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BiLipschitz homogeneous hyperbolic nets

Christopher J. Bishop

Abstract. We answer a question of Itai Benjamini by showing there is a K < ∞ so that for

any ǫ > 0, there exist ǫ-dense discrete sets in the hyperbolic disk that are homogeneous with respect

to K-biLipschitz maps of the disk to itself. However, this is not true for K close to 1; in that case,

every K-biLipschitz homogeneous discrete set must omit a disk of hyperbolic radius ǫ(K) > 0. For

K = 1, this is a consequence of the Margulis lemma for discrete groups of hyperbolic isometries.

Kaksisuuntaisten Lipschitzin kuvausten suhteen

tasalaatuisista hyperbolisista verkoista

Tiivistelmä. Tässä työssä vastataan Itai Benjaminin esittämään kysymykseen osoittamalla,

että on olemassa sellainen K < ∞, että jokaista lukua ǫ > 0 kohti on olemassa hyperbolisen kiekon ǫ-

tiheä diskreetti joukko, joka on tasalaatuinen kiekon itselleen kuvaavien, kaksisuuntaisen Lipschitzin

ehdon vakiolla K toteuttavien kuvausten suhteen. Tämä ei kuitenkaan päde, jos luku K on lähellä

ykköstä; siinä tapauksessa jokainen diskreetti joukko, joka on tasalaatuinen em. kuvausten suhteen,

välttämättä väistää jonkin kiekon, jonka hyperbolinen säde on ǫ(K) > 0. Kun K = 1, tämä seuraa

hyperbolisten isometrioiden diskreettejä ryhmiä koskevasta Marguliksen lemmasta.

1. Introduction

Let D = {z : |z| < 1} denote the unit disk in the complex plane C and let ρ
denote the hyperbolic metric on D (defined in Section 2). A set X ⊂ D is called
discrete if it has no accumulation points in D, and for ǫ > 0 it is called ǫ-dense if
every z ∈ D is within hyperbolic distance ǫ of some point x ∈ X. A set X is called
homogeneous with respect to a set F of homeomorphisms if for any x, y ∈ X there
is a f ∈ F so that f(X) = X and f(x) = y. In other words, F acts transitively
on X (we do not assume F is a group; see Remark 1 below). We say that X ⊂ D

is a (K, ǫ)-net if it is a discrete ǫ-net that is homogeneous with respect to the set of
hyperbolic K-biLipschitz maps from D onto itself (we could also consider biLipschitz
self-maps of X; see Remark 2 below). Define

ǫ(K) = inf{ǫ : (K, ǫ)-nets exist}.
This is finite for all K ≥ 1 since it is clearly a decreasing function of K (as K
increases, the infimum is over larger sets), and the orbit of any co-compact Fuchsian
group G is a (1, ǫ)-net for some ǫ < ∞; we can take ǫ to be the diameter of the
compact quotient surface R = D/G. An explicit bound is given by the genus two
Bolza surface, whose hyperbolic diameter is arctan(3 + 2

√
2) ≈ 2.45; see [10]. Thus

Kc = inf{K : ǫ(K) = 0} = sup{K : ǫ(K) > 0}
is well defined and 1 ≤ Kc ≤ ∞. We shall prove both inequalities are strict.
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Theorem 1.1. 1 < Kc < ∞.

The upper bound follows from an explicit construction: for any ǫ > 0 we build
an ǫ-net that is homogeneous for K-biLipschitz maps with K < ∞ independent of
ǫ. The lower bound is given by an indirect argument. Assuming Kc = 1 we show
there exists an ǫ-dense set in D that “looks like” a copy of Z× Z, and we will derive
a contradiction with the exponential growth of the hyperbolic area.

It is well known that ǫ(1) > 0. If X is homogeneous with respect to hyperbolic
isometries, then these maps generate a subgroup H of the group G of all hyperbolic
isometries mapping X to itself. Since X is a discrete set, G is a discrete group, i.e.,
a Fuchsian group, and R = D/G is a (possibly branched) Riemann surface and the
set X projects to a single point x ∈ R. A famous result of Každan and Margulis
[7], says that there is a positive constant ǫ1 > 0 (the Margulis constant) so that the
injectivity radius is at least ǫ1 at some point of R, and hence R contains a disk of
radius at least ǫ1/2 that does not intersect X. Thus ǫ(1) ≥ ǫ1/2. Alternate proofs
of the Margulis lemma for Fuchsian groups are given in [8, 11, 13]; the latter gives
the sharp value. The question of whether Kc > 1 was raised by Itai Benjamini as
a result of considering whether the Margulis lemma really requires the machinery of
hyperbolic isometries, group actions and fundamental domains, or might it have an
analog for sets of biLipschitz mappings.

Remark 1. We claim that Kc = ∞, if we require X to be homogeneous with
respect to some group H of K-biLipschitz maps on D. Such a group would consist of
K2-quasiconformal maps, and a result of Tukia [12] says that such a group is of the
form H = hGh−1 for some quasiconformal map h : D → D and some Möbius group
G acting on D. By Mori’s theorem [9] (or [1, Chapter 3]), the image of a hyperbolic

ǫ-disk under h or h−1 contains a hyperbolic disk of radius ≥ ǫK
2

/16. Since h(X) is
invariant under G, the previous paragraph shows it omits some disk of hyperbolic
radius ǫ1, and hence X omits some disk of radius ǫK depending only on K.

Remark 2. We have assumed that X is homogeneous under biLipschitz self-
maps of the disk, but we could replace this by self-maps of X. Our proof of the
upper bound produces biLipschitz maps of the whole disk, and the proof of the lower
bound only uses that we have self-maps of X. Thus the inequality 1 < Kc < ∞ holds
in either case, although it is not clear whether the exact value of Kc is the same in
both situations (this depends on whether a K-biLipschitz self-map of an ǫ-net can
be extended to a K-biLipschitz self-map of the disk, or whether a larger constant is
sometimes needed).

I thank the anonymous referee for a careful reading of the manuscript and several
suggestions that improved it.

2. The upper bound: Kc < ∞

The pseudo-hyperbolic metric on D is given by

ρ̃(z, w) =

∣∣∣∣
z − w

1− wz

∣∣∣∣

and the hyperbolic metric by

ρ(z, w) =
1

2
log

1 + ρ̃(z, w)

1− ρ̃(z, w)
.
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The hyperbolic metric can also be defined as ρ(z, w) = inf
´

γ
ds/(1 − |x|2), where

the infimum is over all rectifiable paths in D connecting z and w. This implies
ρ(z, w) > |z − w| whenever z 6= w. The (orientation preserving) isometries of the
hyperbolic metric are the linear fractional transformations of the disk to itself. The
geodesics for the hyperbolic metric are diameters of the circle and their images under
isometries, i.e., circular arcs perpendicular to the boundary. A ball of hyperbolic
radius r has hyperbolic area that grows exponentially in r. See [2] or [5] for these
basic facts about the hyperbolic metric. A hyperbolic K-biLipschitz map f : X → Y
between subsets of D is one that satisfies

1/K ≤ ρ(f(z), f(w))

ρ(z, w)
≤ K for all z, w ∈ X.

In this section, we prove the upper bound Kc < ∞ in Theorem 1.1 by building
explicit (K, ǫ)-nets with K fixed and ǫ tending to zero. All our examples correspond
to infinite quadrilateral meshes that refine a fixed tesselation of D by right pentagons.
These meshes were constructed for different purposes in [4] (in that paper, they are
part of the proof that any simple planar n-gon can be quad-meshed in time O(n)
using elements with all new angles between 60◦ and 120◦).

Lemma 2.1. (Quadmeshes exist) For all sufficiently small ǫ > 0, the hyperbolic

unit disk has a mesh by quadrilaterals each containing, and contained in, disks of

size comparable to ǫ.

Proof. We start with the standard tesselation of D by hyperbolic right pentagons.
See the left side of Figure 1. Connect the center of each pentagon to the midpoint
of each of its five boundary arcs. This divides the pentagon into five fundamental
quadrilaterals. Each quadrilateral has three right angles and one angle of 2π/5, the
latter at the center of the pentagon.

Figure 1. Hyperbolic right pentagons tessellate the disk. Each pentagon is divided into five

quadrilaterals which are then each divided into a N × N quadrilateral mesh (here N = 3). The

elements all have hyperbolic diameter and side lengths ≃ 1/N .

The two edges of such a quadrilateral Q that are adjacent to the center of the
pentagon have the same hyperbolic length as each other, as do the two sides of Q that
are opposite these sides. Choose a positive integer N and divide each quadrilateral
into a N×N quadrilateral mesh using geodesic arcs as shown in the center of Figure 1.
Each boundary arc of the fundamental quadrilateral is divided into N sub-arcs of
equal length. This implies the mesh in each fundamental quadrilateral matches the
mesh in all its neighbors and defines a quadrilateral mesh of the whole disk. See the
right side of Figure 1. We will call this mesh M ; it is an infinite graph embedded in
D in which every vertex has degree four or five (the latter occurs only at the centers
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of the hyperbolic pentagons). The set X of vertices of this mesh is our ǫ-net with
ǫ ≃ 1/N . �

We observe the following for later use.

Lemma 2.2. Suppose M is one of the meshes constructed above. The hyperbolic

distance between two vertices z, w of M is comparable to their graph distance,

dM(w, z) divided by N , with a constant that is independent of M .

Proof. To see this, note that each edge of the mesh has hyperbolic length O(1/N),
so ρ(z, w) = O(dM(z, w)/N). On the other hand, a geodesic segment γ ⊂ D connect-
ing distinct points z, w ∈ X can can hit at most O(Nρ(z, w)) faces of the mesh: each
such face has hyperbolic area ≃ 1/N2, and is contained in a O(1/N) neighborhood
of γ, so the union of faces hitting γ has area O(ρ(z, w)/N). The edges of these faces
contain a path of mesh edges connecting z and w, so dM(z, w) = O(Nρ(z, w)). �

We let Y ⊂ X denote the vertices of the pentagonal tesselation in the left side of
Figure 1; these are the points where the geodesics defining the edges of the tesselation
cross each other. We call these geodesic edges the “bounding geodesics” and call their
crossing points Y the “corner points”. The set of corner points is clearly homogeneous
under isometries of the hyperbolic disk. Thus to map a point x1 ∈ X to another
point x2 ∈ X, it suffices to map x1 to some y1 ∈ Y and map some y2 ∈ Y to
x2, and then isometrically map y1 to y2. Thus it is enough to show that each x
inside a fundamental quadrilateral Q can be mapped to a corner point y ∈ Y by a
K-biLipschitz map of X to itself, with K independent of N .

We do this in two steps. Given x ∈ X, let Q be the fundamental quadrilateral
containing x and let y = Q ∩ Y be the corresponding corner point. First we will
define a “discrete rotation” of X around y that maps x to a point z ∈ ∂Q ∩ X
that lies on bounding geodesic γ passing though y. The second step is to define a
“discrete translation” of X along γ that maps z to y. We will show both steps can
be accomplished by K-biLipschitz maps, with K independent of N .

If x ∈ Y , there is nothing to do, so we assume x 6∈ Y and choose y = Q ∩ Y
where Q is a fundamental quadrilateral containing x. If x in on a bounding geodesic
passing through y, we can continue to the second step of the construction, so for the
moment, we assume this is not the case.

Lemma 2.3. (Discrete rotations) Assume notation is as above. There is a K <
∞ so that the following holds. Suppose Q is a fundamental quadrilateral and y ∈ Y
is a corner point of Q. If x ∈ X ∈ Q, then there is a K-bilipschitz map of the

hyperbolic disk to itself that maps X to itself and maps x to a point z ∈ X on a

bounding geodesic γ that passes through y. The map is the identity off the four

tesselation pentagons touching y.

Proof. The corner point y is on the boundary of four hyperbolic pentagons. Let
P be the union of these four pentagons. We define a series of closed cycles {Γk}2N1
in the mesh M ∩ P . See Figure 2 for an example where N = 5. The first curve, Γ1,
consists of the eight points of X that are adjacent to y in the mesh M . In general, if
we have already defined Γ1, . . .Γk, then Γk+1 is the cycle consisting of points of X∩P
that are adjacent to Γk but not in Γk−1. Note that Γ2N lies on the boundary of P .
Also, for k = 1, . . .N , observe that Γk+1 has eight more points than Γk. For k ≥ N ,
Γk+1 has sixteen more points than Γk (note that ΓN is the cycle passing through the
centers of the pentagons).
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By assumption, x 6= y, but x and y are in the same fundamental quadrilateral
Q, so x lies on some Γk with 1 ≤ k ≤ N . Moreover, there is a point w ∈ X ∩Γk that
is on a bounding geodesic and is at most j ≤ k steps away from x on the cycle Γk.
Thus we can map x to w by “rotating” Γk by j steps (every point of Γk is moved j
positions in the same direction).

Figure 2. The left shows the union of four pentagons (= twelve fundamental quadrilaterals)

that touch the corner point y at the center. The right picture shows the concentric cycles Γk

surrounding y. If x is on the kth ring with 1 ≤ k ≤ N , then it is at most k points away from a

bounding geodesic passing through y (illustrated here by the vertical and horizontal lines through

y). Here N = 5.

We extend this rotation to the rest of X as follows. For 1 ≤ m < j we rotate
Γk+m by j−|m| positions. Similarly for Γk−m. On the rest of X we take the identity.
Recall that the hyperbolic distance between points of X is comparable (with absolute
constants) to the mesh distance in M divided by N . The map above clearly only
multiplies mesh distances by at most a bounded factor, independent of N . To see
this, note that if m 6= 0 and two points are on Γk and Γk+m respectively, then the
mesh distance between them is at least m and it can increase by at most O(|m|) (since
the size of the shifts varying by at most m, and partly due to the lengths of the two
cycles differing by at most 16m. If two points are on the same cycle Γk, then the shifts
at worst multiply the mesh distance by two. Since dM(z, w) ≃ Nρ(z, w), our maps
also multiply hyperbolic distances by a bounded factor, i.e. they are hyperbolically
Lipschitz with a uniform constant. Moreover, the inverse map has the same form, so
the inverse is also Lipschitz with a uniform bound. Thus our discrete rotation map
is uniformly biLipschitz as a map X → X.

We can extend the map X → X defined above to be a biLipschitz self-map of the
whole disk. We define the extension as the identity outside P (the union of pentagons
touching y), and within P we define it as follows. For each annular region Ak between
the cycles Γk−1 and Γk we take a biLipschitz map of Ak to a round annulus with points
of X mapping to evenly spaced points on each boundary circle (this is easy). The
discrete rotation maps on the cycles become Euclidean rotations on the boundary
circles, and the angle of rotations differ by at most a bounded multiple of the width
of the annulus. These boundary rotations can be interpolated by a biLipschitz map
that just rotates each concentric circle between the boundaries, and this map is then
transported back to Ak. �

This completes the first step of our construction: every x ∈ X can be mapped
to a point of X lying on a bounding geodesic of the pentagonal tesselation, by a
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uniformly biLipschitz map of D to itself. Next we need to show any such mesh point
on a bounding geodesic can be mapped to a corner point y ∈ Y . This is easier than
the previous step.

Figure 3. S (for strip) is the union of fundamental quadrilaterals touching a single bounding

geodesic (the thickened central horizontal line passing through y, the white dot). The mesh in this

region is isomorphic to the square mesh on Z× [−N,N ] and we can define a biLipschitz map that

translates the central geodesic by j mesh elements (with |j| ≤ N) and is the identity outside S.

Here N = 5.

Lemma 2.4. (Discrete translations) There is a K < ∞ so that the following

holds. Suppose, as above, that Q is a fundamental quadrilateral, y is a corner point

of Q, γ is bounding geodesic for Q, and z ∈ γ ∩ Q. Then there is a K-bilipschitz

map of the hyperbolic disk to itself that maps X to itself and maps z to y. The map

is the identity off the union of fundamental quadrilaterals that touch γ.

Proof. Let S denote the union of all fundamental quadrilaterals Q that touch
γ. In Figure 3 a single fundamental quadrilateral Q is shaded. This quadrilateral,
and its three rotations around y by π/2, π and 3π/2, form a larger quadrilateral Q′,
and S is union of translates of Q′ under powers (positive and negative) of a single
hyperbolic translation along γ. See Figure 3.

The restriction of the mesh M to S is isomorphic to the graph Z × [−N,N ].
Fixing j with 1 ≤ j < N , we can define a discrete translation by j by sending
(n,m) → (n+ j − |m|, m) for |m| < j and taking the identity map on the rest of X.
This is clearly uniformly biLipschitz in both the graph and hyperbolic distances on
X and can move a point on a bounding geodesic up to N positions. This is enough to
move any point onto a corner, as desired. The extension to a biLipschitz self-map of
the disk is similar to, but even simpler than, the previous case. We take the identity
map outside S. We map the strip S to the Euclidean strip R× [−N,N ], extend the
translations on the top and bottom edges to the interior via a shear map preserving
each horizontal line, and then map this back to S. �

This completes the proof of upper bound in Theorem 1.1.

3. The lower bound: Kc > 1

In this section, we prove Kc > 1 by contradiction. We will assume that Kc = 1
and construct an ǫ-dense mesh that only has O(r/ǫ2) points within hyperbolic dis-
tance r of the origin. However, this contradicts the well known fact that a hyperbolic
ball of radius r has area that grows exponentially with r. In this section, we need
only assume that X is homogeneous with respect to K-biLipschitz homeomorphisms
of X to itself.
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Lemma 3.1. If X is a (K, ǫ)-net, then it is also a (K, δ) net, where δ ≤ ǫ is the

supremum of numbers r > 0 so that D \X contains a disk of radius r.

Proof. Clearly δ > 0, since X discrete and hence its complement is open and
non-empty. Also δ ≤ ǫ, since every point is within ǫ of some point of X. The set
X is a (K, δ)-net, since every point of D is within hyperbolic distance δ of X by
definition. �

Henceforth, given an (K, ǫ)-net, we assume we have set ǫ = δ as above. Thus for
any λ ∈ (0, 1), there is a point xλ ∈ X and a hyperbolic disk Dλ of radius λǫ so that
Dλ ∩X = ∅, and whose center is within distance ǫ of xλ.

Lemma 3.2. Suppose that X is homogeneous with respect to K-biLipschitz

homeomorphisms of X to itself. If K > 1 is close enough to 1 and ǫ > 0 is close

enough to 0, then every closed disk of radius ǫ around any point w ∈ X contains the

center of a disk of radius ǫ/4 that is not hit by X.

Proof. First, note that the regular 12-gon inscribed in a Euclidean disk of ra-
dius 1 has side lengths 2 sin(π/12) ≈ .5176, so that in hyperbolic space 12 equally
spaced points on a circle of hyperbolic radius ǫ will be more than 2 sin(π/12)ǫ > ǫ/2
apart. This is because on small neighborhoods of the origin, hyperbolic distances
approximate Euclidean distances. Now place twelve disjoint disks of hyperbolic ra-
dius ǫ/4 on the hyperbolic circle of radius ǫ around point w ∈ D. By our assumption
that the conclusion of the lemma fails, each of these twelve disks contains a point
{xk}12k=1

⊂ X. See Figure 4.

Figure 4. In hyperbolic space we can place twelve disks of radius ǫ/4 on a circle of radius

ǫ around w ∈ X (black dot in center). Under our assumptions, each smaller disk of radius ǫ/4

contains a point of X (white dots).

Now map w to xλ by a K-biLipschitz map of X. The distances between w and
the twelve images of {xk}121 , and among these twelve points change by at most a
factor of K ≈ 1. This determines the positions of the twelve image points around xλ

up to a rotation around xλ, and an error that is o(ǫ) as K tends to 1.
Moreover, as ǫ tends to zero, the length of the gaps on circle {z : |z − w| = ǫ}

between these evenly spaced disks tends to ǫ(2π − 24 sin(π/12))/12 ≈ (.006)ǫ. Thus
every point of the circle of radius ǫ around w is within 3ǫ/4 of some point of {xk}121 .
So if K is close enough to 1, then every point on the circle of radius ǫ around xλ is
within 7ǫ/8 of an image of one of the twelve points. If we choose λ > 15/16, then
the center of Dλ is less than ǫ/16 from this circle, and hence it is within λǫ of the
center of Dλ. Thus Dλ contains a point of X, a contradiction. �
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Lemma 3.3. Kc > 1.

Proof. Suppose this fails. Then we can find sequences of sets {Xn} and numbers
Kn ց 1 and ǫn ց 0 so that Xn is a (Kn, ǫn)-net. We will show that for n large
enough, the sets Xn must have a local Euclidean structure that is incompatible with
their global hyperbolic structure.

Restrict each Xn to the Euclidean disk D(0,
√
ǫn) ⊂ D and expand it by the

Euclidean dilation z → z/ǫn. This rescaling gives a sequence of finite sets Zn ⊂ C,
from which we can extract a sequence that converges (in the Hausdorff metric on
compact subsets of the plane) to closed set Z in R2 that satisfies:

(1) Z is a (Euclidean) 1-net,
(2) Z is homogeneous with respect to Euclidean isometries,
(3) Any 2-ball centered in Z contains a 1

4
-ball disjoint from Z.

The set of isometries that map Z into itself is a closed subgroup G of the Euclidean
isometry group. Since G acts transitively on the 1-net Z, it must be infinite. Thus G
is a closed, infinite Lie subgroup of the isometry group of the plane and hence must
be either a discrete group (in which case, Z is a Euclidean lattice) or G = R × Z

(and Z is a union of evenly spaced parallel lines).
In either case, Z contains a lattice Z ′ whose fundamental parallelogram is close

to a square. In the case Z = R × Z, we can take an actual square sub-lattice, and
otherwise we can choose elements of Z that are within distance 1 of the points 10
and 10i; these give a fundamental parallelogram of uniformly bounded eccentricity
(all angles bounded uniformly away from 0 and π).

This means if ǫn and Kn are close enough to 0 and 1 respectively, then setting
δ = 10ǫ and taking any point x ∈ Xn we can find eight other points in Xn that
approximate a Euclidean 3× 3 lattice with side lengths comparable to δ centered at
x. Applying the same argument to each of the eight boundary points of this grid, we
can expand it to a 5 × 5 grid. Continuing, we can build a (2m+ 1)× (2m+ 1) grid
centered at x that is a union of approximate δ sized quadrilaterals that approximate
squares uniformly. More precisely, we obtain a subset of X that is a 2δ-net in D

whose points are δ/2 separated, and has the structure of a Euclidean square mesh.
But then O(m2) disks of radius 2δ centered on this grid cover a ball of radius ≃ δn
around x. In other words, O(m2) disks, each of hyperbolic area O(δ2), cover a ball of
hyperbolic radius ≃ mδ, and this ball must have hyperbolic area at least exp(cδm) for
some c > 0. This is impossible for large m, and the contradiction implies Kc > 1. �

4. Questions and remarks

What is the precise value of Kc?
Is the function ǫ(K) strictly deceasing on [1, Kc]? Is ǫ(Kc) = 0? Does ǫ(K) tend

to the Margulis constant as K ց 1? Is ǫ(K) continuous? It seems possible that the
nets that minimize ǫ for a given K could have some special combinatorial structure,
and that when this is changed, the optimal ǫ is different. Thus it seems possible that
jumps in ǫ(K) could occur.

What can happen if X is a K-biLipschitz ǫ-net, but we don’t require X be
discrete? Then we could have X = D; what else is possible? In general, a K-
biLipschitz homogeneous compact set in R2 can be a Cantor set, even with K close
to 1 (think of a thin Cantor set constructed using very thick annuli; the outer and
inner boundary boundaries can be rotated all the way around by a biLipschitz map
with small constant). What if X has non-trivial connected components? Hoehn
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and Oversteegen [6] proved any compact planar set that is homogeneous under self-
homeomorphisms is necessarily either a finite set, a Cantor set, a Jordan curve, a
pseudo-arc, a circle of pseudo-arcs or the product of one of the first two with one of
the latter three. It is still unknown (at least to the author) whether a biLipschitz
homogeneous continuum in R2 must be a Jordan curve. However, it is known that a
biLipschitz homogeneous Jordan curve in the plane must be a quasicircle [3].

The referee of this paper asked if analogous results hold in higher dimensions. It
seems quite possible that both the explicit construction of (K, ǫ)-nets used to prove
Kc < ∞, and the rescaling argument that proves Kc > 1 should work in higher
dimensional hyperbolic spaces, but the details are not obvious. For example, what
is the precise analog of the pentagonal tesselation of the disk that we used, and
what are the analogs of the discrete rotations and translation maps? Assuming an
extension of our result to higher dimensions is possible, what is the behavior of Kc

as the dimension increases to infinity? The proof given in this paper that Kc > 1
depended on the observation that hyperbolic space looks Euclidean at small scales,
but not at large scales. Does the result in this paper extend to other (non-hyperbolic)
spaces that are “non-Euclidean” at large scales?
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