric measure theory
over the last fifty years, including Tolsa’s result discussed in Section 2. For some of the
related history, see [20], [50], [60], [62].

The following is stated and proved on page 117 of Carleson’s 1951 paper [15]:

Theorem 6.2. If �1, �2 ⊂ [0, 1] are compact and if �2 has positive Lebesgue measure,
then � = �1 × �2 is �-removable if and only if �1 is countable.

Proof. For completeness, we recall the proof of both directions. If �1 is countable, the
removability of �1 × �2 is due to Besicovitch [7], but we give a short proof suggested by
Dimitrios Ntalampekos that foreshadows remarks in the last section of this paper.
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If �1 is countable, then �1 × [0, 1] is a compact set that is the countable union of
vertical slits. Each isolated slit is removable; this is a simple consequence of Morera’s
theorem (e.g. Theorem 4.19 of [45]). Removing those isolated slits, one ends up with a
new compact set � ′1 × [0, 1]. The set � ′1, if non-empty, is also countable, so must have
isolated points. Then one proceeds with transfinite induction on the rank of the countable
set �1 to get the removability.

Conversely, if �2 has positive length, then by Lemma 6.1 there is a non-constant
bounded analytic function 5 on the complement of 8�2 with a positive Laurent coefficient
21. If �1 is uncountable, then it supports a non-atomic, positive, finite measure `. There-
fore � (I) =

∫
5 (I + G)3`(G) is continuous on the sphere and holomorphic off � = �1 × �2.

The fact that
1

I − G =
1
I
+ ( 1

I − G −
1
I
) = 1

I
+ G

I(I − G) ,

implies � also has non-zero Laurent coefficient 21 and hence is non-constant. Therefore
� is A-non-removable.

Corollary 6.3. The �-removable compact subsets of ( = [0, 1]2 are co-analytic complete
in 2( , hence not Borel.

Proof. We already know this set is co-analytic by Corollary 3.6. To prove co-analytic com-
pleteness, by Lemma 5.1 it suffices to show that the mapping � ↦→ � × [0,1] is continuous
between the respective Hausdorff metrics and hence reduces the set of countable compact
subsets of [0, 1] to the set of �-removable sets. Since the former is co-analytic complete
by Theorem 5.6, so is the latter.

7. IN-removable sets are co-analytic complete

The following is due to Fred Gehring [25] in 1960. We include a proof for the reader’s
convenience.

Lemma 7.1. For compact sets � ⊂ [0, 1], � × [0, 1] is ��-non-removable if and only if
� is uncountable.

Proof. First suppose � is compact and uncountable. Then � supports a a positive, finite,
non-atomic measure `. By restricting ` to an appropriate subset �0 of zero Lebesgue mea-
sure and multiplying by an appropriate constant we may assume ` is singular to Lebesgue
measure, is supported in an interval � = [0, 1] ⊂ [0, 1], and has total mass equal to half
the length of �. For a fixed constant 2 ∈ [0, 1] define ℎ2 (G) = G outside � and

ℎ2 (G) = G + 2
(∫ G

0
3`(C) − G − 0

2

)
,
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inside �. It is easy to check this is a homeomorphism that is linear with slope 1 − 2
2 on

each component of � \ �0. On the other hand, ℎ2 maps �0 to a set of length 2ℓ(�)/2 > 0.
Let 6(H) = max(0, 1

2 − |H −
1
2 |) and define

� (G, H) = (ℎ6 (H) (G), H).

See Figure 2. This is a homeomorphism of the plane that is the identity off � × [0, 1],
and for any component  of � \ �0, � is a skew linear map on  × [0, 1

2 ] and  × [
1
2 , 1]

with uniformly bounded dilatation. Thus � is quasiconformal off �0 × [0, 1]. It is not
quasiconformal on the whole plane because the zero length set �0 × {H} is mapped to
a set of positive length for each 0 < H < 1, and thus �0 × [0, 1] is a set of zero area
that is mapped to positive area; this is impossible for quasiconformal maps, see e.g., [2].
Using the measurable Riemann mapping theorem, we can find a quasiconformal mapping
i of the whole plane so that i ◦ � is conformal off � × [0, 1] but not quasiconformal
everywhere, hence not conformal everywhere. Thus � × [0, 1] is ��-non-removable.

Figure 2. If � is a Cantor set, then there is homeomorphism ℎ of C that is quasiconformal off
� × [0, 1] and maps � × [0, 1] to a set of positive area. This can’t happen if � has zero length and
ℎ is quasiconformal on the whole plane.

Conversely, note that if � is ��-non-removable with witness 5 and if I0 ∉ � , then

6(I) = ( 5 (I) − 5 (I0))/(I − I0)

is continuous, non-constant, and bounded on the plane and holomorphic off � , so � is also
�-non-removable. Thus �-removable sets are also ��-removable. Hence by Theorem 6.2
if � is countable, then � × [0, 1] is ��-removable. (One could also directly apply the
same transfinite induction argument as given in the proof of Theorem 6.2).

Corollary 7.2. ��-removable sets in ( = [0, 1]2 are co-analytic complete in 2( .

The proof is the same as for �-removable sets, except using Gehring’s result in place
of Carleson’s.
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Recently, Dimitrios Ntalampekos [48] has suggested a characterization of��-removable
sets that is closely related to the characterization of (-removable sets due to Ahlfors and
Beurling. Given two continua �1 and �2 inside an open planar domain Ω, we consider the
family Γ of rectifiable paths connecting �1 to �2. Given set � ⊂ C, we can consider the
sub-family Γ� of Γ consisting of paths that miss � . If for everyΩ, �1, and �2 as above, the
extremal length of Γ� is the same as the extremal length of Γ, then we say � is negligible
for extremal distances, or "NED" for brevity. Ahlfors and Beurling proved that a compact
set � is (-removable if and only if it is NED (see Theorems 6 and 9 of [1]).

Ntalampekos calls a set CNED (countably negligible for extremal distances) if Γ
always has the same extremal length as the sub-family consisting of paths that hit � in at
most countably many distinct points (we do not care how often each point of � is hit by a
path). In [48] he shows that several known families of��-removable sets are special cases
of CNED sets, and conjectures that closed CNED sets are the same as ��-removable sets.
Corollary 4.4 of [48] says that if a closed set - ⊂ C is CNED, then for any n > 0, and for
any two points G, H ∈ R2, there is a path W connecting G and H of length at most |G − H | + n
so that W ∩ - is countable (ignoring multiplicities). This clearly fails if - = � × [0,1], and
� ⊂ R is uncountable. Thus the proof of Lemma 7.2 and the remarks following Lemma
5.2 show that the collection of CNED sets is not Borel in 2( , where ( = [0, 1]2. Moreover,
it would be co-analytic complete if it is co-analytic. Is this the case?

8. G-removable Jordan curves are co-analytic complete

A case of particular interest among compact planar sets are the closed Jordan curves. Let
Homeo(-,. ) ⊂ � (-,. ) denote the 1-to-1 continuous maps of - into . . It is easy to see
that this subset is neither open nor closed in � (-, . ). However, a map 5 : T→ C is 1-
to-1 if and only if any two disjoint closed dyadic intervals have disjoint images (an open
condition) and hence Homeo(T,C) is a � X set in � (T,C).

We can think of closed Jordan curves as elements of Homeo(T,C)/Homeo(T,T), i.e.,
modulo re-parameterizations. Thus 5 , 6 ∈ Homeo(T, C) are equivalent if 5 = 6 ◦ d for
some d ∈ Homeo(T,T). We can define a metric between equivalence classes as

3 ( [ 5 ], [6]) = inf{‖ 5 − 6 ◦ d‖∞ : d ∈ Homeo(T,T)},

although Jordan curves are not complete in this metric. A complete metric on Jordan
curves separating 0 and ∞ is described by Pugh and Wu in [52], by choosing a particular
parameterization of each curve. They attribute the idea to Thurston: one takes conformal
maps of S \ T to S \ Γ normalized to fix 0 and ∞ respectively and that have positive
derivative at these points, and then use the supremum metrics between conformal maps.

Theorem 8.1. The collection of �-removable Jordan curves contained in ( = [0, 1]2 is
co-analytic complete in 2( .
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Proof. As in previous proofs, we first verify that the collection is co-analytic by showing
its complement is analytic. Consider the set / of pairs (W, 5 ) where W is a non-removable
closed Jordan curve and 5 is a continuous function on the 2-sphere that is holomorphic off
W and has Laurent coefficient 21 = 1 (to confirm that it is non-constant). Again, as before,
it suffices to show / is closed, so it suffices to show that if W= → W and 5= → 5 then
5 is holomorphic off W. This follows since uniform limits of holomorphic functions are
holomorphic, and any closed disk that misses W will miss W= for all sufficiently large =.

As noted in Lemma 5.1, it suffices to construct a Borel map from some Polish space
into the space of Jordan curves, so that the preimage of the �-removable curves is a known
co-analytic complete set �. We will take the Polish space to be the set of trees -) (defined
in Section 5), and the preimage set to be the collection of well-founded trees. The latter is
co-analytic complete by Lemma 5.5.

To simplify some formulas, we work in [−1, 1]2 instead of [0, 1]2. We start with a
map from trees to compact subsets of [−1, 1] that maps well-founded trees into countable
sets, using a slightly different map than we did in the proof of Theorem 5.6. For = ∈ N, we
define

�= = {G :
1
4
+ 1

2= + 1
≤ |G | ≤ 1

4
+ 1

2=
},

and for ( ⊂ N
�( = {±

1
4
} ∪

⋃
=∈(

�= ⊂ [−1, 1] .

This is similar to what we did in the proof of Theorem 5.6, except that now the pairs of
intervals �= converge to two different points ±1/4, instead of a single point. However,
the rest of the construction is the same, and associates to each tree ) a compact set �)
that is countable if and only if ) is well-founded. Recall that each string B of length = is
associated to 2= intervals which we label � 9B , 9 = 1, . . . 2=. We assume these are numbered
left to right.

Next we construct a Cantor set  =∩= = ⊂  0 = [−1,1] of positive Lebesgue measure
where  0 ⊃  1 ⊃ · · · ⊃  and each  = is a union of 2= disjoint closed intervals which
we denote { := }, : = 1, . . . , 2=. We assume that for a fixed =, the components { := }2

=

1
are numbered left to right and that their maximum length ℓ= = max: | := | tends to zero
with =. For the current proof, we may assume that for each =, every  := has length ℓ= =
2−=−1 (1 + 1/=), so  has length 1/2.

Our Jordan curves will be constructed using templates that are closed sets �� , where
the index � ∈ { := } is one of the component intervals in the construction of the Cantor
set  . The largest � is � = [−1, 1] =  0 and we denote � [−1,1] by �0 for brevity. It is
illustrated in Figure 3. In general, �� consisting of countable union of polygonal arcs,
rectangles and copies of  . The rectangles are all of the form � × � ′ where each � is some
�=, i.e., one of the component intervals of �N, and � ′ is a component of one of the sets
� ∩  < where < > 9 if � =  :

9
.

We attempt to describe Figure 3 in words. �0 has two copies of the Cantor set  , posi-
tioned in the vertical lines {G = ±1/4}, near the center of the picture. There are countably
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Figure 3. The basic template�0 for the construction. Each symmetric pair of columns of rectangles
corresponds to a positive integer. The two dashed vertical segments (far left and far right) are only
used in the first step of the construction, to give a closed curve.

many rectangles, arranged in vertical columns which accumulate on the two Cantor sets
from the left and right respectively. Each positive integer : corresponds to 2:+1 rectangles
arranged in two columns. The integer 1 corresponds to the two leftmost and two right-
most rectangles in Figure 3. The integer 2 corresponds to the eight rectangles in the two
columns adjacent to the first two, and so on. More precisely, the 2:+1 rectangles associated
to the integer : are the components of �: ×  =. The set �: has two components and  =
has 2= components, giving the correct number of rectangles in the product. Each rectangle
is then connected to three other rectangles in the two adjacent columns, and to one other
rectangle in the same column, all as shown in Figure 3. (Slightly different arcs are used to
connect the outermost rectangles to each other, as shown by dashed vertical segments at
the far left and far right of Figure 3.) For templates �� other than �0 the construction is
exactly the same, except that  = is replaced by  =+ 9 ∩ � if � =  :

9
. This is done so that

the limiting Cantor sets are all translates of the same fixed set  .
Given these templates, we construct a Jordan curve Γ as an intersection Γ = ∩=Γ= of

compact connected sets each consisting of a countable union of rectangles, polygonal arcs
and copies of the Cantor set  . The steps of the construction are controlled by the choice
of a rooted tree ) in -) ⊂ 2N, and are designed so that Γ will be �-removable if and only
if ) is well-founded.

So suppose ) is fixed. The construction always starts with a copy of �0 that has two
short polygonal arcs added at the far left and far right, to join the upper and lower halves
of the template set, making it connected. These are shown as dashed segments in Figure
3, but occur as solid lines in several of the following figures.
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We will induct over levels of the tree, starting at the root vertex (labeled by the empty
string) and at each stage of the construction, we will have a set Γ= consisting of a countable
collection of rectangles joined by polygonal arcs and accumulating on translates of the set
 . At the =th stage, each rectangle ' = � × � is labeled by a =-long string of positive
integers that is a label of some vertex { of the tree ) . To go from Γ= to Γ=+1, we replace
each rectangle ' in Γ= by a rescaled copy of the template �� (rescaled affinely to exactly
fit into '). If vertex { is a leaf of ) (i.e., it has no children), then every rectangle '′ in the
rescaled copy of the template is replaced by a pair of horizontal line segments that connect
the vertical sides of '′ exactly at the points where arcs of the template connect '′ to other
rectangles in the template. If { is not a vertex then there is a set of positive integers that
when appended to the label of { give labels of its children. For the template rectangles
corresponding to these integers, we leave the rectangle alone. For the other integers (those
that do not correspond to children of {), we replace the corresponding rectangles with
horizontal line segments, as above. Doing this for every rectangle in Γ= gives a closed
connected subset Γ=+1 ⊂ Γ=.

The simplest case is when the tree ) has only one vertex (labeled by the empty string).
Then every rectangle of the template �0 is replaced by pair of horizontal segments. The
result is illustrated in Figure 4. Here, Γ is a closed Jordan curve that is a countable union
of polygonal arcs and two copies of the Cantor set  , and is clearly an �-removable set.

Figure 4. The curve corresponding to the single vertex rooted tree, labeled by the empty string.
This is a countable union of line segments and two linear Cantor sets and hence is �-removable. It
is the "simplest" curve in our collection.

The next easiest case is when we have a rooted tree with two vertices, say with root
labeled by the empty string and the single leaf labeled by "1". If we replace the four
rectangles in �0 that correspond to the integer "1" with rescaled copies of �0, the result
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is shown in Figure 5. Any curve corresponding to a tree that contains the edge connecting
the root to vertex "1", will be a subset of the illustrated set. When ) consists only of this
one edge, then every rectangle in Figure 5 is replaced by a pair of horizontal edges, giving
the closed Jordan curve shown in Figure 6. If the second vertex was labeled ":" instead,
the replacements would occur in corresponding columns of the template.

Figure 5. The four rectangles corresponding to "1" in the template have been replaced by rescaled
copies of the template. Any curve containing the vertices {∅, 1} will contain these arcs.

Figure 6. The curve corresponding to the tree with vertices {∅, 1}.
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Figure 7. The curve corresponding to the tree with vertices {∅, 1, 2}. There are countably many
segments and 10 copies of the linear Cantor set  .

Finally, we have to observe that the resulting curve is �-removable if and only if the
associated tree ) is well-founded. If ) is well-founded, then the final curve is a countable
union of line segments and linear Cantor sets and hence is �-removable by one direction
of Carleson’s theorem. If ) has an infinite branch then the curve contains a copy of � ×  ,
where � is a Cantor set depending on the branch, and thus it is non-�-removable by other
direction of Carleson’s theorem.

Next, we will verify that the map from trees to curves is continuous from the product
topology on -) ⊂ 2N to the Hausdorff metric on 2( . Recall that each tree is encoded by
a binary sequence in 2N whose =th coordinate indicates whether =th string (according to
some fixed enumeration of N∗) is the label of some vertex of the tree. If the encodings
of two trees )1, )2 agree for the first # places, then the two corresponding curves share
the same templates for these vertices, and can only disagree within the rectangles that are
filled in later in the construction. However, each time we apply a template, the rectangles
the occur inside the replaced rectangle have smaller diameter (tending to zero with both
the length of the corresponding string label, and the size of the last entry of the string).
Thus the curves corresponding to )1 and )2 agree except within a union of disjoint rect-
angles that each have small diameter, and so that each curve contains some point in each
rectangle. Thus the Hausdorff distance between the curves is at most ℓ# . Therefore, the
set of well-founded trees is the preimage of the set of �-removable curves under a contin-
uous map from -) into the hyperspace of [−1, 1]2. Hence this collection of �-removable
curves is co-analytic complete and, in particular, it is not Borel.
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9. IN-removable Jordan curves are co-analytic complete

The logarithmic capacity, �log (�), of a set � ⊂ [0, 1] is defined as the supremum of the
masses of positive measures ` supported on � so that the convolution ` ∗ log 1

G
is bounded

above by 1 on � (hence everywhere). This agrees with the definition in Carleson’s book
[16], but it disagrees with some other sources, such as [24], that define logarithmic capac-
ity as exp(−1/�log (�)), and call 1/�log (�) the Robin’s constant of � . Both definitions
give the same sets of zero capacity, but we prefer Carleson’s approach here, as his version
is sub-additive and the other is not. In [1], Ahlfors and Beurling show that  ⊂ [0, 1] is
(-non-removable if and only if �log ( [0, 1] \  ) < �log ( [0, 1]), and that this implies that  
has positive length (but not conversely). This result is the basis for the following theorem.

Theorem 9.1. The collection of ��-removable Jordan curves contained in ( = [0, 1]2 is
co-analytic complete in 2( .

Proof. In [63] Jang-Mei Wu proves that if  ⊂ [0, 1] is a Cantor set with the property that
the logarithmic capacity of [0,1] \  is strictly less than the logarithmic capacity of [0,1],
and if � is any Cantor set, then � ×  is ��-non-removable. By the result of Ahlfors and
Beurling noted above, this is same as saying  is (-non-removable.

Since any uncountable closed set contains a Cantor set, we can use Wu’s theorem
and half of Lemma 6.2 to deduce that for a closed set � ⊂ [0, 1], the product � ×  is
��-removable if and only if � is countable. Thus if we use such a Cantor set  in the
proof of Theorem 8.1, we obtain Theorem 9.1. (We also need to show these curves form a
co-analytic set, but this is essentially the same as for �-removable curves.)

To finish the proof, we construct a Cantor set  with the desired properties. Start
with  0 = [0, 1] and remove an open interval of length 00 centered at 1/2, leaving two
closed intervals as  1. In general, remove a centered, open interval of length 0= from each
component of  = to obtain  =+1, and let  = ∩= =. One can easily show the logarithmic
capacity of an interval of length A is comparable to 1/| log A |, so the sub-additivity of
logarithmic capacity (see Lemma 4 of [16]), implies the logarithmic capacity of [0,1] \  ,
is at most $

(∑∞
==0 2=/| log 0= |

)
, which is as small as we wish if 00 is small and we take

0= ↘ 0 fast enough.

This result is due to Dimitrios Ntalampekos, who pointed out that the proof of Theo-
rem 8.1 applies to��-removable curves if we simply take the Cantor set  to be one of the
��-non-removable sets constructed by Jang-Mei Wu in [63] (I was previously unaware
of Wu’s paper).

The proof of Wu’s result in the general case is perhaps too long to replicate fully here,
but for the sake of completeness, we will sketch the construction of a single Cantor set  
with the property that � ×  is ��-non-removable for any Cantor set � . This is sufficient
for a self-contained proof of Theorem 9.1. We roughly follow Wu’s proof in [63] for the
general case, but several steps simplify for our set (and we do not need to recall as much
potential theory).
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Lemma 9.2. There is a Cantor set  ⊂ [0, 1] so that for a compact set � , the product
� ×  is ��-non-removable if and only if � is uncountable.

Proof. If � is countable, then the product is removable by Lemma 7.1, so we only need to
prove the other direction.

We start by building a sequence of nested compact sets �0 ⊂ �1 ⊂ · · · ⊂ C, so that
each set consists of finite number of horizontal line segments, each centered on the H-
axis. For each segment � in �=, there will be a segment � on the H-axis centered where �
crosses the H-axis, and so that � hits no other points of �=. To begin the construction, we
let �0 be just the single segment � = [−1, 1] ⊂ R and let the associated vertical segment
be � = [−8/2, 8/2]. In general, given a non-trivial segment � in �= for = ≥ 2, we can define
its associated vertical segment � as follows. If � hits 8R at 8H, and if X� = dist(�, �= \ �),
then we can take � = 8 · [H − X� , H + X� ].

Next, let � ′ be the vertical segment concentric with � and one third the length. Note
that the collection of these smaller intervals � ′ from a single generation is pairwise dis-
joint, and any two of them are separated by a open interval at least as long as the longer of
the two. Let ' denote the rhombus that is the convex hull of � ∪ � ′, and add 2= horizontal
segments with endpoints on the boundary of ', with heights evenly spaced over the top
and bottom halves of � ′. The process is illustrated in Figure 8. We define � to be the clo-
sure of ∪∞

==0�=. Note that the vertical intervals corresponding to two adjacent horizontal
segments in �= are not just disjoint, but are separated by a non-trivial open interval which
does not hit �< for any <, and thus misses �. Thus 8R \ � is open and dense, so the
horizontal projection of � onto 8R is a Cantor set.

Figure 8. The left side shows two adjacent horizontal segments of �=. The vertical dashed line is
the H-axis, the two diagonal dashed lines are edges of a rhombus from the previous generation. The
shaded rhombuses are those corresponding to the two segments. On the right, we show the hori-
zontal segments of �=+1 defined using these rhombuses. In the limit, we obtain a set � containing
uncountably many horizontal line n segments, all of which have zero harmonic measure from∞.

Let HA = {G + 8H : G > 0} denote the right half-plane, and let H8 = {G + 8H : G < 0}
be the left half-plane. Define Ω = HA \ �. This domain is simply connected, and so, by
the Riemann mapping theorem, it can be mapped to HA by a conformal map 5 that fixes
∞ and ±8. Let 5= : HA → HA \ �=. Then 5= → 5 uniformly on compact sets of HA , and
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so the same is true for their derivatives. It is easy to check that if 5= = D= + 8{=, then
{= (8H) is increasing on the preimages of 8R \ �= and constant on the preimage of each
segment in �=. Thus D= has normal derivative > 0 on the former set and = 0 on the latter.
This implies Re( 5 ′=) > 0 on HA , and hence the same is true for 5 (the limit can’t be zero,
for then 5 would be constant by Harnack’s inequality). By Schwarz reflection, 5 can be
extended to a conformal map of Ω = C \ � to a domain, whose boundary is a Cantor set
 on the H-axis. This is the set  we are seeking.

We claim that  is a Cantor set. It is clear that  is closed and has no isolated points,
so we need only show its connected components are all points. To prove this, suppose �
is a component of �=. It is easy to check from the definitions that the distance from �

to the closest distinct component of �= is less than 1/= (actually it is much smaller, less
than 1/=!), and that adjacent components of �= have length differing by at most 1/=. Thus
each component � of �= can be separated from ∞ in HA by a crosscut W� of HA that lies
inside Ω= = C \ �=, and such that W� can be separated from ∞ by a crosscut f� of Ω=
with diameter at most 4/=. For point components G of �= we can take fG = WG , and for
segment components �, we choose f� to connect endpoints of components of �= that are
adjacent to �, as illustrated in Figure 9.

γ
I

σ
I

δ
I

I

=σ γ
x xx

Figure 9. Each component � of �= is separated from infinity by a crosscut W� of small harmonic
measure, which implies its 5 -image has small harmonic measure, hence small diameter in HA .
Reflecting W� across the H-axis gives a loop around � in C \ �=, and an infinite nested family of
such loops defines a unique connected component of �. The 5 -images of these loops have diam-
eters tending to zero, implying every connected component of  is a point, and giving a 1-to-1
correspondence between points of  and connected components of �.

By the maximum principle, the harmonic measure of W� (from the point 2) is at most
the harmonic measure of f� , and the latter is bounded $ (

√
diam(f� )) = $ (=−1/2) by

corollary of Beurling’s projection theorem (e.g., Corollary III.9.3 of [24]). Thus by con-
formal invariance,  can be separated from 5 (2) in HA by a finite set of crosscuts in HA
with endpoints outside  (namely, the 5 -images of W� ), each of which has small harmonic
measure, hence small diameter. This implies  only has point components, proving the
claim.
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We let � = 5 −1 denote the inverse conformal map from, = C \  toΩ. The argument
in the previous paragraph also shows that � associates each point of  to a component
of �. More precisely, if I= → 8H ∈  then � (I=) can only accumulate on the associated
component of �. In particular, {Im(� (I=))} has a well defined limit, even if the real parts
do not. Note that by symmetry

Im(� (G + 8H)) = Im(� (−G + 8H)). (9.1)

In particular, � restricted to R \ {0} is a continuous, strictly increasing function, and

− lim
G↗0

� (G) = lim
G↘0

� (G) = 1, (9.2)

i.e., � has a jump of size 2 at the origin. The fact that � associates points of  to compo-
nents of � means that at other points of the H-axis, � can only have a non-negative jump
in the following sense: for any real number " ,

lim
G↘0

Im [� (G + 8"G + 8H)) − � (−G − 8"G + 8H)] = 0. (9.3)

The existence of � implies  is (-non-removable, and hence  has positive length by
the result of Ahlfors and Beurling mentioned just before Theorem 9.1. However, we can
give a direct proof of this as follows. Inside Ω+ = HA \ �, the set � has positive harmonic
measure (the choice of base point inΩ+ is unimportant, but to be concrete, we take I0 = 2).
To see this, observe that � = [1/2, 1] has positive harmonic measure in HA \ �, and since
� ⊂ �, the maximum principle implies � has positive harmonic measure in Ω. Thus by
conformal invariance,  has positive harmonic measure in HA , and thus it has positive
length.

Suppose � is any Cantor set. We claim that � ×  is ��-non-removable. By restrict-
ing to a subset and translating we may assume � ⊂ [0, 1/10], and that � has zero length
(if � has positive length, there is nothing to do since � ×  has positive area, and so it is
��-non-removable by the measurable Riemann mapping theorem).

Since � is uncountable, it supports a non-atomic probability measure `. Let

� (I) =
∫
�

� (I + C)3`(C).

It is easy to verify that � is continuous everywhere (it is the convolution of a locally
bounded function and a non-atomic measure) and is holomorphic off � ×  .

If � were a homeomorphism, and if � ×  were ��-removable, then � extends to a
conformal homeomorphism of the plane to itself, and hence it would be a linear map. How-
ever, it follows from (9.2) that � restricted to R can be written as the sum of a continuous,
strictly increasing function �1 and the jump function �2 (G) = 1 + sign(G). The convolution
of ` with the step function �2 is continuous and singular: it maps the zero length � to a
set of positive length. Adding the strictly increasing convolution of ` with �1 preserves
this property, hence � = � ∗ ` is not a linear map. This contradiction completes the proof
of non-removability, once we know that � is a homeomorphism.
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It suffices to show that if I ≠ |, then � (I) ≠ � (|). This follows if

Re
(
� (I) − � (|)

I − |

)
> 0.

In fact, we will prove a uniform estimate

Re
(
� (I) − � (|)

I − |

)
≥ [( |I − | |) > 0.

where the lower bound only depends on the distance between I and |. Since � is con-
tinuous, we only need to prove such a bound for a dense set of pairs so we may assume
Re(I) ≠ Re(|) and neither I nor | is in � × R. Since � (I) is a convex combination of the
values {� (I + C)}, C ∈ � , it suffices to show that

Re
(
� (I) − � (|))

I − |

)
≥ [( |I − | |) > 0

when Re(I) < Re(|) and neither real part is zero. If the segment � = [I, |] connecting I
and | does not hit  , then � is analytic on a neighborhood of � and

Re
(
� (I) − � (|)

I − |

)
=

∫ 1

0
Re(� ′(I + C (| − I))) 3C. (9.4)

The integral on the right is positive since Re(� ′) > 0 off  . Moreover, the integral is
bounded uniformly away from zero depending only on the length of the segment �. (This
uses that Re(� ′) is positive off the Cantor set  , and that it has a positive limit at∞.) The
other possibility is that ( crosses the imaginary axis at 8H ∈  . Set �G = � \ {|Re(I) | < G}.
Then we have

Re
(
� (I) − � (|)

I − |

)
≥ lim
G↘0

∫
�G

Re(� ′(I + C (| − I))) 3C

+ lim inf
G↘0

[� (G + 8"G + 8H)) − � (−G − 8"G + 8H)]

where " is the slope of ( (note that " ≠ ∞ since we assumed Re(I) ≠ Re(|)). The
integral over �G is bounded away from zero for G small, since one of its two components
has length greater than |� |/4 for small G, and by (9.4) this gives a positive lower bound.
By (9.3) the limit infimum in the second term is a non-negative real number. This gives
the desired lower bound, and therefore � is a homeomorphism, completing the proof that
� ×  is ��-non-removable.

Dimitrios Ntalampekos observed that the arguments of Ahlfors and Beurling in [1]
can be used to prove that the complement (-non-removable compact set  ⊂ 8R can be
conformally mapped to the complement of a compact set � whose connected components
are either points or non-trivial horizontal slits, and that some non-trivial slits must occur.
Therefore, the proof given above for a single, explicit  could be used to prove Wu’s
theorem in general, although this would require invoking the aforementioned results of
Ahlfors and Beurling.
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10. How hard is conformal welding?

We recall some definitions from the introduction. If Γ is a closed Jordan curve in the plane,
the Riemann mapping theorem gives conformal maps 5 and 6 from the inside and outside
of the unit circle to the inside and outside of Γ. By Carathéodory’s theorem3 these maps
extend to be homeomorphisms of T to Γ. Thus ℎ = 6−1 ◦ 5 : T→ T is a homeomorphism,
and circle homeomorphisms that arise in this way are called conformal weldings.

Not every homeomorphism is a welding. In [49], Oikawa proved that if ℎ : T→ T is
given by ℎ(exp(8\)) = exp(8(2c)1−U · \U) for some 0 < U < 1 and 0 ≤ \ < 2c, then ℎ is
not a conformal welding of the circle.

A more geometric example can be described as follows. Consider the graph of sin(1/G)
for G ≠ 0, together with the limiting segment [−8, 8]. See Figure 10. This is closed set -
dividing the plane into two simply connected domains and one can show that the confor-
mal maps form either side of T to either side of - still define a circle homeomorphism ℎ.
Moreover, we can choose 5 and 6 so that 1 ∈ T corresponds to the prime end [−8, 8] under
both maps, and hence ℎ fixes this point.

f f

gg

1

1

2

2

Figure 10. An example of a non-welding homeomorphism. If 51, 61 map the two sides of T to the
two sides of a sin(1/G) curve W, then ℎ = 6−1

1 ◦ 51 is a homeomorphism, but is not a conformal
welding, as explained in the text.

However, ℎ cannot correspond to any Jordan curve Γ; if it did, one could conformally
map the two sides of - to the two sides of Γ so that the maps agree along the graph of
sin(1/G). Since this curve is removable for conformal homeomorphisms the map extends
to be conformal from the complement [−8, 8] to the complement of a point. Since the com-
plement of the segment is conformally equivalent to the unit disk, we would get conformal
map between the disk and the plane, which would violate Liouville’s theorem. Thus this
homeomorphism is not a conformal welding.

It is a long standing, and apparently very difficult, problem to characterize conformal
weldings among circle homeomorphisms. We explained in Section 8 that circle homeo-
morphisms are a � X set in � (T,T), and hence a Polish space.

3This result was actually first proven by Carathéodory’s student Marie Torhorst in her 1918 doctoral
dissertation using Carathéodory’s theory of prime ends, so perhaps it is more appropriate to call it the
Carathéodory-Torhorst theorem; see [54] for some of the history.
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Question 1. Are conformal weldings Borel in the space of circle homeomorphisms? Are
non-weldings co-analytic complete?

It is not hard to prove that weldings form analytic subset of circle homeomorphisms,
so non-weldings are co-analytic. The difficult part seems to be to construct a Borel map
from a Polish space into circle homeomorphisms, so that the preimage of the non-weldings
consists of known co-analytic complete set. For example, is there a Borel map from com-
pact sets of T to circle homeomorphisms so that the preimage of the non-weldings are the
countable compact sets? We saw above that it is possible to construct a circle homeomor-
phisms that has an "obstruction" at just one point. Also, it is known (see Theorem 2 of
[9]) that any circle homeomorphism ℎ can be written as ℎ = 5 −1 ◦ 6 where 5 and 6 are
conformal maps of D and D2 onto disjoint simply connected domains, with equality hold-
ing everywhere except on a set � ⊂ T so that � and ℎ(�) both have logarithmic capacity
zero. Can this be improved to a countable exceptional set? If so, can this be used to give
a map from non-weldings to countable, compact subsets of T? Such a map is going in the
wrong direction to prove that non-weldings are co-analytic complete, but it would still be
very interesting to understand if such a map exists and what its properties are.

The best known sufficient condition for being a conformal welding (due to Pfluger
[51]) is quasisymmetry (QS for brevity): ℎ : T→ T is "-quasisymmetric if

1
"
≤ |ℎ(�) ||ℎ(�) | ≤ ",

whenever �, � are adjacent arcs on T of the same length, and |� | denotes the length of an
arc. A map is quasisymmetric if it is "-quasisymmetric for some finite " . For a fixed " ,
"-quasisymmetry is clearly a closed condition (with respect to uniform convergence), so
taking " → ∞ along the integers shows quasisymmetric homeomorphisms are a �f set
inside Homeo(T,T). Quasisymmetric weldings correspond precisely to closed curves that
are quasicircles, i.e., images of the unit circle under quasiconformal maps of the plane.
There are numerous characterizations of this class of curves, including the following: any
two points I, | ∈ W are connected by a subarc with diameter bounded by $ ( |I − | |).4 It
is easy to see "-quasisymmetric maps are nowhere dense, so the set of quasisymmetric
homeomorphisms is meager the space of all circle homeomorphisms. A set is meager if
it is a countable union of nowhere dense sets. Such sets are also called "first category",
although this usage is becoming less common. A set is called residual if it is the com-
plement of a meager set. Trivially, subsets of meager sets are meager, and supersets of
residual sets are residual.

A more recent (and somewhat less well known) sufficient condition to be a conformal
welding is for ℎ to be log-singular, i.e., that there exist a set � ⊂ T of logarithmic capacity

4According to page 84 of Lehto’s biography [41] of Alhfors, this was first proved in Martti Tienari’s
1962 dissertation, and independently by Ahlfors. Lehto quotes Ahlfors as saying "I have to confess that
when I first proved the result, I thought it was too good to be true"
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zero so that T \ 5 (�) also has logarithmic capacity zero. See [9]. Quasisymmetric and
log-singular circle homeomorphisms are easily seen to be disjoint sets (e.g., QS homeo-
morphisms preserve sets of zero logarithmic capacity). Recently, Alex Rodriguez proved
that any circle homeomorphism is the composition of two log-singular homeomorphisms,
and hence any circle homeomorphism is the composition of two conformal weldings [55].
However, his proof decomposes even "nice" homeomorphisms as the composition of two
highly singular maps. Is this necessary? Can a homeomorphism with some given modulus
of continuity be decomposed into weldings with similar estimates?

Question 2. Is any bi-Hölder circle homeomorphism the composition of bi-Hölder weld-
ing maps?

Some other classes of circle homeomorphisms that are known to be conformal weld-
ings were described by David [19] and Lehto [40] (actually they describe conditions on
a measurable function ` on the unit disk so that the Beltrami equation 5I = ` 5I has a
homeomorphic solution, and the boundary values of these solutions are the circle homeo-
morphisms I am referring to). See also Chapter 20 of [4].

Question 3. Is the collection of David homeomorphisms a Borel set within the space of
circle homeomorphisms? The collection of Lehto homeomorphisms?

If W is a closed Jordan curve with complementary components Ω1,Ω2, we say G ∈ W
is rectifiably accessible from Ω: , for : = 1, 2, if it is the endpoint of a rectifiable curve in
Ω: . By a result of Gehring and Hayman (see [26] or Exercise III.16 of [24]) this occurs if
and only if any hyperbolic geodesic ray ending at G has finite Euclidean length. A result of
Charles Pugh and Conan Wu [52] says there is a residual set of closed curves W so that no
point on W is rectifiably accessible from both sides at once. In their terminology, W is not
pierced by any rectifiable arc. See [12] for an explicit construction of an extreme example
of such a curve W (any rectifiable curve crossing W intersects W in positive length). By a
result of Beurling, the set of points that are not rectifiably accessible from Ω: , : = 1, 2
is the image of a zero logarithmic capacity set on T under any conformal map D→ Ω:

(see [8], Exercise III.23 of [24], or [5]). If W is not pierced by any rectifiable curve, let
� be the set of boundary points that are rectifiably accessible from Ω1. Then no point of
� can be rectifiably accessible from Ω2, and by Beurling’s theorem, the image of � has
zero logarithmic capacity under the Riemann map from Ω2 to the disk, and W \ � has zero
capacity under the Riemann map for Ω1. Therefore every rectifiably non-pierceable curve
of Pugh and Wu has a conformal welding that is log-singular. Theorem 3 of [9] states that
ℎ is log-singular if and only if the corresponding curve is flexible; this means that the set
of curves corresponding to ℎ is dense in the space of all closed curves with the Hausdorff
metric. See [9] for the precise definition. Thus the set of curves with a given log-singular
welding is dense in the space of all closed Jordan curves, and hence is ��-non-removable
in a strong way. Therefore we have the following result.
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Theorem 10.1. The collection of ��-non-removable closed curves is residual in the
space of all closed Jordan curves.

Very recently, Rodriguez [56] has proven that every log-singular circle homeomor-
phism is the welding of a collection of curves that includes curves of every Hausdorff
dimension on [1, 2], and even a curve of positive area. If a curve has positive area, then
by scaling a non-zero dilatation supported on the curve, we can use the measurable Rie-
mann mapping theorem to produce a 1-parameter family of non-removable curves, none of
which is a Möbius image of the others. In particular, this gives uncountably many curves
with the same welding, so that no two of them are Möbius images of each other. Given the
result above for curves, it is natural to ask the analogous question for circle homeomor-
phisms.

Question 4. Is the set of log-singular homeomorphisms residual in the space of all circle
homeomorphisms?

Question 5. What is the Borel complexity of the log-singular homeomorphisms?

It is not hard to show that both sets are analytic: ℎ is log-singular if for every = ∈ N
there is a compact set such that both � and ℎ(�2) have logarithmic capacity less than 1/=
(Lemma 11 of [9]). Thus the log-singular maps are a countable intersection of projections
of the Borel sets {(ℎ, �) : cap(�), cap(ℎ(�2)) < 1/=} in Homeo(T,T) × 2T. Can analytic
be improved to Borel?

Recall that we say Γ′ is a��-image of Γ if Γ′ = 5 (Γ) where 5 is a homeomorphism of
the sphere that is conformal off Γ. We will say this is a strict��-image if 5 is not a Möbius
transformation, and say it is a very strict ��-image if 5 (Γ) is not a Möbius image of Γ. It
is tempting to say that a strict image is also very strict, but this might not be true. Maxime
Fortier Bourque pointed out that the image of Γ under a non-Möbius homeomorphism of
the sphere might coincidentally agree with its image under some Möbius map. Moreover,
using log-singular weldings, Malik Younsi [65] constructed a curve with a strict ��-
image that agrees with itself. In Younsi’s example, there are also ��-images that are not
Möbius images, so it is still possible that a very strict image exists whenever a strict image
does.

Question 6. Is the map from (equivalence classes of) curves to (equivalence classes of)
conformal weldings 1-to-1 exactly on the ��-removable curves?

I expect this is true. The following is a stronger version.

Question 7. Does every ��-non-removable curve have a ��-image of positive area?

More generally, does this hold for all ��-non-removable sets? It does for all examples
known to the author. Various other questions about weldings and ��-removable curves
remain open.
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Question 8. Is the map from equivalence classes of curves to equivalence classes of weld-
ings always either 1-to-1 or uncountable-to-1?

Question 9. Are ��-images of a curve a connected set in the Hausdorff metric?

Question 10. Is there a 1-parameter family of zero-area, non-��-removable curves that
are all very strict ��-images of each other, and that is continuous in the Hausdorff met-
ric?

Question 11. The ��-images of a flexible curve are dense in the space of closed Jordan
curves, and hence are not a closed set. Is this set of curves Borel? (It must be analytic.) Is
it connected? Can it be totally disconnected? (Not if the answer to Question 7 is yes.)

11. What are natural ranks for removable sets?

This section requires greater familiarity with the transfinite ordinals than did earlier sec-
tions. Very briefly, each ordinal is a well ordered set (each element has a successor,
although some elements have no predecessor). The ordinals themselves are well ordered
and there is a first well ordering of an uncountable set, which is denoted l1. Every ordinal
that becomes before l1 is, by definition, the well ordering of some countable set. The
continuum hypothesis is the claim that l1 = 2, where 2 is the cardinality of R, and is well
known to be independent of ZFC.

If - is Polish and � ⊂ - is co-analytic, then there is always a co-analytic rank on �.
This is a function d on - that assigns each point of - to some ordinal ≤ l1 and such that

(1) � = {G ∈ - : d(G) < l1},
(2) {(G, H) ∈ � × � : d(G) < d(H)} is co-analytic in - × - ,
(3) {(G, H) ∈ � × � : d(G) ≤ d(H)} is co-analytic in - × - .

Given such a function d, one can show that for every countable ordinal U, every set �U =
{G ∈ � : d(G) ≤ U} is a Borel set, and every analytic subset of � is contained in some �U.
Moreover, � is Borel if and only if every co-analytic rank of � is bounded above by some
countable ordinal.

The standard example (dating back to Cantor and motivating his invention of trans-
finite ordinals) involves the derived sets of a compact set in R. Given a compact  , the
derived set  ′ is  with its isolated points removed; this is a compact subset of  , with at
most countably many points removed. If  was finite then  ′ = ∅, and otherwise we can
repeat the process to get the second derived set  ′′. Continuing, we get a nested sequence
of sets that either becomes empty after = < ∞ steps (in which case we set d( ) = =) or
we get an infinite, strictly decreasing sequence of nested compact sets whose intersection
is a non-empty compact set  l . If the derived set of  l is empty, then set d( ) = l,
and otherwise continue as before. We proceed with this using transfinite induction. If  is
countable, then since we remove at least one point at each stage, we must reach the empty
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set at some countable ordinal, and take this ordinal to be the rank of  . Since we remove
only countably many points at each stage, starting with an uncountable set never gives the
empty set at any countable ordinal. For such sets the rank is defined to be l1. This defines
a rank for the co-analytic set of countable, compact subsets of [0, 1].

In [37] Kechris and Woodin describe a natural rank on the set of everywhere differen-
tiable functions in � ( [0, 1]). See also [38], [39], [53], for comparisons between their rank
and other ranks on the same set. A thesis of [37] is that "natural" co-analytic sets should
have natural ranks.

Question 12. What is a natural rank on the space of conformally removable sets?

For the special case of product sets � × [0, 1] with � countable, we can just take the
usual rank on countable compact sets described above using derived sets.

Question 13. Can the derived set rank on � × [0, 1] be extended to a co-analytic rank on
all removable sets in ( = [0, 1]2?
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