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1. Introdu
tion

Suppose E � T is a 
ompa
t subset of the unit 
ir
le and f : D ! 
 � R

2

is

a 
onformal mapping whi
h extends 
ontinuously to E. Whi
h mappings of E 
an

o

ur in this way? Sin
e f is a homeomorphism of D , there is an obvious topologi
al

restri
tion: level sets f

�1

(z) and f

�1

(w) must either 
oin
ide or be 
ontained in

disjoint ar
s of T. The purpose of this note is to show that this is the only restri
tion

i� E has logarithmi
 
apa
ity zero.

Theorem 1. Suppose E � T is 
ompa
t. Then the following are equivalent.

1. E has logarithmi
 
apa
ity zero.

2. Given any homeomorphism g : D ! 
 � R

2

whi
h extends 
ontinuously to

T, there is a 
onformal map f : D ! 
 whi
h extends 
ontinuously to T and

f j

E

= gj

E

.

3. Given any 
ontinuous map g : E ! R

2

su
h that z 6= w implies g

�1

(z) and

g

�1

(w) lie in disjoint ar
s of T, there is a 
onformal map f : D into 
 whi
h

extends 
ontinuously to T and f j

E

= gj

E

.

We will also prove a fourth equivalent 
ondition that requires a few more de�nitions

to state. A de
omposition of 
ompa
t set K is a 
olle
tion C of pairwise disjoint 
losed

sets whose union is all of K. A de
omposition C of K is 
alled upper semi-
ontinuous

if a 
olle
tion of elements whi
h 
onverges in the Hausdor� metri
 must 
onverge to

a subset of another element. A de
omposition of the unit 
ir
le is 
alled separated if

any two distin
t sets are 
ontained in disjoint intervals. We say the de
omposition is

realized by a fun
tion f : K ! S

2

if it 
onsists of the level sets ff

�1

(z) : z 2 S

2

g of

f . If K � T and f is the boundary values of a 
onformal map on D , we will 
all the

de
omposition 
onformal. It would be very interesting (and probably very diÆ
ult) to


hara
terize whi
h de
ompositions of subsets of the 
ir
le are 
onformal; as a spe
ial


ase this 
ontains the diÆ
ult problem of determining whi
h 
ir
le homeomorphisms

are 
onformal weldings (see e.g., [6℄, [1℄). However, we 
an do this if the subset is

small enough.

Theorem 2. A 
ompa
t set E � T has zero logarithmi
 
apa
ity i�

4. A de
omposition of E is 
onformal i� it is upper semi-
ontinuous and separated.
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That any of (2), (3) or (4) implies (1) follows from a well known result of Beurling:

a univalent map 
annot be 
onstant on a set E � T of positive logarithmi
 
apa
ity.

Also (2) , (3) ) (4) follows from topologi
al results of R.L. Moore (we will dis
uss

these more pre
isely in Se
tion 3). Thus the main point for us will be to show (1))

(2). This will follow from the following spe
ial 
ase:

Theorem 3. Suppose E � T is a 
losed set of zero logarithmi
 
apa
ity and h :

T ! T is an orientation preserving homeomorphism. Then there is a 
onformal map

f : D ! 
 � D onto a Jordan domain 
 so that f j

E

= hj

E

.

The proof of this follows from Evan's theorem from potential theory and an expli
it

geometri
 
onstru
tion. Indeed, if we only want a quasi
onformal mapping (with

a uniform 
onstant) whi
h does the interpolation, then we 
an essentially draw a

pi
ture of it. To obtain a 
onformal map we 
ombine this pi
ture with an iterative


onstru
tion whi
h solves a Beltrami equation at ea
h step to keep the map 
onformal.

This proof will be given in Se
tion 2; Theorem 1 will be proven in Se
tion 3.

Given a 
losed Jordan 
urve �, let 
 and 


�

denote the bounded and unbounded


omplementary 
omponents and let D = fjzj < 1g and D

�

= fjzj > 1g. A 
losed

set will be 
alled a 
onformal welding set if for every orientation preserving home-

omorphsim h : T ! T there is a 
losed Jordan 
urve � and 
onformal maps of

f : D ! 
 and g : D

�

! 


�

su
h that f = g Æ h for all x 2 E. It is known that

the unit 
ir
le is not su
h a set (e.g., see Remark 1 of [1℄), but it is an immediate


onsequen
e of Theorem 3 and Theorem 8 of [1℄ that

Corollary 4. Every 
ompa
t set E � T of zero logarithmi
 
apa
ity is a 
onformal

welding set.

Are there 
onformal welding sets of positive logarithmi
 
apa
ity? Results in [1℄

imply that every orientation preserving homeomorphism of the 
ir
le satis�es f = gÆh

for maps 
orresponding to some � on some set E of positive logarithmi
 
apa
ity, so

the question is whether this set 
an be 
hosen independent of h.

Finally, we mention that the interpolation results in Theorem 1 imply various

similar results. For example, the separation 
ondition in (3) is trivially satis�ed by

any homeomorphism g of E into the plane, so there is a 
onformal map f : D ! 


onto a Jordan domain so that f j

E

= g. Moreover, given any Cantor set F in the
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plane, we 
an always write it as the homeomorphi
 image F = g(E) of some zero


apa
ity Cantor set E on the 
ir
le. Given any homeomorphism h of F we 
an also

apply the theorem to h Æ g : E ! h(F ) to dedu
e

Corollary 5. Suppose F � R

2

is any 
ompa
t, totally dis
onne
ted set and h : F !

F

0

� R

2

is any homeomorphism. Then there is a Jordan domain 
 with F � �
 and

a 
onformal map f : 
! 


0

to another Jordan domain su
h that f j

F

= h.

Part of this paper was written during a visit to the Mittag-Le�er institute and

I thank the institute for its hospitality and the use of its fa
ilities. The 
ontent of

this paper originally appeared in the preprint [1℄ on 
onformal welding; Theorem 3

was used in the proof of the main result there, but was later made unne
essary by

an alternate approa
h. I thank Bob Edwards and Mladen Bestvina for pointing out

Moore's theorem on quotients of the plane to me. I also thank David Hamilton for

reading the �rst draft of [1℄ and generously providing numerous helpful 
omments:

histori
al, mathemati
al and stylisti
. I also appre
iate the en
ouragement and 
om-

ments I re
eived at various stages from Kari Astala, John Garnett, Juha Heinonen,

Ni
k Makarov, Vlad Markovi
, Bru
e Palka, Stefan Rohde and Mi
hel Zinsmeister.

2. Interpolation of 
ir
le homeomorphisms: proof of Theorem 3

In this se
tion we prove Theorem 3. The proof is quite geometri
; we 
an easily

des
ribe in pi
tures a quasi
onformal map whi
h takes the required boundary values.

However, if we then solve the Beltrami equation to make the map 
onformal, we may

alter the boundary values. Thus our proof is an indu
tive 
onstru
tion in whi
h ea
h

step involves building an expli
it quasi
onformal map whi
h \almost" interpolates,

followed by a quasi
onformal 
orre
tion to make it 
onformal.

It is 
onvenient to move to the upper half plane. The following result does not

require 
 to be Jordan, but we will �x this in Corollary 8.

Theorem 6. Suppose E � R is a 
ompa
t set of zero logarithmi
 
apa
ity and h :

E ! R is a non-de
reasing map. Then there is a 
onformal map f : H ! 
 � H

su
h that f j

E

= hj

E

.

Proof. The starting point is Evans' theorem (e.g., Theorem E.2 of [5℄, Theorem 5.5.6,

page 156 of [11℄, or Chapter 7 of [7℄) whi
h states that any 
ompa
t set of zero
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logarithmi
 
apa
ity supports a probability measure � so that the potential

u(z) =

Z

R

log

1

jz � xj

d�(x);

tends to +1 at every point of E.

Let v(z) be the harmoni
 
onjugate of u in H su
h that lim

x!�1

v(x) = 0 and

lim

x!1

v(x) = �. By symmetry u has normal derivative zero on R n E and hen
e

v is 
onstant on ea
h 
omponent of R n E (more expli
itly, v is given on R n E

by v(x) = ��(�1; x). We will 
all a domain a slit strip domain if it is of the

form S n [

n

L

n

; where S = fx + iy : �1 < x < 1; 0 < y < 1g is the strip and

L

n

= fx + iy

n

: x

n

� x < 1g are the horizontal slits, for some sequen
e of points

f(x

n

; y

n

)g � S su
h that all the y

n

's are distin
t and the x

n

!1. See Figure 1. We

will also assume x

n

� 1 for all n. Then f

0

=

1

�

(u+ iv) is a 
onformal map of H onto

a slit strip, with u(z)! +1 as z ! E. Let W � S denote this slit strip.

Figure 1. A slit strip domain

In order to prove the theorem, it 
learly suÆ
es to assume E � [0; 1℄ and h([0; 1℄) �

[0; 1℄. Given any in
reasing map h : [0; 1℄! [0; 1℄ are going to build a 
onformal map

f : W ! H so that lim

x!1

f(x + iy) = h(y) as long as y =2 fy

n

g. For future


onvenien
e we will think of h as being de�ned on all of W by h(x+ iy) = h(y).

Given a real number s let H(s) denote the horizontal line fx+ iy : y = sg and let

V (s) denote the verti
al line fx+ iy : x = sg. If I � R then H(I; s) = fx + iy : x 2

I; y = sg � H(s). Similarly for V (I; s) � V (s). Given s < t letW (s; t) = W\fx+iy :

s � x � tg. Given an interval I � [0; 1℄ let W (I; s; t) =W (s; t) \ fx + iy : y 2 Ig.

Given s 2 R let fI

s

j

g be the (�nitely many) 
omponents of W \ V (s). Let I

s

j

(t) �

V (t) be the orthogonal proje
tion of I

s

j

onto V (t). Let J

s

j

be the smallest 
losed

interval (possibly a point) 
ontaining h(I

s

j

) (whi
h might not be 
onne
ted be
ause

h need not be 
ontinuous).
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Given a sequen
e of real numbers �

n

& 0 we will 
onstru
t sequen
es Æ

n

& 0 and

s

n

%1 and 
onformal maps f

n

of W

n

= W (�1; s

n

) into H su
h that if I

n

j

= I

s

n�1

j

,

J

n

j

= J

s

n�1

j

and a

n

j

is the 
enter of J

n

j

, then

1. kf

n

� f

n�1

k

1

� �

n

on W

n�1

.

2. f

n

(I

n

j

) is an interval of length Æ

n

jI

n

j

j on the horizontal line H(2

�n�1

) whose


enter proje
ts verti
ally to a point less than �

n

away from a

n

j

.

3. f : I

n

j

! f(I

n

j

) is quasisymmetri
 with bounds independent of n and j.

To start the indu
tion we map W (�1; 0) to the verti
al strip 


0

= f(x+ iy) : 0 <

x < 1; y > 1g by a Eu
lidean similarity.

In general, suppose we have de�ned our sequen
es up to n � 1. We will de�ne

a 
onformal map on W

n

by �rst de�ning a quasi
onformal map g

n

on W

n

and then

applying the measurable Riemann mapping theorem to make it 
onformal. We de�ne

g

n

in six steps.

Consider the intervals fI

n

j

g � W

n�1

. We are going to de�ne the map g

n

on ea
h of

the domains W (I

n

j

; s

n�1

; s

n

) (for some suitable large 
hoi
e of s

n

to be made later).

For ea
h j we will de�ne a �nite sequen
e of numbers

s

n�1

= t

0

< t

1

< t

2

< t

3

< t

4

and de�ne the map on W (I

n

j

; t

k

; t

k+1

) for k = 0; 1; 2; 3. For 
onvenien
e we will drop

the n and j and write I

n

j

simply as I.

Step 1: On W

n�1

we let g

n

= f

n�1

.

Step 2: Choose t

1

> t

0

so that W (I; t

0

; t

1

) 
an be quasi
onformally mapped to

the re
tangle fx+ iy : x 2 f

n�1

(I);

7

8

2

�n

< y < 2

�n

g and so that g

n

agrees with f

n�1

along I and is aÆne on I(t

1

). This 
an be done by a map with uniformly bounded

quasi
onformal 
onstant K

2

by hypothesis (3) above.

Step 3: Choose t

2

> t

1

large enough so that W (I; t

1

; t

2

) 
an be aÆnely mapped to

a trapezoid of height

1

8

2

�n

, top edge of length jf

n�1

(I)j and bottom edge Æ

n

jIj. See

Figure 2. This 
an be done with quasi
onformal 
onstant K

3

whi
h is independent

of Æ

n

, although the 
hoi
e of t

2

does depend on Æ

n

.

Step 4: Choose t

3

> t

2

so large that W (I; t

2

; t

3

) is 
an be mapped to a \tube" of

width Æ

n

jIj whi
h 
onne
ts the bottom edge of the trapezoid in the previous step to

the interval of length Æ

n

jIj on H(

5

8

2

�n

) whose 
enter is with in �

n

=2 of a

n

j

. We 
an


learly 
hoose Æ

n

so small that the tubes for di�erent j's 
an be 
hosen to be disjoint
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Figure 2. The third step

from one another. This is one 
ondition that determines Æ

n

. Another will be given

following Step 6. Also note that this 
onstru
tion 
an be done with quasi
onformal


onstant K

4

whi
h is independent of Æ

n

. See Figure 3.

Figure 3. The fourth step

Step 5: Choose t

4

> t

3

so large that W (I; t

3

; t

4

) 
an be mapped to a re
tangle

of height

1

8

2

�n

and width Æ

n

jIj and atta
h this to the bottom of the tube from the

previous step (thus the bottom edge lies on the line H(2

�n�1

)). These �ve steps

together are illustrated in Figure 4.

Step 6: Now let s

n

= max

j

t

4

= max

j

t

4

(j). For the intervals I

n

j

where this

maximum is attained, do nothing. For intervals where t

4

(j) < s

n

, we repla
e the

verti
al re
tangle of the fourth step above with a \
onstri
ted tube" as pi
tured in

Figure 5, where the shape of the parti
ular tube is 
hosen so that W (I; t

4

(j); t

n

)


an be mapped quasi
onformally to the tube with uniformly bounded 
onstant. We

also assume the map is a similarity on the end squares. Again, the quasi
onformal


onstant K

6

is independent of the other parameters.

This 
ompletes the de�nition ofW

n

and the 
onstru
tion of the quasi
onformal map

g

n

: W

n

! H whi
h extend f

n�1

. To de�ne f

n

we take the Beltrami data asso
iated
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n-1

t

t
t
t

1

2

3

4

s

Figure 4. First �ve steps of 
onstru
ting g

n

Figure 5. Repla
ing a tube by a 
onformally longer one

to g

n

and re
e
t it a
ross the horizontal line H(2

�n�1

). Solve the Beltrami equation

to obtain a quasi
onformal map h

n

whi
h maps H(2

�n�1

) to itself, and su
h that

f

n

= h

n

Æ g

n

is 
onformal. Sin
e the dilatation of g

n

is uniformly bounded and is

supported of a set of area � 2

�n

Æ

n�1

(this is an upper bound for the area of the

regions 
onstru
ted in the four steps above), the map h

n

is uniformly 
lose to the

identity on H . In parti
ular, given any �

n

we 
an 
hoose Æ

n�1

so small that if � is a


omplex dilatation of norm � � = (K � 1)=(K + 1), with K = max(K

2

; K

3

; K

4

; K

6

)

and whi
h is supported on a set of area � 2

�n

Æ

n�1

, then the 
orresponding solution

h of the Beltrami equation satis�es jh(z)� zj � �

n

=2 for all z 2 R

2

. This is the �nal


ondition determining the 
hoi
e of Æ

n

.

Conditions (1) and (2) of the indu
tion are now 
lear. To see that (3) holds, note

that ea
h interval of the form g

n

(I

n

j

) has length Æ

n

jI

n

j

j and is at least distan
e Æ

n

jI

n

j

j

from the set where g

n

has non-zero dilatation (by the expli
it 
onstru
tion of the


onstri
ted tubes). This 
ompletes the indu
tion. Passing to the limit we obtain a


onformal map f : W ! 
 � H with the desired properties.
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Given a 
ompa
t set E � T we will now de�ne the asso
iated \sawtooth" region

W

E

and a 2-quasi
onformal map between W

E

and D whi
h keeps E �xed pointwise.

Suppose fI

n

g are the 
onne
ted 
omponents of T nE and for ea
h n let 


n

(�) be the


ir
ular ar
 in D with the same endpoints as I

n

and whi
h makes angle � with I

n

(so




n

(0) = I

n

and 


n

(�=2) is the hyperboli
 geodesi
 with the same endpoints as I

n

).

Let C

n

(�) be the region bounded by I

n

and 


n

(�), and let W

E

= D n[

n

C

n

(�=8). It is

easy to 
he
k (see [1℄) that we 
an msp D to W

E

by a 2-quasi
onformal map f whi
h

is the identity on E.

Lemma 7. Suppose E � T is 
ompa
t. Then there is a 
onformal map g : D ! W �

D onto a Jordan domain so that g(E) = �W \ T. Moreover, E has zero logarithmi



apa
ity i� g(E) does.

Proof. Take ' : D ! W

E

as above. Take the Beltrami data � 
orresponding to ' and

extend it a
ross the unit 
ir
le by re
e
tion to get a dilatation ~�. Solve the Beltrami

equation f

�z

= ~�f

z

to �nd a 2-quasi
onformal selfmap h of the disk so that g = hÆ' is


onformal. Sin
e ' is bi-Lips
hitz and h is bi-H�older (sin
e it is quasi
onformal), we

see that g is also bi-H�older and hen
e g(E) has zero logarithmi
 
apa
ity. Moreover

it is 
lear that g(D ) is a Jordan domain that only hits the 
ir
le at g(E).

Corollary 8. If the map h in Theorem 6 is a homeomorphism then we 
an take 


to be a Jordan domain su
h that �
 \ �H = E.

Proof. Assume that E; h(E) � [�1; 1℄ and let F be the 
onformal map of the verti
al

strip fx+ iy : y > 0;�1 < x < 1g to the hemisphere D \ H . Let G : H !W � H be

given by Lemma 7 (after 
onjugating from D to H ). Apply Theorem 6 to the map

F

�1

Æh ÆG

�1

restri
ted to G(E) to �nd a map f . Then F Æ f ÆG is a 
onformal map

of H to a Jordan domain in H whi
h equals h on E.

3. Boundary interpolation sets: proof of Theorem 1

In this se
tion we will prove Theorem 1. The basi
 fa
t whi
h we need is the

following result of R.L. Moore.

Theorem 9 (Moore, [8℄). Suppose C is an upper semi-
ontinuous 
olle
tion of dis-

joint 
ontinua (
ompa
t, 
onne
ted sets) in R

2

ea
h of whi
h does not separate R

2

.
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Then the quotient spa
e formed by identifying ea
h set to a point is homeomorphi
 to

R

2

.

Also see Daverman's book [2℄. For an overview of Moore's life and work see [4℄ and

[12℄ (reprinted in [3℄). For another appli
ation of Moore's topologi
al work (i.e. the

Moore triod theorem) to 
onformal mappings, see Pommerenke's paper [10℄.

We will also need a few easier fa
ts, starting with the following version of Lindel�of's

theorem.

Lemma 10. Suppose f : D ! 
 is an orientation preserving homeomorphism whi
h

extends 
ontinuously to the boundary and whi
h is non-
onstant on every boundary

ar
. If 
 � 
 is an open ar
 with one endpoint on �
, then ~
 = f

�1

(
) has a well

de�ned endpoint on T.

Proof. Sin
e f is a homeomorphism, ~
 leaves every 
ompa
t subset of D and hen
e

a

umulates on T. If the a

umulation set is a point we are done. Otherwise it is an

interval, and we dedu
e that 
 a

umulates on the image of this interval, whi
h is

not a single point by assumption. This is a 
ontradi
tion and proves the lemma.

Lemma 11. Suppose f; g are both orientation preserving homeomorphisms of the

disk onto a planar domain 
 whi
h extend 
ontinuously to the boundary and whi
h

are non-
onstant on every boundary ar
. Then h = f

�1

Æ g is a homeomorphism of

the disk whi
h extends 
ontinuously to the boundary and these boundary values are a

homeomorphism of the 
ir
le.

Proof. If h did not extend 
ontinuously, then there would be a 
urve 
 whi
h 
on-

verges to a single boundary point, but su
h that h(
) does not. However, sin
e g is


ontinuous, g(
) does 
onverge to a point of �
 and by Lemma 10, then h(
) also

terminates; thus h must be 
ontinuous

If h were not 1-to-1 on T, then there would be distin
t points x; y 2 T su
h that

h(x) = h(y). If 
 is a Jordan 
urve in D with endpoints at x and y (say the hyperboli


geodesi
 
onne
ting them), then h(
) is a 
losed Jordan 
urve (both endpoints at

h(x) = h(y)) and whi
h en
loses a region W � D . Thus f(h(
)) = g(
) is a Jordan


urve in 
 with both endpoints equal on �
 and whose bounded 
omplementary


omponent f(W ) is 
ontained in 
. But this implies the interval of T between x and
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y is mapped to a single point by g, 
ontrary to assumption. A 
ontinuous, 1-to-1

map of T to itself must be a homeomorphism, so we are done.

The following two fa
ts are easy and left to the reader.

Lemma 12. Suppose f : D ! 
 is a homeomorphism whi
h extends 
ontinuously

to the boundary. Then the 
orresponding de
omposition of T is separated and upper

semi-
ontinuous.

Lemma 13. Suppose C is a de
omposition of T whi
h is separated and upper semi-


ontinuous. Constru
t a de
omposition D of the 
losed disk by adjoining to ea
h

(non-singleton) set E 2 C its hyperboli
 
onvex hull (i.e., the 
losure of W

E

(�=2)).

Then D is an upper semi-
ontinuous de
omposition of D .

Proof of Theorem 1. We will prove (2), (3) and (2)) (4)) (1)) (2).

(3) ) (2): This is easy sin
e if g satis�es the 
ondition in (2) its restri
tion to E

automati
ally satis�es the 
onditions in (3).

(2) ) (3): Suppose g : E ! R

2

is a 
ontinuous fun
tion su
h that for any

distin
t points z; w 2 R

2

, g

�1

(z) and g

�1

(w) lie is disjoint ar
s of T. Then the

de
omposition asso
iated to g is separated and upper semi-
ontinuous (by Lemma

12). Now use Lemma 13 to extend the de
omposition of E to a upper semi-
ontinuous

de
omposition of the plane by non-separating 
ontinua. Then by Moore's theorem,

there is a homeomorphism h from the quotient spa
e to the plane. Let F = h(E).

Then H = g Æ h

�1

is well de�ned, one-to-one and 
ontinuous on F . Hen
e H 
an

be extended to a homeomorphism of the plane and so H Æ h Æ 1=�z restri
ted to D is


ontinuous, a homeomorphism on the interior and equals g on E. By (2) there is a


onformal map on D whi
h equals g on E and we are done.

(2) ) (4): Suppose we have a de
omposition of E whi
h is separated and upper

semi-
ontinuous. Use Lemma 13 to extend this to upper semi-
ontinuous de
ompo-

sition of S

2

by 
ontinua whi
h do not separate the plane. By Moore's theorem there

is a homeomorphism from the quotient spa
e to the sphere, so restri
ting this to D

�

gives a homeomorphism of D

�

whi
h extends 
ontinuously to T and realizes the orig-

inal de
omposition. Sin
e we are assuming (2) holds, this means there is a 
onformal

map f equal to g on E.
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(4) ) (1): Take the trivial de
omposition where of all of E is a single element.

If there is a 
onformal map whi
h realizes this, then E must have zero logarithmi



apa
ity by a well known result of Beurling (e.g., Theorem 11.5, [9℄).

(1) ) (2): Suppose E � T is a 
ompa
t set of zero logarithmi
 
apa
ity and

suppose g is a 
ontinuous map on D whi
h is a homeomorphism on D . Let W

E

be the

sawtooth region asso
iated to E (see Se
tion 2) and let F : D !W

E

be the standard

quasi
onformal map whi
h �xes E pointwise. By repla
ing g by g ÆF if ne
essary, we

may assume g is non-
onstant on every boundary ar
 (sin
e E 
ontains no intervals)

and that g(
) omits some disk and hen
e is hyperboli
.

Let 
 = g(D ) and let f : D ! 
 be a 
onformal map. By Lemma 11, f

�1

Æ g

is a homeomorphism of the 
ir
le and so by Theorem 3 there is a 
onformal map

' : D ! 


0

� D whi
h equals f

�1

Æ g on E. Thus f Æ ' is a 
onformal map whi
h

equals g on E, as desired.
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