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applications, we construct a function f with bounded singular set, whose Fatou set
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1. Introduction

One aspect of Grothendieck’s theory of dessins d’enfants is that each finite plane

tree T is associated to a polynomial p with only two critical values,, ±1, so that

Tp = p−1([−1, 1]) is a plane tree equivalent to T (see e.g. [45], [36], [37]). Tp is called

the “true form” of T and we will refer to a tree that arises in this way as a “true

tree”. Polynomials with exactly two critical values are called Shabat polynomials or

generalized Chebyshev polynomials.

To be more precise, a plane tree is a tree with a cyclic ordering of the edges

adjacent to each vertex. Any embedding of a tree in the plane defines such orderings

and conversely, given any such orderings there is a corresponding planar embedding.

Any two embeddings corresponding to the same orderings can be mapped to each

other by a homeomorphism of the whole plane. Whenever we refer to two plane trees

being equivalent, this is what we mean (it implies, but is stronger than saying, that

they are the same abstract tree).

The result cited above says that every plane tree is equivalent to some true tree,

i.e., choosing the “combinatorics” (the tree and the edge orderings) determines a

“shape” (the planar embedding up to conformal linear maps). In [13], it is shown

that all shapes can occur, i.e., true trees are dense in all continua with respect to

the Hausdorff metric. In this paper, we extend these ideas from finite trees and

polynomials to infinite trees and entire functions. The role of the Shabat polynomials

is now played by the Speiser class S; these are transcendental entire functions f with a

finite singular set S(f) (the closure of the critical values and finite asymptotic values

of f). Let Sn ⊂ S be the functions with at most n singular values and Sp,q ⊂ S
be the functions with p critical values and q finite asymptotic values. We will be

particularly interested in S2,0, as these are the direct generalizations of the Shabat

polynomials. Some of our applications will deal with the larger Eremenko-Lyubich

class B of transcendental entire functions with bounded (but possibly infinite) singular

sets.

Given an infinite planar tree T satisfying certain mild geometric conditions, we

will construct an entire function in S2,0 with critical values exactly ±1, so that Tf =

f−1([−1, 1]) approximates T in a precise way (Tf is the quasiconformal image of a

tree T ′ obtained by adding branches to T ; there may be many extra edges, but they
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all lie in a small neighborhood of T ). We then apply the method to solve a number of

open problems, e.g., the area conjecture of Eremenko and Lyubich and the existence

of a wandering domain for an entire function with bounded singular set.

What does an entire function in S2,0 “look like”? Suppose the critical values are

±1 and let T = f−1([−1, 1]). Then T is an infinite tree whose vertices are the

preimages of {−1, 1} and the connected components of Ω = C \ T are unbounded

simply connected domains. We can choose a conformal map τ from each component

to the right half-plane Hr = {x + iy : x > 0} so that f(z) = cosh(τ(z)) on Ω. See

Figure 1. Our goal is to reverse this process, constructing f from T . If we start

with a tree T , we can define conformal maps τ from the complementary components

of T to Hr and then follow these by cosh. The composition g(z) = cosh(τ(z)) is

holomorphic off T , but is unlikely to be continuous across T . We will give conditions

on T that imply we can modify g in a small neighborhood of T so that it becomes

continuous across T and is quasi-regular on the whole plane. Then the measurable

Riemann mapping theorem gives a quasiconformal mapping φ on the plane so that

f = g ◦ φ is entire. The modification of g alters the combinatorics of T by adding

extra branches, and the use of the mapping theorem moves the modified tree by

the quasiconformal map φ, but the changes in both combinatorics and shape can

be controlled. In many applications, the new edges and the dilatation of φ can be

contained in a neighborhood of T that has area as small as we wish, while keeping

the dilatation of φ uniformly bounded. In such cases, the tree for f can approximate

T arbitrarily closely in the Hausdorff metric.

To fix notation, assume that T is an unbounded, locally finite tree such that every

component Ωj of Ω = C \ T is simply connected. We also assume that Ωj = σj(Hr)

where σj is a conformal map that extends continuously to the boundary and sends

∞ to ∞. The inverses of these maps define a map τ : Ω → Hr that is conformal on

each component (we let τj = σ−1
j denote the restriction of τ to Ωj). Whenever we

refer to a conformal map τ : Ω → Hr, we always mean a map that arises in this way.

Since T is a tree, it is bipartite and we assume the vertices have been labeled with

±1 so that adjacent vertices always have different labels. If V is the vertex set of T ,

let Vj = {z ∈ ∂Hr : σj(z) ∈ V }; this is a closed set with no finite limit points. (It is
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Figure 1. On Ω = C\T we can write f = cosh ◦τ , where τ conformal
on each component of Ω. The right side of the diagram is a geometric
reminder of the formula cosh(z) = 1

2
(ez + e−z) and shows cosh : Hr →

U = C \ [−1, 1] is a covering map.

tempting to write Vj = σ−1
j (V ), but σ−1

j is not defined on all of V and may be multi-

valued where it is defined.) The collection Ij of connected components of ∂Hr \ Vj
is called the partition of ∂Hr induced by Ωj (different choices of the map τj only

change the partition by a linear map). If T = f−1([−1, 1]) is the tree associated to an

entire function with critical values ±1, then the associated partition is ∂Hr \πiZ, and
partition elements have equal size. In our theorem, “equal size” partitions of ∂Hr are

replaced by partitions such that (1) adjacent elements have comparable size and (2)

there is a positive lower bound on the length of partition elements (both conditions

holding for all complementary components of T with uniform bounds).

We will see below that the first condition is essentially local in nature and follows

from “bounded geometry” assumptions on T that are very easy to verify in practice.

The second condition is more global; it depends on the shape of each complementary

component near infinity and roughly says that the complementary components of

T are “smaller than half-planes”. For example if Ω = {z : | arg(z)| < θ} with unit

spaced vertices on T = ∂Ω, then the conformal map τ : Ω → Hr is the power z
π/2θ and

the lower bound condition is only satisfied if θ ≤ π/2. We will see later that condition

(2) can be easily restated in various ways using harmonic measure, extremal length
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or the hyperbolic metric in Ω, and is often easy to verify using standard estimates of

these quantities.

For each I ∈ I let QI be the closed square in Hr that has I as one side and let VI

be the interior of the union of all such squares. This is an open set in Hr that has

∂Hr in its closure (see Figures 2 and 6). For each r > 0, define an open neighborhood

of T by

T (r) = ∪e∈T{z : dist(z, e) < rdiam(e)},
where the union is over the edges of T . We shall show that there is fixed r0 > 0 so

that VI ⊂ τj(T (r0) ∩ Ωj). See Lemma 2.1.

Every (open) edge e of T corresponds via τ to exactly two intervals on ∂Hr; we call

these intervals the τ -images of e. Informally, we think of every edge e as having two

sides, and each side has a single τ -image on ∂Hr. The τ -size of e is the minimum

length of the two τ -images. We say T has bounded geometry if

(1) The edges of T are C2 with uniform bounds.

(2) The angles between adjacent edges are bounded uniformly away from zero.

(3) Adjacent edges have uniformly comparable lengths.

(4) For non-adjacent edges e and f , diam(e)/dist(e, f) is uniformly bounded.

Theorem 1.1. Suppose T has bounded geometry and every edge has τ -size ≥ π.

Then there is an entire f and a K-quasiconformal φ so that f ◦ φ = cosh ◦τ off

T (r0). K only depends on the bounded geometry constants of T . The only critical

values of f are ±1 and f has no finite asymptotic values.

The idea of the proof of Theorem 1.1 is to replace the tree T by a tree T ′ so

that T ⊂ T ′ ⊂ T (r0) and to replace τ by a map η that is quasiconformal from each

component of Ω′ = C \ T ′ onto Hr. We will prove we can do this with a map η such

that η(V ) ⊂ πiZ, η = τ off T (r0) and so that g = cosh ◦ η is continuous across T ′.

The latter condition will imply g is quasiregular on the whole plane and hence, by

the measurable Riemann mapping theorem, there is a quasiconformal φ : C → C

such that f = g ◦ φ−1 is entire. Since g is locally 1-to-1 except at the vertices of T ,

the only critical values are ±1. It is also easy to see there are no finite asymptotic

values and this proves the theorem. (In fact, any preimage of any compact set K of

diameter r < 2 will only have compact connected components. This condition rules

out finite asymptotic values.)



CONSTRUCTING FUNCTIONS BY QC FOLDING 5

The difficult part is constructing η so that cosh ◦ η is continuous across T ′. Note

that η itself can’t be continuous across edges of T ′; as z traverses an edge of T ′ the

two τ -images of z under η will move along ∂Hr in different directions, so they can

agree at most once on the edge. To make cosh ◦ η continuous, we need cosh to identify

the two images of z; this is the same as saying the two images have equal distance

from 2πiZ. We will build η so that

(1) η preserves normalized arclength measure on edges of T ′.

(2) η preserves vertex parity.

By normalized arclength, we mean arclength scaled so each edge has measure π.

Condition (2) means that a vertex with label −1 is mapped to a point of (2πiZ+πi) ⊂
∂Hr and a vertex with label 1 is mapped to 2πiZ. Thus the value of cosh ◦ η at a

vertex is the same as the label of that vertex. This implies cosh ◦ η is well defined

and continuous at the vertices of T ; the first condition then implies it is continuous

across the edges.

Let ηj denote the restriction of η to the component Ωj . We build ηj by post-

composing τj with quasiconformal maps (see Figure 2):

ηj : Ωj
τj−→ Hr

ιj−→ Hr
λj−→ Hr

ψj−→ Wj ⊂ Hr.

As noted earlier, the map τj sends vertices of T to a discrete set Vj ⊂ ∂Hr and Ij
denotes the complementary components of Vj. By assumption all these intervals have

length ≥ π. Let Z be the collection of connected components of ∂Hr \ πiZ. We will

construct ιj : Hr → Hr to be a quasiconformal map that sends each point of Vj into

πiZ and sends each interval of Ij to an interval of length (2n+1)π (an odd multiple

of π). Moreover, ιj ◦ τj preserves vertex parity. These “odd-length” intervals give a

new partition of ∂Hr that we call Kj. The proof that ιj exists is quite simple; see

Lemma 3.2.

Next, we construct a quasiconformal map λj : Hr → Hr that fixes the endpoints

of Kj and such that |(λj ◦ ιj)′|/|σ′
j| is a.e. constant on each element of Kj. Existence

of λj follows from the bounded geometry of T (see Theorem 4.3). Informally, this

property says that λj ◦ ιj ◦ τj multiplies length on each side of ∂Ωj by a constant

factor: if a side is mapped to an interval K ∈ Kj of length (2n+1)π, then normalized

length on that side is multiplied by (2n + 1). Thus this side of T is mapped to a

union of 2n + 1 elements of Z, whereas we want it to map to a single element. The
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Figure 2. η is built as a composition: τ maps Ω to Hr, ι sends
vertices to integer points, λ makes the map preserve arclength and ψ
“folds” the boundary. VI is the union of dashed squares.

way to fix this is to add 2n extra sides to T , so that the original side and all of the

new sides each map to elements of Z. This is accomplished with the following lemma

that describes the “quasiconformal folding” of the paper’s title. The proof of Lemma

1.2 is the main technical contribution of this paper.

Lemma 1.2. Suppose K is a partition of ∂Hr into intervals with endpoints in πiZ

and lengths in (2N+1)π and suppose adjacent intervals have comparable lengths, with

a uniform constant M . Then there is a quasiconformal map ψ : Hr → W ⊂ Hr so

that:
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(1) ψ is the identity off VK.

(2) ψ is affine on each component of Z = ∂Hr \ πiZ.
(3) Each element K ∈ K contains an element of Z that is mapped to K by ψ.

(4) For any x, y ∈ R, ψ(ix) = ψ(iy) implies cosh(ix) = cosh(iy).

The image domainW = ψ(Hr) will be equal to Hr minus a countable union of finite

trees (with linear edges) rooted at the endpoints of K. The map ψ is constructed by

triangulating both Ω and W in compatible ways (i.e., there is a 1-1 correspondence

between the triangulations so that adjacency along edges is preserved). The linear

maps between corresponding triangles then join together to define a piecewise linear

map. Although each triangulation has infinitely many elements, all the triangles

come from a finite family (up to Euclidean similarities) and thus the quasiconformal

constant of all the linear maps is uniformly bounded. The proof of the lemma thus

reduces to the construction of W and the two triangulations; it is essentially just

a “proof-by-picture” (although it takes several intricate figures to describe all the

details).

Figure 3 shows a simplified version of the main idea. We do the construction

separately in each rectangle in Hr that has a “left-side” that is an element K ∈ K in

∂Hr. Outside these rectangles ψ is the identity. If K has length π then no folding

is needed; we just take ψ to be the identity in such a rectangle. If K has length

(2n + 1)π then K contains 2n + 1 elements of Z; ψ expands one of these to K and

the other 2n are affinely mapped to sides of a tree inside Hr. One way of doing this

is illustrated in Figure 3. On the left is a rectangle that has been triangulated with

eight triangles. On the right is a slit rectangle that has been similarly triangulated.

The reader can easily verify that the two triangulations are compatible and that the

resulting piecewise linear map is the identity on the top, bottom and right sides of

the rectangle, that it maps the boundary interval labeled “1” to all of K and that it

maps the intervals labeled “2” and “3” to opposite sides of the slit. Thus the intervals

2 and 3 are “folded” into a single interval.

This particular type of folding is called simple folding. It can be performed for

each element K ∈ K independent of what we do for neighboring elements, because

the folding map is the identity on the sides of the rectangle meeting neighboring

rectangles. However, the quasiconstant of the folding map depends on the number
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Figure 3. This shows a simple folding. Here an interval K of length
3π is folded into Hr so that one interval is expanded and the other
two are sent to two sides of a slit. The map ψ is piecewise linear
on the triangulations. Since there are only finitely many triangles, it
is clearly quasiconformal. Simple foldings have a quasiconstant that
grows with the size of K, but that can be performed independently
for different K’s. The general foldings used to prove Lemma 1.2 will
have quasiconstant bounded independent ofK, but they require careful
coordination between adjacent intervals.

of sides being folded; as the size of K increases to ∞, so does the quasiconstant of

the folding map. For some applications, this is not important. For example, in [9],

I use simple foldings to build functions in the Eremenko-Lyubich class B. In that

paper, the corresponding partition elements have lengths bounded both below and

above, so simple folding gives a quasiconformal map. Thus [9] may be considered

as a “gentle introduction” to the folding construction in this paper. In this paper,

however, the partition elements do not have a upper bound (at least not in the most

interesting applications) and we need the folding map to have quasiconstant bounded

independent of the size of K. This is achieved by replacing the slit rectangle in Figure

3 by a rectangle with complicated finite trees removed; moreover, the constructions

for adjacent K’s must now be carefully joined, which requires that the corresponding

trees have approximately the same size; this is the source of the “adjacent intervals

must have comparable lengths” condition in our theorem.

We now return to our description of the map ηj. Suppose ψj is the map given by

Lemma 1.2 when applied to the partition Kj corresponding to the component Ωj.
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Let

Ω′
j = (λj ◦ ιj ◦ τj)−1(W ) = (ψj ◦ λj ◦ ιj ◦ τj)−1(Hr) ⊂ Ωj.

This is just Ωj with countably many finite trees removed, each rooted a vertex of T .

See Figure 4. The composition ηj = ψ−1
j ◦ λj ◦ ιj ◦ τj maps Ωj to Hr and satisfies

(1) ηj is uniformly quasiconformal from each component of Ω′ to Hr.

(2) ηj maps vertices of T to points in πiZ of the correct parity.

(3) ηj preserves normalized length on all sides of T ′.

These conditions imply g = cosh ◦ η is continuous across T ′. Every edge of T ′ is

either an edge of T , in which case it is rectifiable, or it is a quasiconformal image of a

line segment. Thus T ′ is removable for quasiregular maps and hence g is quasiregular

on the whole plane, as desired. Finally, ιj, λj and ψj are all the identity off VI . By

Lemma 2.1, this implies ηj = τj off T (r0) for some fixed r0, and this completes the

proof of Theorem 1.1 (except for proving the various results described above).

3
5

3

5
1
3

1 5

5 3

7
3

1 7

1
11

9

5

Figure 4. On the left is a tree T with possible τ -lengths of sides
marked. On the right is the tree T ′ which is formed by adding a tree
with n edges at one endpoint of a T -edge with label (2n+ 1).

Theorem 1.1 is simple to apply and suffices to create many interesting examples,

but it can be generalized in several useful ways:

High degree critical points and asymptotic values: The bounded geometry

of T places an upper bound on the degree of the critical points of f . In Section 7

we will state an alternate version that allows us to build functions with arbitrarily

high degree critical points. The tree T will be replaced by a more general graph

and the map τ will map the bounded complementary components to disks. Several
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examples in this paper use high degree critical points, so we will need this more

general version of Theorem 1.1. A similar modification allows us to introduce finite

asymptotic values.

Alternate domains: In this paper, we mainly use Theorem 1.1 to construct entire

functions, but the proof applies to any unbounded tree T on a Riemann surface S

that partitions the surface into simply connected domains. Some examples will be

given in Sections 14, 15 and 16. For the method to work, we need a conformal map

τ of the components of S \ T to Hr so that vertices of T induce partitions on Hr

with the properties that (1) adjacent intervals have comparable sizes and (2) interval

lengths are ≥ π. The construction then gives a quasiregular g = cosh ◦ η on S. The

measurable Riemann mapping theorem says we can find a quasiconformal φ : S → S ′

so that f = g ◦ φ−1 is holomorphic. When S = C we can take S ′ = S = C since

there is no alternate conformal structure on C. Similarly if S = D or S is a once

or twice punctured plane. In general, S and S ′ are homeomorphic, but need not be

conformally equivalent.

Weakening τ-size ≥ π: If τ : Ω → Hr is conformal, then so is any map obtained by

multiplying τ by a positive constant on each component (possibly different constants

on different components). Thus Theorem 1.1 will apply to some τ if we know that

each component Ωj has a conformal map to Hr that induces a partition of ∂Hr with

some positive lower bound on the interval lengths (having a positive lower bound

is independent of which conformal map we choose). In most of our examples, we

simply have to verify a positive lower bound for each component separately and

then multiply by constants to get a τ that works in Theorem 1.1. One important

consequence is that if there is a choice of τ that gives a neighborhood T (r) of finite

area, then by multiplying τ by a positive factor and adding extra vertices, we can

arrange for T (r) to have as small an area as we wish. Adding the extra vertices does

not effect the bounded geometry constant, so the quasiconformal correction map φ

will have uniformly bounded QC-constant as we rescale τ and add vertices, but the

support of its dilatation has area tending to zero, and hence φ tends to the identity as

we rescale. Therefore if a tree T satisfies the conditions of Theorem 1.1 and T (r) has

finite area, then T is a limit of trees corresponding to entire functions with exactly

two singular values (critical values at ±1).
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Sections 2-6 of paper complete the details in the proof of Theorem 1.1 outlined

above. Section 7 states the generalization that allows high degree critical points and

asymptotic values. Section 8 describes methods for verifying the τ -length condition

in Theorem 1.1. The remaining sections describe various examples that can be con-

structed with these methods. We are mostly interested in functions in the Speiser

class S (finite singular sets) and Eremenko-Lyubich class B (bounded singular set).

Among our applications will be:

• Counterexamples to the area conjecture in S.
• Counterexample to the strong Eremenko conjecture in S.
• Spiraling tracts with arbitrary speed in S.
• Building finite type maps (after Adam Epstein) into compact surfaces.

• A counterexample to Wiman’s minimum modulus conjecture in S.
• A wandering domain for B.
Entire functions with wandering domains have been constructed before (the first

by Noel Baker in [3]), but not in B. Functions in S can’t have wandering domains

(Eremenko and Lyubich in [23], and Goldberg and Keen in [30]), so our example

shows the sharpness of this result. In our example, there are no finite asymptotic

values and only countably many critical values, and these accumulate at only two

points.

As a first simple example of how Theorem 1.1 can be applied, consider the tree

drawn in Figure 5. All the components are essentially half-strips, except for one, Ω+,

that contains the positive real axis and which narrows as quickly as we wish. It is easy

to place vertices so that T has bounded geometry, the τ -size of every edge is ≥ π (see

Section 8 for details) and so that T (r0) misses [1,∞). Thus Theorem 1.1 says there is

a quasiregular g that agrees with cosh ◦τ on [1,∞) where τ : Ω+ → Hr is conformal.

By narrowing Ω+ we can make τ grow as quickly as we wish. Since φ is uniformly

quasiconformal, it is bi-Hölder with a fixed constant, and so f = g ◦ φ−1 ∈ S2,0 also

grows as quickly as we wish. Such examples are originally due to Sergei Merenkov

[39] by a different method.

The use of quasiconformal techniques to build and understand entire functions

with finite singular sets has a long history with its roots in the work of Grötzsch,

Speiser, Teichmüller, Ahlfors, Nevanlinna, Lavrentieff and many others. The earlier



12 CHRISTOPHER J. BISHOP

Figure 5. A tree corresponding to a function in S that grows as
quickly as we wish. One must verify the tree has bounded geometry
(easy) and choose τ in each component so every edge has τ -size ≥ π
(also easy).

work was often phrased in terms of the type problem for Riemann surfaces: decid-

ing if a simply connected surface built by branching over a finite singular set was

conformally equivalent to the plane or to the disk (in the first case the uniformizing

map gives a Speiser class function). Such constructions play an important role in

value distribution theory; see [16] for an excellent survey by Drasin, Gol′dberg and

Poggi-Corradini of these methods and a very useful guide to this literature. Also

see Chapter VII of [29] by Gol′dberg and Ostrovskii which is the standard text in

this area (updated in 2008 with an appendix by Alexandre Eremenko and James K.

Langley on more recent developments).

Much recent work on quasiconformal mappings is motivated by applications to

holomorphic dynamics, such as quasiconformal surgery, a powerful method that has

been used in rational dynamics to construct new examples with desired properties,

estimate the number of attracting cycles, and (perhaps most famously) prove the

non-existence of wandering domains. See the recent book [14] by Bodil Branner

and Núria Fagella for a discussion of these, and other, highlights of this literature.

In the iteration theory of entire functions, the Speiser class provides an interesting

mix of structure (like polynomials, the quasiconformal equivalence classes are finite

dimensional [23]) and flexibility (as indicated by the current paper). Examples of

entire functions with exotic dynamical properties have also been constructed using

infinite products (e.g., [3], [1], [6], [12] ) approximation results such as Arakelyan’s
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and Runge’s theorems (e.g., [22]) or Cauchy integrals (e.g. [46], [47], [41]). Generally

speaking, these methods do not give such precise control of the singular set as do

quasiconformal constructions.

A version of Theorem 1.1 for the Eremenko-Lyubich class B is given in [9]. Instead

taking the complement of an infinite tree, that paper takes a locally finite union Ω of

disjoint, simply connected domains {Ωj} and a choice of conformal map τj : Ωj → Hr

on each component, defining a holomorphic map τ : Ω → Hr. The result states that

for any ρ > 0, the restriction of eτ to Ω(ρ) = τ−1(Hr+ρ) has a quasiregular extension

to the plane (with quasiconstant depending only on ρ) and the extension is bounded

off Ω(ρ). Thus there is f ∈ B and a quasiconformal φ so that f ◦ φ = eτ on Ω(ρ).

The proof in [9] is analogous to, but easier than, the construction in this paper. In

[10] it is shown that we can even take f ∈ S, but not always with the “bounded off

Ω(ρ)” conclusion. Making the geometric distinctions between B and S precise is the

main purpose of [10].

This paper had its start during a March 2011 conversation between myself and Alex

Eremenko about the behavior of polynomials with exactly two critical values. His

questions led to the paper [13] on dessins and Shabat polynomials, and the current

paper adapts those ideas to transcendental entire functions. I thank Alex Eremenko

and Lasse Rempe-Gillen for their lucid descriptions of the problems, their almost

instantaneous responses to my emails, and for their generous sharing of history, open

problems and ideas. Also thanks to Simon Albrecht; he carefully read an earlier

draft and made numerous helpful suggestions that fixed some errors and improved

the exposition. Similarly, Xavier Jarque read the manuscript and provided many

comments; his questions prompted a variety of improvements and corrections to the

text. Two anonymous referees provided thoughtful suggestions that improved the

paper’s clarity and correctness and they provided further references to related liter-

ature. I thank them for their careful reading of the manuscript and for their hard

work to make it easier for others to read.

2. A neighborhood of the tree

Lemma 2.1. τ−1(VI) ⊂ T (r0) for some r0 ≤ 25.3.
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Proof. For an interval I ⊂ ∂Hr, let

W (I, α) = {z ∈ Hr : ω(z, I,Hr) > α},

where ω denotes harmonic measure. The set in Hr where I has harmonic measure

bigger than α is the same as the set where I subtends angle ≥ πα; this is a crescent

bounded by I and the arc of the circle in Hr that makes angle π(1−α) with I. Some

simple geometry shows that W (I, 1
2
) ⊂ QI ⊂ W (I, 1

4
) and hence VI ⊂ ∪I∈IW (I, 1

4
)

(recall that QI is the square in Hr with I as one side). Thus τ−1(VI) is contained

in the set of points z in Ω such that some single edge e of T has harmonic measure

ω(z, e,Ω) ≥ 1/4. Beurling’s projection theorem (see Corollary III.9.3 of [26]) then

implies

1

4
≤ ω(z, e,Ω) ≤ 4

π
tan−1

√

diam(e)

dist(z, e)
.

Hence

dist(z, e) ≤ (tan(
π

16
))−2 · diam(e)

and so τ−1(VI) ⊂ T (r0), where r0 = tan−2( π
16
) ≈ 25.27. �

QI
I

τ

e

Figure 6. The set VI is a union of squares QI in Hr, each with
one side that is an element I ∈ I. The square QI is contained in the
crescent region where I has harmonic measure ≥ 1/4. If I corresponds
via τ to an edge e of the tree T , then QI must map to a region contained
in {z : dist(z, e) ≤ r0diam(e)}, where r0 is the constant computed in
Lemma 2.1.
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3. Integerizing a partition

As noted in the introduction, one of the “easy” steps of the proof is to approximate

a partition of a line by another partition that has integer endpoints and odd lengths.

We start with a simple lemma.

Lemma 3.1. Suppose I = {Ij} is a bounded geometry partition of the real numbers

(i.e., adjacent intervals have comparable lengths) so that every interval has length

≥ 1. Then there is second partition J = {Jj} so that

(1) Every endpoint of J is an integer.

(2) The length of Jj is an odd integer.

(3) Ij and Jj have lengths differing by ≤ 2.

(4) The left endpoints of Ij and Jj are within distance 5/2 of each other. Similarly

for the right endpoints.

Proof. After translating by at most 1
2
we can assume I0 contains a non-trivial interval

with integer endpoints and odd length. Let J0 be the maximal such interval in I0.

For j > 0, let the left endpoint of Jj be the right endpoint of Jj−1. Choose its right

endpoint to be the largest integer that is less than or equal to the right endpoint of Ij

and so that Jj has odd length. Since Ij has length ≥ 1, there is such a choice. Then

(1)-(3) all hold and (4) holds with constant 2. A similar argument holds for j < 0.

When we undo the initial translation, (1)-(3) all hold with the same constants and

(4) holds with 5/2. �

Lemma 3.2. There is a quasiconformal map ι of the upper half-plane Hu = {x+ iy :

y > 0} to itself that sends the partition I in Lemma 3.1 to the partition J . The

map ι is the identity on Hu + i = {x + iy : y > 1} and the dilatation is bounded

independent of I.

Proof. We now define a map ψ1 : R → R as the piecewise linear map that sends Ij

to Jj. This is clearly bi-Lipschitz. This boundary mapping ψ1 can be extended to a

quasiconformal mapping of Hu that is the identity off the strip S{x+ iy : 0 < y < 1}
by linearly interpolating the identity on {y = 1} with ψ1 on R. It is easy to see this

defines a bi-Lipschitz (hence quasiconformal) map of S to itself, that extends to the

identity on the rest of Hu. �
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4. Length respecting maps

We start by verifying some claims made in the introduction. Let Ωj be a component

of Ω = C \ T and let Ij be the partition of ∂Hr induced by τ on the component Ωj

Also recall, VI ⊂ Hr is the union of squares with sides in Ij.

Lemma 4.1. If T has bounded geometry tree then adjacent elements of Ij have

comparable length.

Proof. Adjacent intervals I, J ⊂ ∂Hr correspond to sides of adjacent edges e, f of T

will have comparable lengths iff there is a point z ∈ Hr from which the harmonic

measures of I, J and both components of ∂Hr \ (I ∪J) are all comparable. But if we

take a point w ∈ Ω that with

dist(w, e) ≃ dist(w, f) ≃ dist(w, ∂Ω)

the bounded geometry assumption and the conformal invariance of harmonic measure

imply this is true for z = τ(w). �

We say that a homeomorphism h of one rectifiable curve γ1 to another rectifiable

curve γ2 respects length if it is absolutely continuous with respect to arclength and

|h′| is a.e. constant, i.e., ℓ(τ(E)) = ℓ(E)ℓ(γ2)/ℓ(γ1), for every measurable E ⊂ γ1.

This generalizes the idea of a linear map between line segments.

Lemma 4.2. Suppose η : Ω → Hr is quasiconformal on each of its connected com-

ponents, maps the vertices of T into πiZ and is length respecting on each side of T .

Also suppose that for each edge e in T , the two sides of e have equal τ -length. If

cosh ◦ η is continuous at all vertices of T , then it is continuous across all edges of T .

Proof. Suppose v, w are the endpoints of e and z ∈ e. By assumption the two possible

images of e under η have the same length and have their endpoints in πiZ. Since

cosh ◦η is continuous at w, both of its images have the same parity. Similarly for

v. Therefore the length respecting property implies both images of z have the same

distance from 2πiZ, which implies the result. �

Theorem 4.3. Suppose T is a bounded geometry tree, Ωj is a component of Ω = C\T
and σj : Hr → Ωj is the inverse to τ for this component. Suppose the partition

of ∂Hr induced by Ωj has bounded geometry. Then there is a quasiconformal map
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β : Hr → Hr so that σj ◦ β is a length respecting on every element of Ij. The map β

is the identity on Vj ⊂ ∂Hr and on Hr \ VI.

Proof. Consider adjacent intervals I, J ∈ Ij corresponding to edges e, f of T with

a common vertex v. The bounded geometry condition states that e and f have

comparable length and Lemma 4.1 says I and J have comparable length.

Suppose θ is the interior angle of Ω formed by the edges e and f and let α = θ/π.

Then

| d
dx
σj(x)| ≃

ℓ(e)

ℓ(I)
(x− a)α−1,

on both I and J near the endpoint a.

Let K be the interval centered at a with length ℓ(K) = 1
4
min(ℓ(I), ℓ(J)). Normal-

ize so a = 0 and ℓ(K) = 1 and consider the map ϕ(z) = z|z|α−1 for |z| ≤ 1 and the

identity for |z| > 1. Then ϕ ◦ τ has a derivative that is bounded and bounded away

from zero on σj(K) The map ϕ is the identity outside the disk with diameter ℓ(K),

so is certainly the identity outside VI .

Now build a version of ϕ for every pair of adjacent edges to get a quasiconformal

map ϕ : Hr → Hr that fixes every endpoint of our partition I and is the identity

outside VI . For any interval I ∈ I, we can use integration to define a bi-Lipschitz

map κ : I → I fixing each endpoint of I and so that the derivative of κ ◦ ϕ ◦ τ has

constant absolute value. By simple linear interpolation this κ can be extended to a

bi-Lipschitz map of QI (the square in Hr with I as one side) that is the identity on

the other three sides of QI . Doing this for every interval in the partition defines a

quasiconformal κ on Hr that is the identity off VI . Clearly β = κ ◦ ϕ satisfies the

conclusions of Theorem 4.3, completing the proof. �

5. The folding map: building the tree

The following lemma is the central fact needed in the proof of Theorem 1.1. It was

stated in the introduction, but to simplify notation we have rotated by 90 degrees

and dilated by a factor of π. If J is a partition of R into intervals, we let VJ be the

union of squares in Hu = {x+ iy : y > 0} with bases in J .

Lemma 5.1. Suppose J = {Jj} is a partition of R into intervals with endpoints in

Z and all odd lengths. Assume that any two adjacent elements have lengths within a
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factor of M <∞ of each other. Then there is a map ψ of Hu = {x+ iy : y > 0} into

itself and intervals J ′
j ⊂ Jj, so that the following all hold:

(1) each J ′
j has integer endpoints and length 1.

(2) ψ is the identity off VJ .

(3) ψ is quasiconformal with a constant depending only on M .

(4) ψ is affine on each component of R \ Z.
(5) ψ(J ′

j) = Jj for all j.

(6) ψ(x) = ψ(y) implies x, y ∈ R have the same distance to 2Z.

The domain ψ(Hu) ⊂ Hu will be constructed by removing finite trees, rooted at

the endpoints of J . It will be given as a certain quasiconformal image of a domain

W = Hu \ Γ, where Γ is a collection of finite trees rooted at points of Z. In this

section we describe Γ and W ; in the next section we build the map ψ.

The simplest trees in the construction are just segments in Hu with a small number

of vertices on them. We call these “0-level” trees or “simple foldings” and one such

is illustrated in Figure 7. This is essentially the same as the folding illustrated in

Figure 3 in the introduction. The triangulations induce a piecewise linear map that

“folds” Hu into itself minus a slit. The map is the identity outside the indicated box.

Figure 7. This simple tree is just a slit in the upper half-plane par-
titioned into n edges. The triangulations show how Hu can be mapped
to the complement of the slit by a piecewise linear map that is the
identity outside the indicated square.

Next we consider “j-level trees” for j ≥ 1. We start with the trees T̂j illustrated

in Figure 8. We normalize so that T̂j has convex hull Rj = [0, 2] × [0, 1 − 2j]. The

edges of T̂j have an obvious partition into levels; there is one horizontal “base” edge

at level 0 and 2j+1 edges at level j. We form the tree Tj by dividing each jth level
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edge of T̂j into 2j edges, as shown in Figure 9. Tj and T̂j have the same topology,

and although our proofs all refer to Tj, most of our figures will only show T̂j in place

of Tj because the huge number of vertices in Tj are impractical to draw.

Figure 8. The basic building blocks are pairs of binary trees. Shown
are the trees T̂1, T̂2, T̂3 and T̂4.

Figure 9. We add vertices to T̂j to get Tj. The jth level is divided
into 2j equal sub-edges by adding extra vertices. We illustrate only
the j = 2 case, since its hard to see individual vertices at higher levels;
most of our figures will not show these vertices at all, but their presence
is essential to the construction.

How many edges are in Tj? How many sides? If we simply count the edges in T2

of Figure 9, for example, we get 1 base edge, 8 level 1 edges, 32 level 2 edges, and, in
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general, 22j+1 level j edges. So the number of edges is

1 +

j
∑

k=1

22k+1 = −1 + 2

j
∑

k=0

4k =
2

3
(4j+1 − 1)− 1.

Normally, the number of sides would be twice the number of edges, but for our

purposes, we only want to count a side of Tj if it is accessible from the interior of Rj,

the convex hull of Tj. Thus we have to subtract the “inaccessible” sides belonging to

the bottom and sides of Rj. After a little arithmetic, this gives

Nj = [
4

3
(4j+1 − 1)− 2]− [1 + 2

j
∑

k=1

2k] =
4

3
(4j+1 − 1) + 1− 2j+2

The first few values are 13, 69, 309, . . . . Because of symmetry, we know the answer is

odd and less than 4j.

The next step is to introduce “clipped” versions of the trees Tj and their convex

hulls. We let T i,kj be the tree Tj with the top i levels of the the left-hand side removed,

together with all the other edges that are disconnected from the base. We also remove

the top k levels of the right-hand side. Let Ri,k
j be the convex hull of the remaining

tree. See Figure 10. If i = j then we say the tree has been clipped down to its root.

The number of sides in T i,kj is

Nj,i,k = Nj − [2j + · · ·+ 2j−i+1]− [2j + · · ·+ 2j−k+1] ≥ Nj − 2j+2 + 2.

The exact number is not important, but we will need that it is odd and comparable

to 4j (to get oddness, it is important to remember that this is the tree Tj, not T̂j, so

there are an even number of edges on Tj in each level along the left and right sides

of Rj).

Note that Rj \ Tj has 2j+1 − 1 connected components, of which 2j are triangles.

Similarly Ri,k
j \T i,kj has 2j − 2i−1− 2k−1 triangular components. If j ≥ 2, the number

of triangular components is between 2j−1 and 2j regardless of the values of i and k,

hence the number is comparable to 2j. This is also true for j = 1 unless j = i = k = 1,

in which case there are no such components. Each of these triangular components

has exactly one vertex that is not on the top edge of Rj. We call this the bottom

vertex of the component.

So far, we have built trees that have an exponentially growing odd number of sides.

We want to be able to achieve any odd number, and to do this, we will add edges
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Figure 10. The clipped trees T 1,0
3 and T 4,3

4 are shown in solid lines.
On the bottom are the convex hulls R1,0

3 and R4,3
4 .

to our clipped trees. Suppose we are given an odd, positive integer m and define the

level of m as the value of j such that Nj ≤ m < Nj+1, where we set N0 = 1 and Nj

is defined as above.

Suppose we are also given non-negative integers i, k that are both less than the

level j of m. We will add edges to the clipped tree T i,kj so that the total number of

edges is m.

First suppose j ≥ 2. Then there are ∼ 2j triangular components of Ri,k
j \T i,kj , and

we add a segment connecting the center of the pth triangle to its bottom vertex and

divide it into np equal sub-segments. We call thus segment a “spike”. See Figure 11.

We choose the integers {np} so that

2
∑

p

np = m−Nj,i,k and np = O(2j),

where the constant is allowed to depend on i, k (eventually both of these will be

chosen to be O(1), so the constant above will also be O(1)). If j = 1 and i = 0 or

k = 0 then there is at least one triangular component where we can add a spike. If

j = 1 and i = k = 1 then instead of adding a spike, use a simple folding in place of

T 1,1,
1 .
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2j
2

j
2j

2j

np

Figure 11. Spikes are added to added to some vertices of the tree to
bring the total number of sides up to m. Adding zero spikes is allowed.
These extra spikes will often be omitted from our pictures.

Now we are ready to define the domain W ⊂ Hu associated to the partition J of

R. Suppose J ∈ J and let m be its length (an odd, positive integer). Let j be the

level of m and let j1 and j2 be the levels of the elements of J that are adjacent to J

and to its left and right respectively. Let

i = max(0, j − j1), k = max(0, j − j2),

and associate to J the tree T i,kj,m. The indices i, k have been chosen so that when

two intervals are adjacent, and the corresponding trees have different levels, then the

higher tree has been clipped to match the level of its lower neighbor. Thus the union

of the clipped convex hulls ∪Ri,k
j has an upper edge that is a Lipschitz graph γ (the

graph coincides with the real line on intervals where we use a simple folding). The

region above Γ and below height 2 is a variable width strip that we denote S2.

If m has level ≥ 1, then inside the copy of Ri,k
j with base J we place a copy of the

tree T i,kj,m and remove this tree from the upper half-plane. If the m has level 0, or we

are in the case when j = 1 = k discussed earlier, Ri,k
j is a line segment on R and we

remove a diagonal line segment divided into 1
2
(m−1) edges; above these intervals the

map will be a simple folding of size m. Doing one of these steps for every element of

the partition defines the simply connected region W = Hu \ Γ. See Figure 12.

6. The folding map: building the triangulation

In the previous section we built a domain W ⊂ Hu. In this section we build the

map ψ. As described in the introduction, we build our quasiconformal maps by giv-

ing compatible triangulations of the domain and range, and mapping corresponding

triangles to each other by an affine map. Up to Euclidean similarity, only a finite

number of different pairs of triangles will be used (depending only on the number M
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R1
0,0 2,1R3 R2

0,1

S2

Figure 12. We form a variable width strip, S2, by taking the union
of convex hulls Ri,k

j,m corresponding to our partition (in the picture we
ignore m). The lower boundary of S2 is a Lipschitz graph. The solid
lines indicate the union of trees Γ and W = Hu \ Γ.

in the lemma), so the maximum dilatation of our map is bounded. Hence the map

will be quasiconformal with constant depending only on M .

Although we don’t need an explicit bound for our purposes, it is easy to compute

the quasiconformal constant of an affine map between triangles. Conformal linear

maps can be used to put the triangles in the form {0, 1, a} and {0, 1, b}, a, b ∈ Hu

and the affine map is then

f(z) = αz + βz̄

where α + β = 1 and β = (b− a)/(a− ā). Then the dilatation is

µf =
fz̄
fz

=
β

α
=
b− a

b− ā
,

which is the pseudo-hyperbolic distance between a and b in the upper half-plane.

The map ψ is defined as a composition of several simple maps and a more com-

plicated one. Given two adjacent intervals Jk, Jk+1 of our partition J with common

endpoint xk, let hj = min(ℓ(Jk), ℓ(Jk+1)) be the length of the shorter one and let

zk = xk + ihk. Form an infinite polygonal curve by joining these points in order, and

let S0 be the region bounded by this curve and the real axis. The vertical crosscuts

at the points xk cut the region into trapezoids and because of our assumption about

the lengths of adjacent elements of J being comparable, only a compact family of

trapezoids occur. See Figure 16.

It is easy to quasiconformally map S0 to the strip S1 = {x + iy : 0 < y < 2} by

mapping each trapezoid to a square of side length 2 (cut each trapezoid into triangles
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by a diagonal and map these linearly to the right triangles obtained by cutting the

square by a diagonal). Denote this map by µ1. See Figure 13.

µ1

S1

S0

Figure 13. The map µ1. It is quasiconformal because the trapezoids
have heights comparable to their bases (because adjacent intervals have
length comparable within a factor of M).

Next we define a map µ2 : S1 → S1 that is the identity on the top edge of S1 and

biLipschitz on the bottom edge. Such a map clearly has a biLipschitz extension to

the interior of the strip, so we only have to define the map on the lower boundary.

See Figure 14. Suppose I is an interval of length 2 on the bottom edge of S1 that

corresponds to a an interval J ∈ J of length m and that T i,kj,m is the corresponding

clipped tree. If this tree is a simple folding, we just take µ2 to be the identity on

I. Otherwise, project the degree 1 vertices of T i,kj,m vertically onto I. These points

partition I into subintervals {Ip} that correspond 1-to-1 to the components {Vp} of

V = Ri,k
j,m \T i,kj,m. If Vp has mp sides, divide Ip into mp equal subintervals. This gives a

partition of I into m =
∑

pmp intervals (of possibly different sizes). The map µ2 just

maps the partition of I into m equal length intervals to the this “unequal” partition.

The map is biLipschitz because each interval in the “unequal” partition has length

comparable to |I|/m (by the calculations of the previous section, if m has level j ≥ 1

then m ≃ 4j, there are ≃ 2j components of V and each contains ≃ 2j sides).

Next we define a variable width strip S2 whose upper boundary is {y = 2} and

whose lower boundary is the upper envelope γ of the union of the regions Ri,k
j,m. We

let µ3 : S1 → S2 be a biLipschitz map that is the identity on the top boundary of S2

and agrees with vertical projection onto γ on the bottom edge (again easy to define

using triangulations; see Figure 15).
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S1

S1

µ2

Figure 14. The map µ2. This is quasiconformal because it is biLip-
schitz on the lower boundary and the identity on the upper boundary.

S

S1

µ

2

3

Figure 15. The map µ3. This is quasiconformal because the lower
boundary of S2 is a Lipschitz graph.

The final step is to define a quasiconformal map µ4 : S2 → S1 ∩ W that is the

identity on the top edge of S2 and maps each element of P linearly to a side of W .

Building this map will occupy the rest of this section. Assuming we can do this, then

we set ψ to be

S0
µ1−→ S1

µ2−→ S1
µ3−→ S2

µ4−→ W
µ−1

1−−→ S0

in S0 and let it be the identity in Hu \ S0. All the conclusions of Lemma 5.1 follow

directly from the construction.

The final step is to construct the map µ4. Suppose I is an interval of length 2

corresponding to some J ∈ J and let Q ⊂ S1 be the 2× 2 square with base I. The

map µ4 is the identity above S2, so we only need to define it inside each such Q so
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ψ

µ

S0

S

S1

S0

S1

µ1

µ

µ

µ

1
−1

2

W

2

3

4

Figure 16. The maps S0
µ1−→ S1

µ2−→ S1
µ3−→ S2

µ4−→ W
µ−1

1−−→ S0 define ψ.

that it is the identity on ∂Q ∩ S2 (then the definitions on different squares will join

to form a quasiconformal map on S2.

If W ∩ Q is a simple folding, we have already seen how to define µ4 in Figure 7.

Otherwise, suppose Q contains the convex hull R = Ri,k
j of a the tree T = T i,kj,m.

Let R′ = Rj be the “unclipped” version of R. As noted earlier, ∂R \ T consists of

intervals, and each interval Ip has been partitioned into mp equal length intervals
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where mp is the number of sides of the corresponding component of R \ T . The

interval Ip is horizontal unless it is the leftmost or rightmost interval, in which case

it may be sloped (the “clipped” part of R).

For horizontal intervals Ip we let Qp ⊂ Q \ R be the square with base Ip. For

sloped intervals we let Qp denote the triangular component of R′ \ R containing the

interval. Let Wp be the component of R \ T with Ip as its top edge (see Figure 17).

We want to define µ4 : Qp → Up = Qp ∪Wp to be quasiconformal, to be the identity

on ∂Qp \Wp, and to map each interval in our partition of Ip to an side of Wp. We

call this a “filling map”, since if fills Wp. There are number of different cases, but

each can be constructed with a simple picture.

Figure 17. Some examples of filling maps. In each case, a square
is mapped to the union of itself and region below it bounded by the
tree. The picture omits a large number of vertices on the upper levels
and the “spikes” that were added to the triangular components. For
a clipped tree, there is an additional case covering the leftmost and
rightmost intervals.

Figure 17 the four types of components Wp that have to be considered:

(1) top triangles,

(2) corner triangles,

(3) parallelograms,

(4) the center triangle,

In each case, the map from Qp to Up is specified by drawing compatible triangu-

lations of the two regions and then taking the piecewise affine map between these

triangulations.

Figure 18 shows the triangulations for the top triangles. These triangles may or

may not contain a spike, so both situations are illustrated. The placement of the
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vertices on the bottom edge of Qp is determined by the number of sides on the spike,

but the map is clearly uniformly quasiconformal as long as the number of these edges

is at most a fixed fraction of mp (this is true by the estimate mp = O(2j) discussed

in the previous section).

Figure 18. The left map is used for the small triangular components
with a slit. The four intervals on the bottom of the square have relative
lengths 2j, nj , nj , 2

j , so that the maps sends the correct number of
vertices onto each segment of the tree. The right side shows the filling
map when there is no slit (i.e., nj = 0).

Figure 19 shows the triangulation for the corner triangles (these only occur if the

corresponding tree was clipped). This is a very simple map that just moves points

along the interval Ip; the partition of Ip is in equal length intervals, but the sides of

T get smaller as we approach the top of T and this maps makes the correction. The

quasiconformal constant depends on the number of levels (i or k) have been clipped,

but this is bounded depending only on the number M in the lemma (if adjacent

intervals of J have comparable lengths, then the levels of adjacent trees differ by a

uniform additive constant, so the amount of clipping is uniformly bounded). This is

the only part of the construction where the quasiconformal constant of ψ depends on

M .

Figure 20 shows the triangulations of the parallelogram components. Each such

component Up has a fixed top piece (a square) and bottom piece (a triangle) and a

variable number of middle pieces (all similar to the same trapezoid). We decompose

Qp into the same number of nested pieces as shown and map each piece to its corre-

sponding image using the triangulations shown. Since only a finite number of pieces
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Figure 19. The filling map for the clipped ends, just moves points
along the diagonal edge, so the qth level edge gets 2q points. This
distortion depends on the clipping indices, i, k, but these are uniformly
bounded, so the total distortion is too.

are used (up to Euclidean similarities), the quasiconformal constant is uniformly

bounded.

Figure 20. This map is used for all the “parallelogram” compo-
nents. The base of the square is divided into intervals of relative lengths
2j, 2j−1, . . . , 2k+1, 2k, 2k, 2k+1, . . . 2j−1, 2j . to insure the correct number
of vertices are sent to each level of the tree.

Figure 21 show the analogous picture for the large central component. The top

piece is exactly the same as for the parallelogram components, so we only illustrate the

triangulations for the middle and bottom sections. This figure finishes our description
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of the map µ4 : S2 → S1 ∩W ; this completes the proof of Lemma 5.1 and hence of

Theorem 1.1.

Figure 21. This is the map for the central component. The top piece
is mapped as in the previous case, so we only illustrate the middle and
bottom maps. The base of the square is divided into intervals of relative
lengths 2j, 2j−1, . . . , 4, 2, 2, 2, 4 . . . 2j−1, 2j . to insure the correct number
of vertices are sent to each level of the tree.

7. Asymptotic values and high degree critical points

The construction described in Theorem 1.1 does not allow finite asymptotic values

or critical points with arbitrarily high degree. However, these features are important

in several applications, so in this section we describe how to extend the construction

to include them. Note that no extra “hard work” is needed; we simply supplement

the early construction by allowing some complementary components where no qua-

siconformal folding takes place.

In Theorem 1.1 each complementary component of T is mapped to Hr. In our

generalization, the tree T is replaced by a connected graph whose complementary

components are each mapped to one of three possible standard domains:

(1) the unit disk, D.

(2) the left half-plane, Hl.

(3) the right half-plane, Hr.
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We shall refer to these as D-components, L-components and R-components respec-

tively. If only L- and R-components are used then the graph T is still a tree. The-

orem 1.1 corresponds to the special case when every complementary component is a

R-component. We do not allow D and L components to share an edge.

Each component comes with a length respecting, quasiconformal map η to its

corresponding standard version and each standard domain has a map σ into the

plane that plays the role of cosh in Theorem 1.1. These are chosen so that g = σ ◦ η
defines a quasiregular map on the plane that can be converted to an entire function

f = g ◦φ by an application of the measurable Riemann mapping theorem to find the

appropriate quasiconformal φ. Before stating the theorem, we discuss each type of

component.

D

D

L

L

R

R

R

R

R
R

D

Figure 22. To allow asymptotic values and high degree critical val-
ues we replace the tree T by a graph that divides the plane into three
types of components: D-components that are bounded Jordan domains,
L-components that are unbounded Jordan domains and R-components
that are unbounded simply connected domains (they need not be Jor-
dan). D-components and L-components may only share an edge with
a R-component and QC folding will only be applied on the R-
components.

D-components: Ω is bounded and ∂Ω is a closed Jordan curve that is the union

of a finite number of edges of T , say d. We are given a length respecting (on the

boundary) quasiconformal map η : Ω → D and we assume the n vertices on ∂Ω map

to the nth roots of unity on the circle. The map σ : D → D is z 7→ zd followed by a
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quasiconformal map ρ : D → D that is the identity on ∂D. We often take ρ to be the

identity, and this gives a critical point of degree d with critical value 0. If a critical

value a is desired, then ρ is chosen so ρ(0) = a. If |a| < 1/2, then ρ can be chosen

to be conformal on {|z| < 3/4}, so in this case, the dilatation of ρ is supported on

{z : 1
4
< |z| < 1}. Thus, in all cases, the dilatation of σ is bounded by O(|a|) and is

supported on {z : 1− 1
d
log 4 < |z| < 1}.

L-components: Here Ω is an unbounded Jordan domain and we are given a length

respecting, quasiconformal η : Ω → Hl. The map σ : Hl → D\{0} is just z 7→ exp(z).

This gives a component with finite asymptotic value 0. If a different asymptotic value

a with |a| < 1/2 is desired, we post-compose this map with quasiconformal map

ρ : D → D such that ρ(0) = a and ρ is the identity on ∂D (just as for critical values

for D-components).

R-components: This is what we used in Theorem 1.1. Here Ω is simply connected

and unbounded and we are given a length respecting, quasiconformal map η : Ω →
Hr. The boundary may be a tree instead of a Jordan curve. In Theorem 1.1, we

took σ = cosh, but now we have to allow more general maps. Under the map

τ−1
j : Hr → Ωj , each interval I in the partition is mapped to one side of an edge e of

T and either the other side of this edge also faces the same component Ωj , or it faces

a different component Ωk, k 6= j. In the latter case, the second component Ωk could

be a D-, L- or R-component.

We divide the intervals in our integer partition of ∂Hr into two types. We say

the interval is type 1 if the corresponding opposite side of τ−1
j (I) belongs to a R-

component; this can either be the same component Ωj or a different component Ωk.

We say the interval is type 2 if the other side of τ−1
j (I) faces a D-component or a

L-component (which is necessarily a different component of Ω). We denote these two

collections of intervals on ∂Hr by J j
1 and J j

2 . We now choose a map Hr → C that

equals cosh on the type 1 intervals, equals exp on the type two intervals and equals

cosh far from ∂Hr. More precisely,
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Lemma 7.1 (exp-cosh interpolation). There is a quasiregular map νj : Hr → C \
[−1, 1] so that

νj(z) =











cosh(z), z ∈ J ∈ J j
1 ,

exp(z), z ∈ J ∈ J j
2 ,

cosh(z), z ∈ Hr + 1 = {x+ iy : x > 1}.
The quasiconstant of νj is uniformly bounded, independent of all our choices.

Proof. The proof is basically a picture; see Figures 23 and 24. Suppose J is one

of our partition intervals and let R = [0, 1] × J ⊂ Hr. The cosh map sends R

into a topological annulus bounded by the unit circle and the ellipse E = {x + iy :

(x/s)2+(y/t)2 = 1} where x = 1
2
(e+ 1

e
), y = 1

2
(e− 1

e
). The left side of R maps to the

unit circle, the right side maps to E and and the top and bottom edges of R map to

the real segment [1, e]. Let U be the region bounded by the ellipse and V = U \ D
be the annular region.

φ

U

R

V

Figure 23. The cosh map sends the rectangle R to an ellipse minus
the unit disk. On some rectangles we modify it to map to the ellipse
minus [−1, 1].

Now define a quasiconformal map φ : V → U that is the identity on E and on [1, e],

but that maps {|z| = 1} onto [−1, 1] by z → 1
2
(z + 1

z
) (this is just the Joukowsky

map that conformal maps the exterior of the unit circle to the exterior of [−1, 1] and

identifies complex conjugate points). This map can clearly be extended from the

boundary of V to the interior as a quasiconformal map. See Figure 24.

In Hr+1 and in rectangles corresponding to J ∈ J j
1 , we set ν(z) = cosh(z). In the

rectangles corresponding to elements of J j
2 we let ν(z) = φ(cosh(z)). This clearly has

the properties stated in the lemma. The map can be visualized as a map from Hr to

a Riemann surface with sheets of the form either C \ [−1, 1] or C \D attached along
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Figure 24. We show only the construction in the upper half-plane; it
is defined symmetrically in the lower half-plane. The region V contains
contains a crescent with vertices at ±1 as shown. The crescent can be
Möbius mapped to a sector which can be quasiconformally mapped to
a larger sector by fixing radii and and expanding arguments. Mapping
back by another Möbius transformation gives the desired quasiconfor-
mal map from V to U .

[1,∞) and chosen according to the type of the corresponding partition element. See

Figure 26. �

Theorem 7.2. Suppose T is a bounded geometry graph and suppose τ is conformal

from each complementary component to its standard version. Assume that D and L

components only share edges with R components. Assume that τ on a D-component

with n edges maps the vertices to nth roots of unity and on L-components it maps

edges to intervals of length 2π on ∂Hl with endpoints in 2πiZ. On R-components

assume that the τ -sizes of all edges are ≥ 2π. Then there is an entire function f

and a quasiconformal map φ of the plane so that f ◦ φ = ν ◦ τ off T (r0). The only

singular values of f are ±1 (critical values coming from the vertices of T ) and the

critical values and singular values assigned by the D and L-components.

Given our previous arguments, there is hardly anything to say about the proof of

this. We apply the folding construction to each right half-plane component and define

a quasiregular map on each such component whose boundary values match the func-

tion on the other side of every edge (either the given maps for D and L-components

or a folded map for a R-component). Then apply the measurable Riemann mapping

theorem as before.
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τ

τ

τ

σ =

σ =

R σ

D

L

dz

exp

Figure 25. Each of the three types of components is mapped to its
standard domain (D, Hl or Hr) and then followed by a covering map
ν. For R-components ν may map onto a Riemann surface instead of a
covering a planar domain. See Figure 26 for more details about the
R-components.

8. Lower bounds for the τ-size of an edge

The remainder of the paper deals with various applications of Theorems 1.1 and 7.2.

Aside from any intrinsic interest, the examples are intended to show that applying

our results follows an easy procedure:

(1) Draw a picture of the graph T and label the complementary components as

a D-, L- or R-components.

(2) Place vertices so that the D- and L-components map to “evenly spaced” points

in the standard domain under a conformal or uniformly quasiconformal map.

(3) Add extra points, if necessary, to insure the tree has bounded geometry. We

may also add extra vertices to make the neighborhood T (r0) small, while

maintaining bounded geometry.
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σ

Figure 26. R-components are attached to other R-components using
cosh(z) and are attached to D and L-components using exp(z). The
corresponding map ν is a combination of these two boundary values
and can be visualized as mapping Hr onto a Riemann surface made by
attaching copies of {|z| > 1} and C \ [−1, 1] along (1,∞).

(4) Choose τ on each R-component so that the τ -size of every edge is ≥ π.

For the examples we will give, the first three steps are always easy; only the last one

requires some calculation. Moreover, we can usually replace τ by a positive multiple

of itself on any component, so it usually suffices to prove the τ -sizes of edges have

a positive lower bound. In this section we will show how to do this using simple

estimates of the hyperbolic metric on the components of Ω = C \ T .
Suppose Ω is a complementary component of a bounded geometry tree T . Assume

τ : Ω → Hr is conformal and fixes ∞ and let I = {Ij} be the corresponding partition

of ∂Hr. Associated to each I ∈ I is a hyperbolic geodesic γI in Hr with the same

endpoints as I; this is just a semicircle with diameter ℓ(I). Let z0 be the rightmost

point of γ0 and let γ∞ be the horizontal ray connecting z0 to ∞ in Hr. Let zj, j 6= 0,

be the closest point of γj to γ∞ and let xj ∈ γ∞ be the closest point to γj.

A simple computation shows that ℓ(Ij) ≥ ℓ(I0) if

ρ(xj, γj) ≤ ρ(xj, γ0),(8.1)

where ρ denotes the hyperbolic metric. Thus to prove a lower bound for the τ -size of

edges of T , it is enough to verify (8.1). By the conformal invariance of the hyperbolic
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zI

xIz0

Figure 27. The τ -size of an edge can be estimated using hyperbolic
geometry. We associate to each partition interval the hyperbolic geo-
desic with the same endpoints. An image interval has Euclidean length
bounded below if the hyperbolic distance from zI to xI is less than the
distance from xI to z0 plus a bounded factor.

metric, we can often check this directly on Ω. Indeed, in many examples, we can

verify stronger estimates

ρ(xj, γj) ≤ λρ(xj, γ0).(8.2)

for some 0 ≤ λ < 1 or

ρ(xj, γj) ≤ C,(8.3)

for some C <∞.

We can interpret (8.1) in terms of harmonic measure. For a partition element Ij,

j 6= 0, let I∞j be the component of ∂Hr \ Ij not containing I0. Then ℓ(Ij) & ℓ(I0) if

ω(z0, Ij,Hr) & ω(z0, I
∞
j ,Hr)

2.

Here ℓ denotes Euclidean length on ∂Hr. By conformal invariance of harmonic mea-

sure, it is enough to check this for the corresponding arcs on ∂Ω, which is often easy

to do. Indeed, in most of the examples we will see, we will have the much stronger

estimate

ω(z0, Ij,Hr) & ω(z0, I
∞
j ,Hr),

which corresponds to estimate (8.3) for the hyperbolic metric. In either case, ℓ(Ij)

grows exponentially with |j|. When this happens, we can often add extra vertices

to the edges of T while maintaining both the bounded geometry condition (only the
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comparable length of adjacent edges needs to be re-checked; the other conditions are

automatically fulfilled) and the large τ -size condition. Adding vertices means the set

T (r0) becomes smaller, and hence the “correcting” map φ is conformal on a larger

set. See Figure 28. If we can shrink the area of T (r0) to zero, while keeping the

dilatation of φ bounded, then φ converges to the identity.

Figure 28. The boundary of a half-strip is a bounded geometry tree
if we use equally spaced vertices, but the τ -images of the edges grow
exponentially since (8.3) holds (for the half-strip τ = sinh). We can
let edge lengths decay exponentially and still have bounded geometry,
large τ -sizes but a much smaller T (r0). Hence the correction map φ is
“more” conformal with the new vertices.

Why is this important? We build a quasiregular function g with a certain property

and want to know if the entire function f = g ◦ φ has the same property. For a

general quasiconformal map φ we cannot say much more than it is bi-Hölder, i.e.,

1

C
|z − w|1/α ≤ |φ(z)− φ(w)| ≤ C|z − w|α,

for some α ∈ (0, 1]. However, if φ is conformal except on a small set, we can say

much more. The logarithmic area of a planar set is defined as

logarea(E) =

∫

E

dxdy

x2 + y2
.
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A well known result of Teichmüller and Wittich (e.g., Theorem 7.3.1 of [29], [49], [51])

says that if a quasiconformal map φ is conformal except on a set of finite logarithmic

area near infinity, then φ is asymptotically conformal, i.e., lim|z|→∞ |φ(z)|/|z| exists
and has a finite, nonzero value. In many cases of interest, we know not just that the

logarithmic area is finite but that it decays exponentially, e.g.,

logarea(T (r) ∩ {|z| > n}) = O(e−cn).

A result of Dyn’kin [17] then implies that for any positive m,

φ(z) = a1z + a0 + a−1z
−1 + · · ·+ a−mz

−m +O(z−m−1),(8.4)

in |z| > 1. This is helpful for deducing more delicate properties of f from g as we

shall see in several examples later.

9. Application: countable singular sets

The following sections illustrate applications of Theorems 1.1 and 7.2. Some of

these are new results, some are new proofs of known results and some show that

certain known “pathological” examples can be taken in the Speiser class. For the

most part, these sections are independent of each other and have been kept brief by

leaving certain details to the reader. Perhaps the most interesting application is the

existence of a function f in the Eremenko-Lyubich class with a wandering domain.

This is placed near the end of the paper since the construction and proof is more

complicated than the other applications. The wandering domain construction does

not depend on the earlier examples, but understanding a few of the simpler cases

might be a helpful “warm-up”.

Recall that B denotes the transcendental functions with bounded singular set (crit-

ical values and finite asymptotic values) and S ⊂ B are the functions with finite

singular sets. Our first example is to show that any compact set can be the singular

set of a function in B. This is only meant to illustrate the method of applying our

results; a theorem of Heins [34] says that any Suslin analytic set can be the set of

finite asymptotic values.

Corollary 9.1. Suppose E,F ⊂ C are both bounded, countable sets and that E has

at least two points. Then there is a f ∈ B such that E is the set of critical values

and F is the set of finite asymptotic values.
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Proof. First assume ±1 ∈ E and the rest of E ∪ F is contained in 1
2
D. The tree

is shown in Figure 29. The shaded regions are D-components and L-components.

Note that no two of these touch. All the other components are R-components. Add

vertices along the positive real axis at the points where the circles cross the axis, and

add vertices with approximately unit spacing along the rest of the boundary. For

each disk we let d = 2 and for the nth disk, choose the map ρ as in the description of

D-components to map 0 to the nth critical value. Choose τ for each L-component so

that corners map to adjacent elements of Z (hence the vertical side has τ image of

length π) and add vertices to the horizontal edges by pulling back Z under τ (τ will

essentially be the sinh function). Enumerate the shaded half-strips and choose ρ for

the nth half-strip to send 0 the nth element of F . Choose τ for each R-component,

so that the τ -image for every edge is ≥ π. Then the conditions of Theorem 7.2 are

satisfied and the desired map exists and has the specified singular values.

Figure 29. There is a critical point with prescribed critical value
in each shaded disk, and a prescribed asymptotic value in each shaded
half-strip. It is simple to place vertices on the tree that satisfy the
necessary conditions.

To deduce the general case, consider the holomorphic polynomial

p(z) =
1

2
z3 − 3

2
z.

It is easy to check that ±1 are the only critical points and the only critical values.

Since p is cubic, every point except ±1 has three distinct preimages. See Figure 30.

Note that 1 can be connected to ∞ by a preimage γ+ of (−∞,−1] that lies in the

upper half-plane. Similarly −1 can be connected to ∞ by a preimage γ− of [1,∞).
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Figure 30. The thick curves form the preimage of the real axis under
p and the thin curve is preimage of the unit circle. The intersection
points are ±1. The unbounded arcs γ+, γ− in the upper half-plane
connect ±1 to infinity and we can choose a neighborhood U of these
two arcs so that every point has at least one preimage not in U .

We can choose an open neighborhood U of γ+ ∪ γ− so that every point in the plane

has at least one preimage that is not in U .

Now suppose E and F are as given in the lemma. By composing with a holomorphic

linear map, we may assume, without loss of generality, that ±1 ∈ E. By our remarks

above we can choose countable sets E ′, F ′ so that p(E ′) = E and p(F ′) = F and a

compact set K so that E ′ ∪ F ′ ⊂ K ⊂ C \ U . Since the complement of U is simply

connected, we can choose a quasiconformal map ψ of the plane that fixes both −1

and 1 and so that ψ−1(K) ⊂ D(0, 1
2
) (the quasiconstant will depend on the choice

of K and U). Let E ′′ = ψ−1(E ′) and F ′′ = ψ−1(F ′). Then by our earlier argument,

there is a f ∈ S with critical values E ′′ ∪ {−1, 1} and finite asymptotic values F ′′.

Thus p ◦ψ ◦ f is a quasiregular function with critical values E and asymptotic values

F and hence by the measurable Riemann mapping theorem there is a quasiconformal

φ so that p ◦ ψ ◦ f ◦ φ is entire with the same singular sets, proving the result. �

Since the singular set is the closure of the critical values and finite asymptotic

values it is clear that we can achieve any compact set K as a singular set by applying

the lemma to a countable dense subset of K.

10. Application: spiral tracts in S

Consider Figure 31. The tree in this case is a spiral curve to ∞ so that widths of

adjacent spirals are comparable and the vertices are spaced with gaps comparable to

these widths. It is easy to see T has bounded geometry and it is also easy to see that
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the τ -size of every edge is bounded below uniformly. In fact, it is obvious that (8.3)

holds, so we can increase the number of vertices in the nth spiral by a factor of en and

still maintain the hypotheses of Theorem 1.1 (this is because the hyperbolic distance

in the tract from the origin to the nth spiral is greater than n, at least if the spirals

are thin enough). Thus not only does Theorem 1.1 apply, but φ is conformal off a set

of finite area, because T (r0) has finite Lebesgue area. Thus Dyn’kin’s estimate (8.4)

holds for any m we want. It easy to see that we can make the tract spiral as quickly

as we wish, hence:

Corollary 10.1. For any function φ : [0,∞) → [0,∞) that increases to ∞ there is a

f ∈ S2,0, a t0 < ∞ and a curve γ : [0,∞) → C along which f tends to infinity, such

that for all t > t0,

arg(γ(t)) ≥ φ(|γ(t)|),
where arg is a continuous branch of the argument on the simply connected domain

Ω = f−1(C \ [−1, 1]).

Figure 31. A spiraling tract with a single R-component.

This seems to be a new result even for B, where the best previously result I know

of gives a function with arg(γ(t)) ≥ C log |γ(t)|. See Chapter VII of [29].

11. Application: the area conjecture fails in S

As noted earlier, the logarithmic area of a set E in the plane is defined

logarea(E) =

∫

E

dxdy

x2 + y2
.
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The area conjecture asks if logarea(f−1(K)) < ∞ whenever K is a compact set of

C \ S(f) (recall S(f) are the singular values of f). A special case of this was asked

by Eremenko and Lyubich in [23].

A counterexample to Adam Epstein’s order conjecture in S is given in [11], and

this function is automatically a counterexample to the area conjecture as well, but

an easier counterexample is illustrated in Figure 32.

cosh

Figure 32. On the left is Ω, the tract of the area conjecture coun-
terexample and on the right is Ω′ = cosh−1(Ω); the same example in
cosh-coordinates. In the second picture, “rooms” are attached along a
central strip by small gaps whose size is chosen so that edges on the
top and bottom of the strip (thick edge) have approximately the same
harmonic measure as the left side of the strip (thick edge) when viewed
from a point (white dot) on the axis of the domain (dashed line).

The picture shows two versions of the tree; on the left is the tree itself with a

single complementary component Ω, and on the right is tree in cosh-coordinates with

complement Ω′ = cosh−1(Ω). The second picture is easier to understand because of

the exponential changes in scale in the first picture. In cosh-coordinates there is a

central strip along which are attached “rooms” and the size of the opening leading

to each room is chosen so that

ρ(γj, xj) = ρ(xj, x0) +O(1),(11.1)

i.e., we have equality up to a bounded additive factor in 8.1. The gaps can easily be

chosen with the desired property by a continuity argument that decreases the each
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gap until the desired equality holds, plus an argument that shows that changes to

other gaps does not effect the hyperbolic distance associate to any particular gap by

more than O(1). Vertices must be added with geometric decaying spacing near the

endpoints of each gap to give the bounded geometry property.

With these choices, τ will have bounded derivative near the middle of each room

and along the top edge. This implies that {z : |g(z)| < R} will contain a disk of radius

comparable to 1 in each “room” and the union of these disks has infinite logarithmic

area. The quasiconformal change of variable φ preserves the strip in cosh-coordinates

and maps these disks to regions of Euclidean comparable area, so the entire function

f = g ◦ φ−1 disproves the area conjecture.

12. Application: a stronger counterexample to the area conjecture

We just constructed an entire function so that {z : |f(z)| < R} always has infinite

logarithmic area. We can strengthen this to a function so that {z : |f(z)| > ǫ} always

has finite Lebesgue area. There are several ways to do this with three singular points;

I will give an example using high degree critical points, but it is also possible using

two critical values and one finite asymptotic value (I leave this as an exercise for the

reader). I do not know if such an example is possible with only two finite singular

values.

Corollary 12.1. There is a function f ∈ S3 with critical values {−1, 0, 1} and no

finite asymptotic values so that area({z : |f(z)| > ǫ}) <∞ for every ǫ > 0.

Proof. The tract for this example is Figure 33. There are countably many bounded

components

Ωj = {z : ej + ǫj < |z| < ej+1, dist(z,R+) > ǫj},
that approximate a slit annulus and a single unbounded component Ω that surrounds

each of these bounded components (Ω is the shaded region in Figure 33). Assume

ǫj = e−2j.

We can think of Ω as a series of alternating annuli and rectangles joined end-to-

end. Fix a base point x0 and let γ be the axis of Ω with base x0. Let γn the part of

γ between its first crossing of {|z| = ej} and its first crossing of {|z| = ej+1}. The

hyperbolic length of γj is ≥ ej/ǫj ≥ e3j. Therefore the spacing of the V = τ−1(Z)

along ∂Ωj is O(e−e
3j

). Choose any basepoint for Ωj that is about distance ej from
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Figure 33. The tract for a S3 function so that {|f | > R} has finite
Lebesgue area for any R > 0. There are infinitely many bounded
components, but only one unbounded component (the shaded region).
The difficulty is to add vertices that give bounded geometry and satisfy
Theorem 7.2.

the boundary, and let ω denote harmonic measure with respect to this point. The

Euclidean length of an arc I on ∂Ωj satisfies

1

C
ℓ(I)2e−2j ≤ ω(I) ≤ Cℓ(I)e−j.

This is because if we normalized to unit size, harmonic measure of the sides would be

comparable to arclength measure, except near the corners where harmonic measure

is comparable to |z − c|ds where c is the corner (this can be seen by using
√
z − c to

“open” the corner to a C1 curve and using conformal invariance of harmonic measure).

Combined with our earlier remarks, we see that if we divide ∂Ωj into about e6j arcs

of equal harmonic measure, these arcs will each have Euclidean length between 1
C
e−2j

and Ce−5j. By our earlier remarks, these will contain many integer points for the

unbounded component and hence Theorem 1.1 applies. �

Hayman and Erdös [32] asked about the smallest possible growth rate for a function

f with area({|f | > R}) <∞, and this was answered by Goldberg [28] and A. Camera

[15] who showed that for such a f ,
∫ ∞ rdr

log logM(r, f)
<∞,
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where M(r, f) = sup|z|=r |f(z)|. Conversely, for any ϕ such that
∫ ∞ rdr

ϕ(r)
<∞,(12.1)

there is an entire function f with finite area level-set and such that log logM(r, f) =

O(ϕ(r)) for large enough r. By taking ǫk = ek/ϕ(ek) our example shows this f can

be taken in S, at least if we also assume the regularity condition
∑

j<k

ϕ(2j) = O(ϕ(2k)),

(however, since (12.1) implies ϕ grows at least like r2, this is not too restrictive).

13. Application: Wiman’s minimum modulus conjecture in S

Another result where we can show that extreme behavior among entire functions

is attained in S concerns Wiman’s problem on minimum modulus. For an entire

function f , we let

m(r) = min
|z|=r

|f(z)|, M(r) = max
|z|=r

|f(z)|.

By definition m(r) ≤ M(r), but it is interesting to ask how much smaller can m

be compared to M? Obviously we have to avoid zero’s of f , but it is reasonable to

ask if there is a finite α so that for any entire function, m(r) ≥ M(r)−α along some

sequence of radii tending to infinity? The function ez shows we can’t take α < 1.

Wiman proved in [50] that for any ǫ and any non-vanishing entire function f

m(r) > M(r)−1−ǫ,

for some sequence of r’s tending to ∞. He conjectured this was true in general and

this was verified by Beurling [8] in the special case |f(r)| = m(r) (i.e., the minimal

values are attained along R
+), but was disproved by Hayman in general [31]. We can

show a Hayman-type counterexample can be taken in S3.

Corollary 13.1. There are A > 0, r0 <∞ and an entire function f ∈ S3,0 so that

m(r) < M(r)−A log log logM(r)(13.1)

for all r > r0. Hence m(r) < M(r)−C for every C and r large enough.
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Proof. The tract is shown in Figure 34. In this case there are infinitely many bounded

components, all disks of radius 1, with centers distributed along a spiral curve of the

form

t→ (3 + 2t) exp(2πit), t ≥ 0.

The single unbounded tract is bounded by the curve γ1

t→ (2 + 2t) exp(2πit), t ≥ 0,

the bounded components and radial segments joining the bounded components to γ1

as in Figure 34.

Figure 34. The tract for a S3 function disproving Wiman’s con-
jecture. Like Hayman’s example, high degree critical points are dis-
tributed along a spiral so any circle centered at the origin comes close
to the center of one of the bounded components. Some estimate of
the hyperbolic metric in the unbounded tract is needed to verify that
Theorem 7.2 can be applied.

Let 0 be the base point of Ω. A bounded component Ωj in the nth spiral (corre-

sponding to a value of t = n + O(1)) has hyperbolic distance ≥ Cn2 from 0 (the

kth spiral has length ≃ k and
∑n

1 k ≃ n2). Therefore V = τ−1(Z) will have

about exp(Cn2) points on the boundary of Ωj and the separation between them

is O(exp(−Cn2)). Therefore we can apply Theorem 7.2 with a critical point of order

ǫ exp(C1n
2).
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Any large circle centered at the origin of radius r ≥ n will pass within O(1/n) of

one of the bounded components in at least the n/2th spiral. Thus there is a point on

this circle where our quasiregular function g is less than

(C2/n)
exp(C1n2) = exp((logC2 − log n) exp(C1n

2)) = O(exp(C3 exp(C1n
2))−

1

2
logn),

for large n. On the other hand, |τ | = O(exp(C3n
2)) at every point on the circle, so

M(r) ≤ 2 exp(C4 exp(C5n
2)).

Thus

log log logM(r) ≤ C6 log n,

so

m(r) ≤ C exp(C3 exp(C1n
2))−

1

2
logn)

≤ C exp(C4 exp(C3n
2))

−
C1

C3

C3

C4

1

2
log log logM(r)

≤ CM(r)−A log log logM(r)

This is the correct estimate, but is valid for the quasiregular function g, not the

entire function f = g ◦φ−1. However, φ is conformal except on T (r0) and this set has

area O(e−Cn
2

) in the nth spiral, so Dyn’kin’s estimate implies φ is conformal near ∞
with an error of size O(|z|−m)) for any m > 0 that we want. Taking m = 1 says that

φ maps a circle of radius n around the origin into an annulus of width O(1/n) and

hence the image curve will still pass within distance O(1/n) of the center of the same

bounded component. Thus the estimates above also apply to f . �

14. Application: folded functions on the disk

As noted in the introduction, the proof of Theorem 1.1 applies to domains other

than the plane. If we cut the unit disk into simply connected pieces and τ conformally

maps the components of Ω = D\T to Hr so that the induced partitions of ∂Hr satisfy

the conditions of Theorem 1.1, then we get a quasiregular function g on all of D that

extends the restriction of cosh ◦τ to D \ T (r0). The quasiconformal correction map

φ can be chosen to map D → D, so we end up with a holomorphic function f on D

that approximates cosh ◦ τ . Adapting one of our previous examples from the plane

to the disk gives:
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Corollary 14.1. There is a holomorphic function on the disk with only two critical

values so that {z : |f(z)| > 2} spirals out to ∂D as quickly as we wish.

See [27] for a discussion of such functions, first constructed by Valiron. This func-

tion is strongly non-normal in the sense of [42] and is both a finite type function in

the sense of Adam Epstein, [18], [19] and an Ahlfors islands map as in [20]. Other

examples constructed for the plane can also be adapted to the disk. e.g., using the

idea in Section 12 we can build a function f on D with three critical points so that

{z : |f(z)| > ǫ} has finite hyperbolic area for every ǫ > 0.

Figure 35. A curve spiraling out the boundary of the disk; this
curve gives the tree we use to prove Corollary 14.1.

15. Application: Belyi functions on the plane

Suppose T is a finite bounded geometry tree. Then Ω = C \ T is unbounded, con-

nected but not simply connected. There is a covering map σ : Hr → Ω. By rescaling,

we may assume that every side of T (there are only finitely many) corresponds to

an interval of length ≥ π in a periodic partition of ∂Hr. We can define a corre-

sponding periodic folding map and deduce that there is a quasiconformal covering

map ψ : Hr → Ω so that g = cosh ◦σ−1 is well defined and quasiregular. Then the

measurable Riemann mapping theorem gives a quasiconformal map φ of the plane so

that f = g ◦ φ−1 is entire and is a finite covering from φ(Ω) to U = C \ [−1, 1]. This

means f is a polynomial with critical values ±1. Moreover, φ’s dilatation is supported

in T (r0); if this has small area, then φ(T ) approximates T in the Hausdorff metric.

This shows that the results of this paper provide an alternate approach to the main
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result of [13]. The same argument works on a bounded domain where the boundary

is partitioned into a finite number of arcs with bounded geometry and we choose one

interior point to be mapped to ∞.

If Γ is a bounded geometry graph that partitions the plane into finite sided regions,

then for each region we can define a periodic covering map as above that satisfies the

τ -length ≥ π condition, and apply quasiconformal folding to make opposite sides of

every edge match. Thus for any bounded geometry partition of the plane C\Γ = ∪Wn

and any choice of a point zn ∈ Wn near the center of Wn, there is a meromorphic

function f that has exactly the three critical values ±1,∞, and so that f−1([−1, 1])

approximates Γ in the Hausdorff metric and f−1(∞) approximates Z = ∪{zn} in the

Hausdorff metric. See Figure 36.

Figure 36. For any bounded geometry partition of the plane into
finite sided regions, there is a Belyi function (critical points ±1,∞)
so that f−1([−1, 1]) approximates the boundary of the partition and
f−1(∞) approximates any choice of one point per region.

On a compact Riemann surface, a meromorphic function with exactly three criti-

cal values is called a Belyi function. Not every compact surface X supports such a

function (Belyi’s theorem [4] classifies such surfaces as a certain countable family of

algebraic varieties, so only countably many compact surfaces have a Belyi function),

but our methods show that such surfaces are dense in each Teichmüller space and

f−1([−1, 1]) can be taken to approximate (in an appropriate sense) any compact con-

nected set whose complementary components are simply connected. Belyi functions

on non-compact surfaces have been considered by Eremenko and Langley, e.g., [24],

[35] and [38].
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16. Application: folding a pair of pants

Adam Epstein [19] defines a finite type map f as a holomorphic function defined on

an open subset W of one compact Riemann surface Y and taking values in another

compact Riemann surface X, such that:

(1) The set S of singular values is finite.

(2) No puncture of W is a removable singularity of f .

(3) f is non-constant on every component of W .

The first condition means that there is a finite set S ⊂ X such that the map, when

restricted to the preimage of X \S, is a covering map onto X \S. Examples of finite

type maps include rational maps and Speiser class transcendental entire functions,

and the definition of finite type allows various results of the dynamics of such maps

to be generalized to other settings.

The methods of this paper can be used to construct examples in a more general

setting. For example, Figure 37 shows a graph T ⊂ W = C \ {a, b} so that W \ T
consists of three simply connected domains. Choose τ to be conformal on each

component and mapping a, b,∞ to ∞ respectively. It is easy to check that we can

choose vertices for T and the map τ so that the τ -size of every edge is ≥ π and

adjacent edges have images of comparable lengths. Thus taking each component to

be a R-component and applying the folding construction gives a quasiregular g on W

and a holomorphic f = g ◦ φ−1 on φ(W ) (since any two thrice punctured spheres are

conformally equivalent, we may assume φ(W ) = W ). Thus f has only two singular

values (the critical values ±1) and has essential singularities at {a, b,∞}. Thus f is

a finite type map from the thrice punctured sphere to the plane.

It is particularly interesting to construct finite type maps where the target X is

a compact, hyperbolic Riemann surface and W ⊂ Y = X; in this case the map can

be iterated. For example, if W is a disk in Y , just map W conformally to unit disk

and then follow by the universal covering map to X. As far as I know, all previously

known examples of finite type maps into hyperbolic targets are of this form or closely

related. However, we can construct examples whereW has more interesting topology

using quasiconformal folding.

A Riemann surface is called a “pair-of-pants” if it is conformally equivalent to a

planar domain with three boundary components. Using Koebe’s theorem for finitely
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a

b

Figure 37. This tree cutsW = C\{a, b} into three simply connected
regions. To make the τ -sizes≥ π, the spacing between vertices will have
to be larger than |z| near∞ and larger than |z−a|−3 near the punctures.

connected domains, we may take the boundaries to be circles or points. We say

the pair-of-pants is non-degenerate if none of the boundary components are points.

Every compact, hyperbolic Riemann surface has a decomposition into such pieces

(hyperbolic means the universal cover is the disk). See Figure 38.

=

Figure 38. A pair of pants is a planar domain; every compact,
hyperbolic surface can be decomposed into pieces like this bounded by
closed geodesics.

Let f be the finite type map on W = C \ {a, b} constructed above and let W ′ =

{z : |f(z)| < R}. Then W ′ is an open planar domain with three complementary

components and hence is conformally equivalent to some pair-of-pants Y . See Figure

39. Moreover, h = f/R mapsW ′ onto the unit disk and is a covering on D\{± 1
R
}. If

we precede h by the conformal map Y → W ′ and follow it by the universal covering

map to any hyperbolic Riemann surface X, we get a finite type map F from Y to

X. If X is first type (i.e., the limit set of the covering group is the entire circle) then

F has an essential singularity at every point of ∂Y . This happens if X is compact

and hyperbolic. If we choose X so that it contains Y (e.g., if X is two copies of
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Y glued along the boundaries), then we have a finite type map from a topologically

non-trivial open subset of X to all of X. This is our “interesting” finite type map.

|f(z)|>R

Figure 39. The set {z : |f(z)| ≥ R} has three components at
positive distance from each other. The complement of the closure is
an open set with three boundary components and hence is conformally
equivalent to some pair-of-pants.

The proof above builds a pair-or-pants that supports a finite type map (with just

two critical values) into any compact hyperbolic surface. By changing the value of

R we obtain another pair-of-pants that is clearly conformally distinct, so we actually

have produced a continuous 1-parameter family of such surfaces. We can also produce

different examples by altering the choice of τ on each component independently, or

by choosing the shape of the initial tree T differently, or by allowing more than two

critical values and taking functions quasiconformally equivalent to f . Given this

freedom, it seems reasonable, but not obvious, that all non-degenerate pairs-of-pants

have finite type maps into any compact, hyperbolic Riemann surface (but perhaps

the example of Belyi functions existing only on countably many compact Riemann

surfaces should make us cautious).

Next, we will produce a compact surface X of genus g ≥ 2, a closed disk D ⊂ X

and a finite type map X \ D → X. Start with a compact, hyperbolic surface X ′

and form a simply connected subregion U ⊂ X ′ by removing closed geodesics from

X. Choose a point a ∈ U and a curve γ that connects ∂U to a so that ∂U ∪ γ

can be made into a bounded geometry tree with τ -sizes ≥ π. See Figure 40. As

before, we get a holomorphic function f on a quasiconformally equivalent surface

X ′′ that has two critical values and an essential singularity at a. Restricting f/R to

W = {z : |f(z)| < R} gives a map to the disk that we can follow by the covering
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map to X ′. He and Schramm’s countable version of Koebe’s theorem [33] implies

the set W is conformally equivalent to X \D for some compact X and a closed disk

D ⊂ X. Thus mapping X \D → W → D → X, by the maps described above gives a

finite type map. The argument can be extended to give examples with any number of

disjoint disks removed. As with pairs-of-pants, this argument only produces examples

of such surfaces and it is not yet clear whether finite type maps will exists for every

surface of this type.

Figure 40. Building a finite type map from X \D to X. The picture
is clearer for the associated fundamental domain in D.

17. Application: a wandering domain in B

The Fatou set F(f) of an entire function f is the union of disks on which the

iterates of f form a normal family. The Julia set J (f) is the complement of the

Fatou set and is always non-empty, closed and uncountable (see e.g., the surveys [5],

[44]).

A wandering domain is a connected component of F(f) whose images under iterates

of f are all disjoint. Adapting the argument of Dennis Sullivan [48] for the rational

case, Alex Eremenko and Misha Lyubich proved in [23] and Lisa Goldberg and Linda

Keen proved in [30] that the Fatou set of a function in the Speiser class S cannot

have a wandering domain. However, the question of whether this is possible for a

function in B has remained open. We will use Theorem 7.2 to prove:

Theorem 17.1. There is an f ∈ B whose Fatou set contains a wandering domain.

Eremenko and Lyubich proved that if Ω is a wandering domain for f ∈ B, then the

iterates of f on Ω cannot tend to ∞. In our example, the orbits are unbounded, but
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return to a compact set infinitely often, as required by their result. The only previous

example of a wandering domain that does not iterate to ∞ was given by Eremenko

and Lyubich in [22]. It is currently an open question whether any entire function

can have a wandering domain with an bounded orbit. By a result of Bergweiler,

Haruta, Kreite, Meier and Terglane [7], every limit point of the orbit of a wandering

domain must be a limit point of the post-singular set P (f) (the union of iterates of

the singular set). In our case, the only limit points of P (f) are the iterates of ±1
2

which form real sequences tending to ∞. Our function is bounded on a curve tending

to infinity, so the all components of the Fatou set are simply connected by Lemma 4

of [22] (this is true for any function in B).
Rempe-Gillen and Milhaljević-Brandt have shown that a real function in B has no

wandering domains if the iterates of the singular set satisfy certain conditions [40].

In [25], Núria Fagella, Sébastien Godillon and Xavier Jarque have used the methods

in [40] to show that the function built here has no other wandering domains than the

“obvious” ones that are forced by the construction. Their proof modifies the proof

of Theorem 17.1 and verifies certain details of the proof that are left to the reader

here. They use their modified construction to build two functions f, g ∈ B so that

neither f nor g has a wandering domain, but both f ◦ g and g ◦ f do have wandering

domains.

Theorem 17.1 follows from:

Lemma 17.2. There is an f ∈ B, a disk D0 and an increasing sequence of integers

{nk} ր ∞ so that if we set Dn = f(Dn−1) for n ≥ 1, then

(1) The diameter of Dn tends to zero.

(2) dist(0, Dnk
) ր ∞, but dist(0, Dnk+1) ≤ 1 for all k = 1, 2, . . . .

It is fairly easy to see that the two properties in the lemma imply the Fatou set

of f has a wandering domain. First, the iterates of f are clearly normal on D0

since (1) implies every subsequence has a further subsequence that either approaches

∞ uniformly on D0 or converges to a finite constant. Thus D0 and all its images

are in the Fatou set. However, we claim they must all be in different components.

Suppose n < m and Dn and Dm were in the same component Ω of F(f). Since f

is a holomorphic map from Ω to f(Ω), the hyperbolic distance between Dm and Dn

cannot increase under iteration. If nk > m and we iterate nk +1−m times then Dm
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maps to Dnk+1 near the origin, but Dn maps to Dnk+1−m+n whose distance from 0

grows to ∞ with k for fixed n,m (because its (m−n)th iterate, Dnk
tends to ∞ with

k). The Julia set of f contains at least two points (in fact, a continuum of points by a

result of Baker in [2]) and the Fatou component containing the (nk+1−m)-th iterates

of Dm and Dn is in the complement of the Julia set. Thus the hyperbolic distance

between the iterates of Dn and Dm in any Fatou component is bounded below by

the hyperbolic distance in the complement of the Julia set, and this clearly increases

to ∞ with k. This contradicts the Schwarz lemma, i.e., the fact that the hyperbolic

distance between the iterates of Dn and Dm must stay bounded. Thus every disk Dn

is contained in a different component of the Fatou set and these components form

the orbit of a wandering domain.

We will first sketch the proof of Lemma 17.2 and then give the details. Our entire

function will map R to R and the point x0 = 1
2
will iterate to ∞. We will choose a

tiny disk D0 in the upper half-plane, just above 1
2
, and the orbit of D0 will follow the

orbit of 1
2
for several iterations, but the two orbits eventually diverge; the orbit of 1

2

remaining on the real line and the orbit of D0 moving away from the real line and

landing near a high degree critical point.

The critical point compresses the image of D0 (which has greatly expanded while

following the orbit of 1
2
) and maps it very close to its critical value, which we will chose

to be very near 1
2
. The process now repeats: the image follows the orbit of 1

2
again

until it diverges and lands near a different critical point, which compresses the image

again and returns it to another starting point near 1
2
. The starting points are closer

to 1
2
each time we return near the origin, and this allows the next expansive stage to

follow the orbit of 1
2
longer than the previous time. Thus the orbit ofD0 is unbounded,

but does not converge to ∞ (this oscillation is required by the result of Eremenko and

Lyubich). The degrees of the critical points are chosen so the compression near them

is greater than the expansion at earlier times, so the diameters of the iterates tend

to zero (but not monotonically). The critical values of our example will be {±1
2
,±1}

plus sequences that converge to ±1
2
(we can even say they converge within vertical

cones at these points and we can make the rate of convergence as fast as we as we

wish, but I don’t know any application for this extra information).
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Proof of Lemma 17.2. We start by describing a function f obtained by QC folding

that has only finitely many critical values and then we will describe how to make a

sequence of small perturbations to this function that create new critical values. The

limit of these perturbations will be the desired function with bounded singular set

and a wandering Fatou component.

We will build our function with Theorem 7.2, using only R-components and D-

components. These are arranged as in Figure 41. The arrangement is symmetric

with respect to both the real and imaginary axes, so our functions will satisfy

f(z̄) = f(z), f(−z) = f(z).

We will specify the construction in the first quadrant, the rest being filled in by

symmetry.

There is a horizontal half-strip

S+ = {x+ iy : x > 0, |y| < π

2
}

that is conformally mapped to Hr by λ · sinh. A positive integer λ will be chosen

below to make sure 1
2
iterates to ∞.

We also place disks

Dk = D(zk, 1) = D(πk + iπ, 1),

in the region above S+. These are mapped to the unit disk by the maps σ((z− zk)dk)
where σ is a quasiconformal transformation of the disk sending 0 to 1

2
that is conformal

on 3
4
D and {dk} is a sequence of integers tending quickly to infinity (below we will

specify two conditions that this sequence must satisfy). Our function f will have

critical points of degree dk in the disks Dk, with critical values ±1
2
. Such a function

cannot have a wandering domain since it is the Speiser class, but our construction

will perturb infinitely many of the critical values to form a sequence converging to 1
2
.

The perturbed function has an infinite, but bounded, set of critical values and will

also have a wandering Fatou component.

We then connect each disk Dk to ∂S+ by a vertical line segment on the line {ℜ(z) =
ℜ(zk)} and connect it to ∞ by a vertical ray on the same line. This produces vertical

regions that are almost half-strips, except for the indentations caused by the disks.

See Figure 41. We will let Sk denote the region that is between Dk and Dk+1. This

region is mapped to Hr by a conformal map that we choose so that the corresponding
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partition of ∂Sk is finer than the partitions induced by S+ or ∂Dk, ∂Dk+1 on the

common boundary arcs. This means that Theorem 7.2 can be applied and that all

the folding takes place in the Sk (so no folding occurs in S+ or Dk).

Figure 41. The tracts for our wandering domain example. The
points and arrows show the orbit of 1

2
. The wandering domain follows

this orbit for a while but eventually lands in one of the shaded disks,
where it is mapped back to a neighborhood of 1

2
and starts to follow

the orbit of 1
2
again.

Suppose {dk} is already fixed and φ is the quasiconformal map given by Theorem

7.2 so that f = g ◦ φ is entire, where g is the quasiregular function defined in the

theorem. The formula for g in these regions is given by

g(z) = cosh(λ sinh(z)),

on S+ \ T (r), and
g(z) = σ((z − zk)

dk),

on each Dk \ T (r). Restricting the foldings to the regions {Sk}, also means that φ

is conformal on S+ and each Dk. The dilatation of φ is supported inside T (r0), and

this neighborhood of T decays exponentially in |z|. In particular, Dyn’kin’s theorem

implies that we may normalize φ so it fixes 0, maps R 1-1 to itself and satisfies

φ(z) = z +
a1
z

+O(|z|−2)
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near ∞. Since φ is conformal on a strip of width π centered along R, we can deduce

that the image of this strip contains and is contained in strips of comparable width

and that φ′ is bounded and bounded away from zero on R. Moreover, these bounds

do not depend on λ (in fact, as λ increases, the neighborhood T (r0) decreases and φ

converges to the identity, so the bounds actually improve as λ grows).

Thus using the chain rule and the fact sinh(x) > x for x > 0, we get

f ′(x) =
d

dx
cosh(λ sinh(φ(x)))

= sinh(λ sinh(φ(x)))λ cosh(φ(x))φ′(x)

≥ λ2φ2(x)φ′(x)

≥ 16x

if we choose λ so that φ′ ≥ 4/λ. Integrating implies f(x) > 8x2, which certainly

implies 1
2
will iterate to ∞ under f (obviously a much better estimate is valid away

from 0 and 1
2
iterates to ∞ much faster than this estimate indicates).

Let x0 =
1
2
and define a sequence by xn = f(xn−1). By our previous remarks this

is an increasing sequence that converges to infinity. For each n choose an integer pn

so that |πpn − xn| is minimized. Let D̃n = Dpn and let z̃n = zpn be its center. Then

|xn −ℜ(z̃n)| ≤ π/2 and hence D̃n ⊂ Vn = D(xn, 5).

Let f j denote the jth iterate of f and consider the preimage of Vn under fn. This

map has a univalent branch on Vn that maps Vn to a neighborhood Wn of 1
2
, and by

the usual distortion theorems, 1
4
Dn ⊂ Vn (concentric disk, one quarter the radius) is

mapped to a region in the upper half-plane of comparable size and whose shape is a

uniformly bounded distortion of a disk. Thus the preimage of 1
4
D̃n contains a disk

Un of comparable size centered at the preimage of z̃n. Un has diameter comparable

to

rn = (
d

dx
fn(

1

2
))−1.

What happens to Un under iteration by f? It follows the iterates of 1
2
, but on

the nth iteration it leaves the strip S+ and enters the disk 1
4
D̃n. If we iterate f one

more time then the image of Un lands in the f -image of 1
2
D̃n. In D̃n the map f is φ

composed with

(z − z̃n)
dpn ,
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which is then composed with ρ. Our estimates on φ imply that it maps 1
4
D̃n into

1
2
D̃n when n is large enough. The power term maps 1

2
D̃n to a disk of radius

(
1

2
)dpn ,

centered at the origin and then ρ moves this disk to contain the point 1
2
. We choose

dpn to be so large that the radius of this disk is much less than rn+1 i.e.,

dpn ≫ log2
1

rn+1

.

This is the first of the two conditions that determine our choice of {dk}.
The condition on {dk}might appear circular, since it depends on rn, which depends

on f , which depends on φ, which depends on a choice of {dk}. However, as elements of

{dk} increase, Theorem 7.2 implies the dilatation of φ remains uniformly bounded and

is supported on smaller neighborhoods of T , so one can extract a subsequence that

converges uniformly on compact subsets. This means that the corresponding entire

functions f also converge uniformly on compact subsets of S+ which implies the rn’s

converge to non-zero limits. Thus each rn has a positive lower bound, independent

of how we choose the dk’s, and if we use these lower bounds to choose dpn , we get the

desired inequalities.

So the (n+1)st iterate of Un is back near 1
2
and is much smaller than Un+1, but is

not inside Un+1. If we can get fn+1(Un) ⊂ Un+1 then our induction will be complete

and we will have a disk with an unbounded orbit that keeps returning to D.

To get Un to return inside Un+1 it suffices to have f(z̃n) ∈ 1
2
Un+1. We do this by

composing the Möbius transformation σ that sent 0 to 1
2
in the definition of g with

another Möbius transformation σn that sends 1
2
to wn+1 (the center of Un+1). Thus

g now has a critical point in D̃n that has critical value wn, as desired. The points 1
2

and wn+1 are only O(rn+1) apart, so the new complex dilatation that is introduced

into g is bounded by O(rn+1) and is supported on an annulus of width O(d−1
pn ) along

the boundary of ∂D̃n. The corresponding correction we have to make to φ is very

close to the identity on the whole plane, but we only need for it to be close to the

identity on unit disks centered along the finite set {x0, . . . , xn+1}, say moving points

by less than 1
1000

· 2−n in each of these disks. This follows by taking dpn large enough,

and this is the second condition determining our choice of the sequence {dk}. (There
is no possible circularity here because we are simply using an estimate that says that
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if a K-quasiconformal map has dilatation supported in a set of area ǫ then the map

is within δ(K, ǫ, E) of the identity on the compact set E.)

These errors have been chosen to be summable over n, so making the desired

replacements in every D̃n gives a new entire function F so that the nth iterate of

the disk Un under F still lands inside D̃n and the (n+ 1)st iterate of Un lands inside

Un+1. Thus choosing any of the disks Un satisfies the conditions of the lemma and

proves that F has a wandering domain. By construction, the only critical values of

F are ±1, ±1
2
or are part of a sequence accumulating at ±1

2
, so the singular set is

bounded, i.e., f ∈ B. �

Various modifications of this construction are possible. For example, by choosing

Un to iterate into itself, we can create an attracting periodic cycle that approximates

the orbit of 1
2
for as many steps as we wish. This gives a sequence of attracting orbits

that limits on an escaping orbit.

18. Application: the strong Eremenko conjecture fails in S

The escaping set of f is defined as

I(f) = {z : fk(z) → ∞ as k → ∞}.

For functions in B, Eremenko and Lyubich [23] proved the Julia set of f is the closure

of I(f). Fatou had observed that in special cases (e.g., z → r sin(z)) this set contains

curves tending to ∞, and in [21] Alex Eremenko asked if every point of I(f) can be

connected to ∞ by a curve in I(f) (the strong Eremenko conjecture). In that paper

Eremenko also proved the crucial fact that the escaping set is always non-empty and

placed the study of I(f) at the center of transcendental dynamics.

The most striking recent results are due to Rottenfusser, Rückert, Rempe-Gillen

and Schleicher in [43]. They show the strong Eremenko conjecture is true for the

class of finite order entire functions in B, but an infinite order counterexample exists

in B. The techniques of this paper show that their example can be replicated in S.
We briefly sketch the argument, but refer to [43] for the details. The tree T we use

is illustrated in Figures 42. Let Ω = C \ T . Because of changes in scale, it is easier

to understand the example in cosh-coordinates Ω′ = cosh−1(Ω), as in Figure 43.

Here we see that Ω′ is horizontal half-strip that has arcs removed that force any

curve in Ω′ that goes to infinity to “double back” infinitely often. More precisely, we
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Figure 42. This is the tree for the counterexample to the strong
Eremenko conjecture in S. The tract is denoted Ω = C \ T . The
dashed line shows a geodesic to ∞. Because of the change of scales, it
is easier to understand this tract in cosh-coordinates. See Figure 43.

a2 b2
a1 b1

Figure 43. The domain Ω′ shown here is a 1-to-1 conformal image of
Ω in Figure 42 via the map cosh(Ω′) = Ω. Changing coordinates makes
the geometry easier to understand. Any curve in Ω′ that connects the
left side to ∞ must cross between the lines {x + iy : x = an} and
{x+ iy : x = bn} three times.

have points a1 < b1 < a2 < . . . , so that any such curve must cross the lines {x = a1},
{x = b1}, {x = a1}, {x = b1} in that order. We choose (an, bn) inductively as follows.

Suppose γ is any arc connecting the left side Ω′ to ∞, such that F (γ) ⊂ Ω′. Then

the subarc of γ between the first crossing of {x = an−1} and the last crossing of

{x = bn−1} has an image under F that is contained between {x = an} and {x = bn}.
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This means that any arc in Ω′ that connects {x = an} and {x = bn} has a F -preimage

that crosses between {x = an−1} and {x = bn−1} at least three times.

Figure 44. The conformal map F maps each copy of Ω′ confor-
mally to the half-plane. Thus each copy of Ω′ contains countable many
preimages of copies of itself. On the bottom, two copies are shaded
and possible preimages of these two copies are shown in the top (this
is a sketch, not a computation). Each preimage connects {x = a1}
and {x = b1} three times. The preimages of these preimages connect
these lines nine times. In the limit, the two lines are connected arbi-
trarily often by a connected component of the escaping set, hence these
components are not curves.

The methods of this paper produce a quasiregular function g so that g−1([−1, 1]) =

T and a entire function f that approximates g as closely as we wish; in particular

f−1([−1, 1]) is as close to T as we wish. We choose F : Ω′ → Hr so that f =
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cosh ◦F ◦ cosh−1 on Ω. Then iterating f is essentially the same as iterating F . The

comments above apply equally well to the original T or its approximation.

Rottenfusser, Rückert, Rempe-Gillen and Schleicher now argue as follows. If there

was a curve in the escaping set of f tending to ∞, then there must be a curve tending

to∞ in Ω′ that maps to itself under F . Since it crosses at least once between {x = an}
and {x = bn} it crosses between {x = an−1} and {x = bn−1} at least three times.

Proceeding by induction, the curve crosses between {x = a1} and {x = b1} at least

3n−1 times. Since n was arbitrary, this is impossible, so the escaping set contains no

curve going to ∞. Since bn/an → ∞, it is easy to see that our example is infinite

order, and indeed, another result in [43] says that the strong Eremenko conjecture

holds for finite order elements of B.
Rottenfusser, Rückert, Rempe-Gillen and Schleicher also showed there is an ele-

ment of B whose Julia set has no non-trivial path connected components, and this

example can also be constructed in S. Note that, as above, no new dynamical ar-

gument is needed; we simply apply our S approximation results to the dynamical

model constructed in [43].
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