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1. INTRODUCTION

Suppose £ C T is a compact subset of the unit circle and f : D — Q C R? is
a conformal mapping which extends continuously to £. Which mappings of E can
occur in this way? Since f is a homeomorphism of D, there is an obvious topological
restriction: level sets f~!(z) and f~!(w) must either coincide or be contained in
disjoint arcs of T. The purpose of this note is to show that this is the only restriction

iff £ has logarithmic capacity zero.

Theorem 1. Suppose E C T is compact. Then the following are equivalent.

1. E has logarithmic capacity zero.

2. Given any homeomorphism g : D — Q C R?® which extends continuously to
T, there is a conformal map f : D — Q which extends continuously to T and
fle = gle.

3. Given any continuous map g : E — R*® such that z # w implies g~'(z) and
g Y (w) lie in disjoint arcs of T, there is a conformal map f : D into Q which

extends continuously to T and f|g = g|p.

We will also prove a fourth equivalent condition that requires a few more definitions
to state. A decomposition of compact set K is a collection C of pairwise disjoint closed
sets whose union is all of K. A decomposition C of K is called upper semi-continuous
if a collection of elements which converges in the Hausdorff metric must converge to
a subset of another element. A decomposition of the unit circle is called separated if
any two distinct sets are contained in disjoint intervals. We say the decomposition is
realized by a function f : K — S? if it consists of the level sets {f!(z) : z € 5%} of
f. It K C T and f is the boundary values of a conformal map on D, we will call the
decomposition conformal. It would be very interesting (and probably very difficult) to
characterize which decompositions of subsets of the circle are conformal; as a special
case this contains the difficult problem of determining which circle homeomorphisms
are conformal weldings (see e.g., [6], [1]). However, we can do this if the subset is

small enough.

Theorem 2. A compact set E C T has zero logarithmic capacity iff

4. A decomposition of E is conformal iff it s upper semi-continuous and separated.
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That any of (2), (3) or (4) implies (1) follows from a well known result of Beurling:
a univalent map cannot be constant on a set £ C T of positive logarithmic capacity.
Also (2) & (3) = (4) follows from topological results of R.L. Moore (we will discuss
these more precisely in Section 3). Thus the main point for us will be to show (1) =

(2). This will follow from the following special case:

Theorem 3. Suppose E C T is a closed set of zero logarithmic capacity and h :
T — T is an orientation preserving homeomorphism. Then there is a conformal map
f:D—QCD onto a Jordan domain Q so that f|g = h|g.

The proof of this follows from Evan’s theorem from potential theory and an explicit
geometric construction. Indeed, if we only want a quasiconformal mapping (with
a uniform constant) which does the interpolation, then we can essentially draw a
picture of it. To obtain a conformal map we combine this picture with an iterative
construction which solves a Beltrami equation at each step to keep the map conformal.
This proof will be given in Section 2; Theorem 1 will be proven in Section 3.

Given a closed Jordan curve I', let €2 and 2* denote the bounded and unbounded
complementary components and let D = {|z| < 1} and D* = {|z| > 1}. A closed
set will be called a conformal welding set if for every orientation preserving home-
omorphsim h : T — T there is a closed Jordan curve [' and conformal maps of
f:D— Qandg: D" — QF such that f = go h for all x € E. It is known that
the unit circle is not such a set (e.g., see Remark 1 of [1]), but it is an immediate

consequence of Theorem 3 and Theorem 8 of [1] that

Corollary 4. Fvery compact set E C T of zero logarithmic capacity is a conformal

welding set.

Are there conformal welding sets of positive logarithmic capacity? Results in [1]
imply that every orientation preserving homeomorphism of the circle satisfies f = goh
for maps corresponding to some [ on some set E of positive logarithmic capacity, so
the question is whether this set can be chosen independent of h.

Finally, we mention that the interpolation results in Theorem 1 imply various
similar results. For example, the separation condition in (3) is trivially satisfied by
any homeomorphism g of E into the plane, so there is a conformal map f: D — Q

onto a Jordan domain so that f|g = ¢g. Moreover, given any Cantor set F' in the
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plane, we can always write it as the homeomorphic image F' = ¢g(FE) of some zero
capacity Cantor set E on the circle. Given any homeomorphism A of F' we can also

apply the theorem to hog: E — h(F') to deduce

Corollary 5. Suppose F' C R? is any compact, totally disconnected set and h : F' —
F' C R? is any homeomorphism. Then there is a Jordan domain Q with F C 02 and
a conformal map f : Q — Q' to another Jordan domain such that f|p = h.

Part of this paper was written during a visit to the Mittag-Leffler institute and
I thank the institute for its hospitality and the use of its facilities. The content of
this paper originally appeared in the preprint [1] on conformal welding; Theorem 3
was used in the proof of the main result there, but was later made unnecessary by
an alternate approach. I thank Bob Edwards and Mladen Bestvina for pointing out
Moore’s theorem on quotients of the plane to me. I also thank David Hamilton for
reading the first draft of [1] and generously providing numerous helpful comments:
historical, mathematical and stylistic. I also appreciate the encouragement and com-
ments I received at various stages from Kari Astala, John Garnett, Juha Heinonen,
Nick Makarov, Vlad Markovic, Bruce Palka, Stefan Rohde and Michel Zinsmeister.

2. INTERPOLATION OF CIRCLE HOMEOMORPHISMS: PROOF OF THEOREM 3

In this section we prove Theorem 3. The proof is quite geometric; we can easily
describe in pictures a quasiconformal map which takes the required boundary values.
However, if we then solve the Beltrami equation to make the map conformal, we may
alter the boundary values. Thus our proof is an inductive construction in which each
step involves building an explicit quasiconformal map which “almost” interpolates,
followed by a quasiconformal correction to make it conformal.

It is convenient to move to the upper half plane. The following result does not

require 2 to be Jordan, but we will fix this in Corollary 8.

Theorem 6. Suppose E C R is a compact set of zero logarithmic capacity and h :
E — R is a non-decreasing map. Then there is a conformal map f: H — Q C H
such that f|g = h|g.

Proof. The starting point is Evans’ theorem (e.g., Theorem E.2 of [5], Theorem 5.5.6,
page 156 of [11], or Chapter 7 of [7]) which states that any compact set of zero



4 CHRISTOPHER J. BISHOP

logarithmic capacity supports a probability measure p so that the potential

u(2) = | tog (o)

|2 — |

tends to +o00 at every point of E.

Let v(z) be the harmonic conjugate of u in H such that lim,,_, v(z) = 0 and
lim, o v(z) = 7. By symmetry u has normal derivative zero on R\ E and hence
v is constant on each component of R\ E (more explicitly, v is given on R \ E
by v(z) = mpu(—oo,x). We will call a domain a slit strip domain if it is of the
form S\ U,L,, where S = {x + iy : —0o < © < 00,0 < y < 1} is the strip and
L, ={x+iy, : x, < x < oo} are the horizontal slits, for some sequence of points
{(zn,yn)} C S such that all the y,,’s are distinct and the z,, — co. See Figure 1. We
will also assume z,, > 1 for all n. Then f, = %(u +iv) is a conformal map of H onto
a slit strip, with u(z) — 400 as z — E. Let W C S denote this slit strip.

g
e}

VlLVLHV{ Y

A

FIGURE 1. A slit strip domain

In order to prove the theorem, it clearly suffices to assume E C [0, 1] and h([0,1]) C
[0,1]. Given any increasing map h : [0, 1] — [0, 1] are going to build a conformal map
f W — H so that lim, ,o f(z + iy) = h(y) as long as y ¢ {y,}. For future
convenience we will think of i as being defined on all of W by h(x + iy) = h(y).

Given a real number s let H(s) denote the horizontal line {z + iy : y = s} and let
V (s) denote the vertical line {z + iy : v = s}. If I C R then H(I,s) ={x +iy:x €
I,y =s} C H(s). Similarly for V/(I,s) C V(s). Given s < tlet W(s,t) = Wn{z+iy :
s <x < t}. Given an interval I C [0,1] let W (I,s,t) = W (s,t)N{z +iy:y € I}.

Given s € R let {17} be the (finitely many) components of W NV (s). Let [3(t) C
V/(t) be the orthogonal projection of I$ onto V(t). Let J7 be the smallest closed
interval (possibly a point) containing h(I7) (which might not be connected because

h need not be continuous).
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Given a sequence of real numbers €, \, 0 we will construct sequences ¢, ~\, 0 and
sn /* 00 and conformal maps f, of W, = W(—00, s,,) into H such that if I} = I;"*,
JP = J;*" and af is the center of J}, then

L || fo = facilloo < €, 0on W, 1.

2. fu(I}) is an interval of length 6,|I}| on the horizontal line H(27""") whose

center projects vertically to a point less than €, away from a;.

3. [} — f(IJ”) is quasisymmetric with bounds independent of n and j.

To start the induction we map W (—o00,0) to the vertical strip Qy = {(x+iy) : 0 <
x < 1,y > 1} by a Euclidean similarity.

In general, suppose we have defined our sequences up to n — 1. We will define
a conformal map on W, by first defining a quasiconformal map ¢, on W,, and then
applying the measurable Riemann mapping theorem to make it conformal. We define
gn 1n six steps.

Consider the intervals {I7'} C W, ;. We are going to define the map g,, on each of
the domains W(IJ’?, Sn—1,Sn) (for some suitable large choice of s, to be made later).

For each j we will define a finite sequence of numbers
Spo1 =ty <t <ty <ty <ty

and define the map on W (I}, #,t11) for k =0, 1,2,3. For convenience we will drop
the n and j and write [7' simply as I.

Step 1: On W,,_; we let g, = f,_1.

Step 2: Choose t; > t; so that W(I,t,,t,) can be quasiconformally mapped to
the rectangle {z +iy : © € fo_1(1), £27" <y < 27"} and so that g, agrees with f,_;
along I and is affine on I(¢;). This can be done by a map with uniformly bounded
quasiconformal constant Ky by hypothesis (3) above.

Step 3: Choose ty > t; large enough so that W (I, t,t5) can be affinely mapped to
a trapezoid of height £27™, top edge of length |f,_; ()| and bottom edge 8,|/|. See
Figure 2. This can be done with quasiconformal constant K3 which is independent
of ¢, although the choice of ¢, does depend on d,.

Step 4: Choose t3 > ty so large that W ([, t,t3) is can be mapped to a “tube” of
width d,|I| which connects the bottom edge of the trapezoid in the previous step to
the interval of length 6,|I| on H(227") whose center is with in €,/2 of a}. We can

clearly choose 9,, so small that the tubes for different j’s can be chosen to be disjoint
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FIGURE 2. The third step

from one another. This is one condition that determines J,,. Another will be given
following Step 6. Also note that this construction can be done with quasiconformal

constant K, which is independent of ¢,,. See Figure 3.

FiGUure 3. The fourth step

Step 5: Choose ty > t3 so large that W ([,t3,t4) can be mapped to a rectangle
of height £27" and width 8, |/| and attach this to the bottom of the tube from the
previous step (thus the bottom edge lies on the line H(27"1)). These five steps
together are illustrated in Figure 4.

Step 6: Now let s, = max;t, = max;t,(j). For the intervals I7' where this
maximum is attained, do nothing. For intervals where ¢,(j) < s,, we replace the
vertical rectangle of the fourth step above with a “constricted tube” as pictured in
Figure 5, where the shape of the particular tube is chosen so that W(I,t4(j),t,)
can be mapped quasiconformally to the tube with uniformly bounded constant. We
also assume the map is a similarity on the end squares. Again, the quasiconformal
constant K is independent of the other parameters.

This completes the definition of W,, and the construction of the quasiconformal map
gn : W, — H which extend f,,_;. To define f,, we take the Beltrami data associated
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FiGUuRrE 4. First five steps of constructing g,
FIGURE 5. Replacing a tube by a conformally longer one

to g, and reflect it across the horizontal line H(27""1). Solve the Beltrami equation
to obtain a quasiconformal map h, which maps H (27" 1) to itself, and such that
fn = hy o g, is conformal. Since the dilatation of g, is uniformly bounded and is
supported of a set of area < 277§, ; (this is an upper bound for the area of the
regions constructed in the four steps above), the map h, is uniformly close to the
identity on H. In particular, given any €, we can choose 6,,_; so small that if u is a
complex dilatation of norm < A = (K —1)/(K + 1), with K = max(Ky, K3, Ky, Kg)
and which is supported on a set of area < 27"J,,_;, then the corresponding solution
h of the Beltrami equation satisfies |h(z) — z| < €,/2 for all z € R%. This is the final
condition determining the choice of 9,,.

Conditions (1) and (2) of the induction are now clear. To see that (3) holds, note
that each interval of the form g, (I}') has length §,|/7| and is at least distance &, |17 |
from the set where g, has non-zero dilatation (by the explicit construction of the
constricted tubes). This completes the induction. Passing to the limit we obtain a

conformal map f: W — Q C H with the desired properties. O
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Given a compact set £ C T we will now define the associated “sawtooth” region
Wp and a 2-quasiconformal map between Wy and D which keeps E fixed pointwise.
Suppose {I,,} are the connected components of T\ E and for each n let 7,,(0) be the
circular arc in D with the same endpoints as I,, and which makes angle § with I,, (so
Y,(0) = I, and ~,(7/2) is the hyperbolic geodesic with the same endpoints as I,,).
Let C,,(#) be the region bounded by I,, and v, (#), and let Wr = D\ U,,C,,(7/8). It is
easy to check (see [1]) that we can msp D to Wg by a 2-quasiconformal map f which
is the identity on F.

Lemma 7. Suppose E C T is compact. Then there is a conformal map g : D — W C
D onto a Jordan domain so that g(E) = OW N'T. Moreover, E has zero logarithmic
capacity iff g(E) does.

Proof. Take ¢ : D — Wy as above. Take the Beltrami data p corresponding to ¢ and
extend it across the unit circle by reflection to get a dilatation fi. Solve the Beltrami
equation f; = iif, to find a 2-quasiconformal selfmap h of the disk so that ¢ = ho is
conformal. Since ¢ is bi-Lipschitz and h is bi-Holder (since it is quasiconformal), we
see that ¢ is also bi-Hdlder and hence g(E) has zero logarithmic capacity. Moreover
it is clear that g(DD) is a Jordan domain that only hits the circle at g(E). O

Corollary 8. If the map h in Theorem 6 is a homeomorphism then we can take €2
to be a Jordan domain such that 0) N OH = E.

Proof. Assume that E, h(E) C [—1,1] and let F' be the conformal map of the vertical
strip {x +iy : y > 0,—1 < x < 1} to the hemisphere DNH. Let G : H — W C H be
given by Lemma 7 (after conjugating from D to H). Apply Theorem 6 to the map
F~l'ohoG™ ! restricted to G(E) to find a map f. Then F o f oG is a conformal map
of H to a Jordan domain in H which equals A on E. O

3. BOUNDARY INTERPOLATION SETS: PROOF OF THEOREM 1

In this section we will prove Theorem 1. The basic fact which we need is the

following result of R.L. Moore.

Theorem 9 (Moore, [8]). Suppose C is an upper semi-continuous collection of dis-

joint continua (compact, connected sets) in R? each of which does not separate R%.
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Then the quotient space formed by identifying each set to a point is homeomorphic to
R?.

Also see Daverman’s book [2]. For an overview of Moore’s life and work see [4] and
[12] (reprinted in [3]). For another application of Moore’s topological work (i.e. the
Moore triod theorem) to conformal mappings, see Pommerenke’s paper [10].

We will also need a few easier facts, starting with the following version of Lindel6f’s

theorem.

Lemma 10. Suppose f : D — Q is an orientation preserving homeomorphism which
extends continuously to the boundary and which is non-constant on every boundary
arc. If v C Q is an open arc with one endpoint on 05), then 7 = f~1(v) has a well
defined endpoint on T.

Proof. Since f is a homeomorphism, 7 leaves every compact subset of D and hence
accumulates on T. If the accumulation set is a point we are done. Otherwise it is an
interval, and we deduce that v accumulates on the image of this interval, which is

not a single point by assumption. This is a contradiction and proves the lemma. [

Lemma 11. Suppose f,g are both orientation preserving homeomorphisms of the
disk onto a planar domain 2 which extend continuously to the boundary and which
are non-constant on every boundary arc. Then h = f~1o g is a homeomorphism of
the disk which extends continuously to the boundary and these boundary values are a

homeomorphism of the circle.

Proof. If h did not extend continuously, then there would be a curve v which con-
verges to a single boundary point, but such that h(y) does not. However, since g is
continuous, g(7) does converge to a point of 92 and by Lemma 10, then h(y) also
terminates; thus A must be continuous

If h were not 1-to-1 on T, then there would be distinct points x,y € T such that
h(z) = h(y). If v is a Jordan curve in D with endpoints at  and y (say the hyperbolic
geodesic connecting them), then A(7) is a closed Jordan curve (both endpoints at
h(xz) = h(y)) and which encloses a region W C D. Thus f(h(y)) = g(7) is a Jordan
curve in 2 with both endpoints equal on 0€2 and whose bounded complementary

component f(W) is contained in Q. But this implies the interval of T between x and
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y is mapped to a single point by ¢, contrary to assumption. A continuous, 1-to-1

map of T to itself must be a homeomorphism, so we are done. O
The following two facts are easy and left to the reader.

Lemma 12. Suppose f : D — € is a homeomorphism which extends continuously
to the boundary. Then the corresponding decomposition of T is separated and upper

semi-continuous.

Lemma 13. Suppose C is a decomposition of T which is separated and upper semi-
continuous. Construct a decomposition D of the closed disk by adjoining to each
(non-singleton) set E € C its hyperbolic convex hull (i.e., the closure of Wg(m/2)).

Then D is an upper semi-continuous decomposition of D.

Proof of Theorem 1. We will prove (2) < (3) and (2) = (4) = (1) = (2).

(3) = (2): This is easy since if g satisfies the condition in (2) its restriction to E
automatically satisfies the conditions in (3).

(2) = (3): Suppose g : E — R? is a continuous function such that for any
distinct points z,w € R?, ¢7'(z) and ¢g~!(w) lie is disjoint arcs of T. Then the
decomposition associated to g is separated and upper semi-continuous (by Lemma
12). Now use Lemma 13 to extend the decomposition of E to a upper semi-continuous
decomposition of the plane by non-separating continua. Then by Moore’s theorem,
there is a homeomorphism h from the quotient space to the plane. Let F' = h(E).
Then H = go h™! is well defined, one-to-one and continuous on F. Hence H can
be extended to a homeomorphism of the plane and so H o h o 1/Z restricted to D is
continuous, a homeomorphism on the interior and equals ¢ on E. By (2) there is a
conformal map on D which equals g on £ and we are done.

(2) = (4): Suppose we have a decomposition of E which is separated and upper
semi-continuous. Use Lemma 13 to extend this to upper semi-continuous decompo-
sition of S? by continua which do not separate the plane. By Moore’s theorem there
is a homeomorphism from the quotient space to the sphere, so restricting this to D*
gives a homeomorphism of D* which extends continuously to T and realizes the orig-
inal decomposition. Since we are assuming (2) holds, this means there is a conformal

map f equal to g on F.
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(4) = (1): Take the trivial decomposition where of all of £ is a single element.
If there is a conformal map which realizes this, then £ must have zero logarithmic
capacity by a well known result of Beurling (e.g., Theorem 11.5, [9]).

(1) = (2): Suppose E C T is a compact set of zero logarithmic capacity and
suppose ¢ is a continuous map on D which is a homeomorphism on ID. Let W;; be the
sawtooth region associated to E (see Section 2) and let F': D — W be the standard
quasiconformal map which fixes E pointwise. By replacing g by go F' if necessary, we
may assume ¢ is non-constant on every boundary arc (since E contains no intervals)
and that ¢(€2) omits some disk and hence is hyperbolic.

Let Q = ¢g(D) and let f : D — Q be a conformal map. By Lemma 11, f~'og
is a homeomorphism of the circle and so by Theorem 3 there is a conformal map
¢ : D — Q' C D which equals f'ogon E. Thus f o ¢ is a conformal map which
equals g on E, as desired. O
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