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Abstract. We construct functions in the Eremenko-Lyubich class (transcenden-
tal entire functions with bounded singular set) whose level-sets have prescribed
geometry. We also give a related result for the Speiser class (finite singular set)
and discuss some differences between these two classes. The construction may be
considered as an approximation result using functions in class B that complements
recent approximation results of Lasse Rempe-Gillen.
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1. Introduction

The singular set of a entire function f is the closure of its critical values and finite

asymptotic values and will be denoted S(f). The Eremenko-Lyubich class B consists

of functions such that S(f) is a bounded set (such functions are also called bounded

type). In [3] Eremenko and Lyubich showed that if S(f) ⊂ DR = {z : |z| < R}, then

the inverse image Ω of D∗
R = {z : |z| > R} under f is a disjoint union of analytic,

unbounded simply connected domains and that f acts a covering map f : Ωj → D
∗
R

on each component Ωj of Ω. Which disjoint unions of analytic, unbounded simply

connected domains can arise in this way? The purpose of this note is to show that,

essentially, they all do.

If f ∈ B and S(f) ⊂ DR, we call Ω = {z : |f(z)| > R} a B-level-set and each

connected component is called a tract of f . By normalizing f , we will assume for the

rest of the paper that R = 1. On each tract there is a conformal map τj : Ωj → Hr =

{x + iy : x > 0} so that f(z) = exp(τj(z)) on Ωj. The collection of these conformal

maps defines a holomorphic map τ : Ω → Hr. See Figure 1.

exp

τ

f

x > 0

|z| > 1 

|f| > 1

Figure 1. The level-set Ω = {z : |f | > 1} is a union of unbounded,
smooth, simply connected tracts and f acts as a universal cover on
each tract to D

∗ = {z : |z| > 1}. On each tract f(z) = exp(τ(z)) where
τ is a conformal map from the tract to the right half-plane.

Since S(f) is compact, there is a ρ > 0, S(f) ⊂ {z : |z| ≤ e−ρ} and hence

Ω′ = {z : |f | > e−ρ} contains Ω and also consists of simply connected components.
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It is locally finite (only a finite number of components meet any compact set) and on

each component τ is continuous and 1-to-1 at infinity (zn → ∞ in Ωj iff τj(zn) → ∞).

Conversely, we claim these conditions essentially characterize B-level-sets, at least in

a quasiconformal sense:

Theorem 1.1. Suppose ρ > 0 and Ω′ is a union of disjoint, locally finite, unbounded

simply connected regions and τ : Ω′ → Hr − ρ = {x + iy : x > −ρ} is conformal

and continuous and 1-to-1 at ∞ on each component of Ω′. Then there is a quasi-

regular function g that equals eτ on Ω = τ−1(Hr) and |g| ≤ 1 off Ω. In particular,

Ω = {z : |g(z)| > 1} is the level-set of a quasi-regular function of bounded type.

Instead of defining a quasi-regular function of bounded type directly, we simply

note that the measurable Riemann mapping theorem implies that any quasi-regular

function g is of the form g = f ◦φ for some entire function f and some quasiconformal

map φ : R2 → R
2. We say that g has bounded type if f does. Thus every Ω in

Theorem 1.1 is the QC image of some B-level-set. This is what we meant above

when we said that this condition “essentially” characterizes bounded type level-sets.

In fact, we can be much more precise about the quasiconformal map φ that takes

Ω to a B-level-set. Note that the points 2πiZ ⊂ ∂Hr partition the boundary of Hr

into equal sized segments. Thus the points f−1(1) = τ−1(2πiZ) partition ∂Ω into

arcs. We call this a conformal partition of ∂Ω, or the partition induced by τ . Given

an arc J in the partition, let

J(r) = {z : dist(z, J) < r · diam(J)}.

We call this an r-neighborhood of J . The union of r-neighborhoods over all partition

arcs defines an open neighborhood of ∂Ω that we denote TΩ(r). We just write T (r)

if the set Ω is clear from context.

Since τ extends to Ω′ and maps each component conformally to Hr − ρ, the usual

distortion theorems for conformal maps imply all the arcs in the conformal partition of

∂Ω have bounded geometry with uniform bounds that depend only on ρ. Moreover,

adjacent arcs have comparable lengths (again with a constant depending only on

ρ). If a component of Ω is “large” compared to a half-plane, say Ω0 = {z : 0 <

arg(z) < π + ǫ} then the partition elements have lengths that increase to ∞. If
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Figure 2. The points f−1(1) ⊂ ∂Ω partition ∂Ω into arcs corre-
sponding to equal length segments on ∂Hr via τ . Because τ extends
past ∂Ω to a map of Ω′ onto {x + iy : x > −ρ}, every arc of ∂Ω has
uniformly bounded geometry with bounds depending only on ρ. The
figure is not a computation; the points on ∂Ω are not exactly placed,
but illustrate that adjacent arcs have comparable lengths.

Ω0 = {z : 0 < arg(z) < π − ǫ}, the partitions lengths tend to zero. If Ω0 is a

half-strip, they tend to zero exponentially fast.

The following implies and refines Theorem 1.1.

Theorem 1.2. Suppose Ω is as in Theorem 1.1. Then there is a f ∈ B and a K-

quasiconformal map φ of the plane so that f ◦ φ = eτ on Ω, f ◦ φ is bounded off Ω

and φ is conformal off T (r) \ Ω (in particular, it is conformal on Ω). The constants

K, r <∞ depend on ρ but are otherwise independent of Ω and τ .

For each positive integer n we can find fn ∈ B so that fn ◦ φn = enτ on Ω. Since

nτ maps Ω onto Hr − nρ ⊃ Hr − ρ, then the quasiconstant K of φn is uniformly

bounded, but the support of φn shrinks down to ∂Ω as n → ∞. Thus φn tends to

the identity on compact sets of R2 and we get:

Corollary 1.3. Suppose Ω is as in Theorem 1.1. Then there is a sequence {fn} ∈ B

and quasiconformal maps {φn} with uniformly bounded quasiconstant K so that Ωn =

{z : |fn(z)| > 1} = φn(Ω) converges to Ω in the Hausdorff metric on any bounded

subset of the plane.
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Under certain circumstances, one can actually prove Ωn converges to Ω in the

Hausdorff metric on the whole plane. For example, a result of Dyn’kin [2] on pointwise

differentiability of quasiconformal maps implies this is true if area(T (r) ∩ D
∗
t ) =

O(t2−4K−ǫ) for some ǫ > 0. Estimates like this can often be proven with explicit

calculations if Ω is “thin” near infinity. For example, the tracts in Figure 3 have

finite in-radius, and we can use this to prove that area(T (r) ∩ D
∗
t ) tends to zero

exponentially fast in t (see [1] for details of this calculation). Hence these domains

can be uniformly approximated (on the whole plane) by B-level-sets.

Figure 3. Examples where Theorem 1.2 applies and we have good
estimates for φ. If we take Ω′ to be the complement of the spiral
curve on the left, we get a tract Ω for class B that spirals to ∞ as
quickly as we wish. Taking Ω′ to be the cusp region on the right
we obtain f ∈ B that grows as quickly on R

+ as we wish; moreover,
area({z : |z| > r, |f(z)| > 1}) tends to zero as quickly as we wish.

Theorem 1.2 makes it very simple to construct functions in class B and can reduce

certain constructions in transcendental dynamics to simply drawing a picture of an

appropriate tract or level-set. In particular, Theorem 1.2 above and Theorem 3.1

from [9] imply

Corollary 1.4. Suppose that Ω and τ are as in Theorem 1.1 and that Ω ⊂ D
∗ = {z :

|z| > 1}. Then there is f ∈ B such that f and g = eτ are quasiconformally conjugate

on D
∗, which contains the Julia sets of both maps.

The assumption that {z : |f(z)| ≥ 1} = Ω ⊂ D
∗, says that f is “disjoint type”

(see Proposition 2.8 of [8] for several equivalent formulations of this condition). Since

f is disjoint type, one can show its Julia set consists exactly of those points whose

iterates stay inside Ω forever. Similarly, the Julia set of g is defined to be the set of
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points whose iterates stay inside Ω forever. I thank Lasse Rempe-Gillen for pointing

out this corollary and for allowing me to include it here. He uses the corollary (and

related results from [1]) in his paper [10] to build Julia sets for B and S with exotic

properties, e.g. connected components that are pseudo-arcs.

The proof of Theorem 1.2 is fairly simple; we sketch it here, leaving the details

for later. Let W be the interior of C \ Ω. It is simply connected, non-empty and

not the whole plane, so there is a conformal map Ψ : W → D. This map sends each

component of ∂Ω to an open arc Ij ⊂ T and E = T \ ∪jIj is a closed set of zero

Lebesgue measure (it is the conformal preimage of the single point ∞). Next we

construct a Blaschke product B on the disk so that B ◦ Ψ approximates eτ on ∂Ω.

This is a standard exercise involving Carleson measures and interpolating sequences

in the disk. We then use a quasiconformal “glueing” to create a quasiregular function

g on the plane that agrees with eτ on Ω \ T (r) and agrees with B ◦ Ψ in W \ T (r),

and then apply the measurable Riemann mapping theorem to build a quasiconformal

map φ so that f = g◦φ−1 is entire. The only critical points of f correspond to critical

points of B and hence have image inside D. Thus f ∈ B.

The class S ⊂ B consists of those functions for which S(f) is a finite set. S was

named after Andreas Speiser by Eremenko and Lyubich (however, Eremenko has

pointed out that Teichmüller [11] was the first to consider special properties of entire

functions with finite singular set). Class S is more restrictive than B in some ways

(e.g., functions in S can’t have wandering domains, whereas those in B can, [1], [3],

[6]), and it is an interesting problem to understand the differences between the classes

more clearly. Here is the version of Theorem 1.2 for class S.

Theorem 1.5. Suppose Ω is as in Theorem 1.1. Then there is a f ∈ S and a K-

quasiconformal map φ of the plane so that f ◦ φ = eτ on Ω and φ is conformal on

Ωc. The constants K, r < ∞ depend on ρ but are otherwise independent of Ω and

τ . We may take f to have no finite asymptotic values, exactly two critical values,

± exp(−ρ/2), and so that every critical point has degree ≤ 4.

This is very similar to Theorem 1.2, but with two important differences. First, the

dilatation of φ is now supported on C \ Ω instead of T (r) \ Ω. Second, Theorem 1.5

omits the phrase “and f ◦φ is bounded off Ω”. Thus Ω need not be the entire level-set

of f ; it is merely a union of connected components of {z : |f | > 1}. Thus any B-tract
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is the QC image of a S-tract, but (as we shall see below) not every B-level-set is the

QC image of a S-level-set. In other words, functions in S and B do not differ because

of the geometry of individual tracts, but because of how the tracts “fit together” to

form a level-set.

Suppose f ∈ S and S(f) ⊂ D. As before, assume dist(S(f), ∂D) = 1− e−ρ and let

δ = min{|a− b| : a, b ∈ S(f), a 6= b},

and η = min(1 − e−ρ, δ). For ǫ < η/4 the disks of radius ǫ centered at points of

S(f) are pairwise disjoint (even have disjoint doubles) and all lie inside D. Thus the

pre-image of such a disk is disjoint from Ω = {z : |f(z)| > 1} and consists of simply

connected components. If a ∈ S(f) let Ω(a, ǫ) = f−1(D(a, ǫ)) be such a pre-image.

A component of Ω(a, ǫ) is either bounded and contains a critical point with critical

value a, or is unbounded and has asymptotic value a along some unbounded path γ

in the component. The points f−1(a+ ǫ) partition ∂Ω(a, ǫ) into arcs with uniformly

bounded geometry, just as f−1(1) partitions ∂Ω. Let X = D \
⋃

aD(a, ǫ), where the

union is over a ∈ S(f). Then X is a “Swiss cheese”, i.e., disk with finitely many

disjoint subdisks removed. For functions f ∈ S, the preimage of this set must be

“small” in the sense that is lies close to ∂Ω = {z : |f(z)| = 1}:

Theorem 1.6. For any ǫ < η/4, there is a r < ∞ so that f−1(X) ⊂ TΩ(r). For

each partition arc I of ∂Ω(a, ǫ) there is a partition arc J of ∂Ω so that I ⊂ J(r) and

J ⊂ I(r); thus |I| ≃ |J | ≃ dist(I, J).

Here |I| denotes the diameter of I (since these arcs have uniformly bounded ge-

ometry this is also comparable to their length). The theorem says that each comple-

mentary component W of T (r) ∪Ω is contained in some component of some Ω(a, ǫ).

If W is unbounded, then a must be an asymptotic value of f . From this it is easy

to see that the half-strip S = {x + iy : x > 0, |y| < 1} cannot be the QC image of

any S-level-set for a function with no finite asymptotic values. In Section 1.7 we will

also eliminate functions with asymptotic values and prove S is not the QC image of

any S-level-set. On the other hand, Theorem 1.2 implies S is the QC image of some

B-level-set. Thus

Theorem 1.7. There is a B-level-set that is not the QC image of any S-level-set.
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Very roughly, our results say that the tracts of a function in B can be separated

by large gaps and only need be disjoint and locally finite. Moreover, τ on each tract

can be chosen independently of the choices on other tracts. However, for class S, the

choice of τ on different tracts must be related to each other and the corresponding

partitions of the tract boundaries must have nearby elements with comparable sizes.

Our proof of Theorem 1.2 is self-contained, but our proof of Theorem 1.5 depends

on a construction of Speiser class functions from [1]. The results in this paper were

motivated by the approximation results of Lasse Rempe-Gillen in [9]. He proves a

stronger form of approximation, but for a domain Ω with a single connected compo-

nent and satisfying greater regularity than used here (he assumes Ω = τ−1(Hr) where

τ is a conformal map of Ω′ to {x+ iy : x > −1− c log(1 + |y|)}).

The construction in [1] produces functions in class S without extra tracts, but

requires Ω to satisfy certain geometric properties that are usually easy to verify

in particular applications. These properties are another reflection of the difference

between B and S. [1] can be considered as a more intricate version of the current

paper that gives more precise control over the constructed function.

The remaining sections of the paper are as follows:

Section 2: Construct simple folding maps.

Section 3: Prove a simple estimate on interpolating Blaschke products.

Section 4: Prove Theorem 1.2.

Section 5: Prove Theorem 1.5.

Section 6: Prove Theorem 1.6.

Section 7: Prove Theorem 1.7.

2. Simple foldings

In this section we construct quasiconformal self-maps of Hu that we call “simple

foldings”. These will be used in the proof of Theorem 1.2. The analogous step in the

proof of Theorem 1.5 is a much more complicated folding map, whose construction

takes up most of [1].

Lemma 2.1. Suppose n is odd and I1, . . . , In is the partition of I = [0, n] into n unit

intervals. Let Q = I × [0, 1]. Then there is a quasiconformal map φ : Q → W ⊂ Q

so that
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(1) φ is the identity on ∂Q \ I.

(2) φ is linear on each Ij.

(3) φ(I1) = I.

(4) φ(Ik) = φ(In−k+2) for k = 2, . . . , (n+ 1)/2.

Proof. The proof is a picture, namely Figure 4. For clarity we vertically stretch Q

into a square Q′, and then compress it back to a rectangle. We define the map

φ : Q′′ → W by giving compatible finite triangulations T1 of Q′ and T2 of W . This

means that there is a 1-to-1 correspondence between the triangles in T1 and T2 such

that two triangles in T1 share an edge iff the corresponding triangles in T do. If this

is the case, then on each triangle in T1 we define φ to be the unique affine map to the

corresponding triangle in T2. This gives a piecewise linear map of Q′ to W . Thus all

that remains to do is to draw the triangulations, verify compatibility, and verify the

boundary conditions in Lemma 2.1. These are all apparent from Figure 4.

Figure 4. The pictorial proof of Lemma 2.1 for n = 5.

�

3. An estimate for certain interpolating Blaschke products

Recall that the pseudo-hyperbolic metric on D is given by

ρ(z, w) = |
z − w

1− w̄z
|.

The usual hyperbolic metric ψ can be written in terms of ρ as

ψ = log
1 + ρ

1− ρ
,

(see page 5 of [7]), but ρ is sometimes easier to compute with. We shall use the

observation that if f : D → D is holomorphic, then f(z) = 0 and ρ(z, w) ≤ λ imply

|f(w)| ≤ λ (the Schwarz lemma). Also, if z, w are on the same radius of D and

1− |z| > 1−|w|
1−λ

, then ρ(z, w) > λ.
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Suppose E ⊂ T is compact and I = {Ij} are the connected components of T \ E.

Suppose that each Ij is partitioned into intervals so that adjacent intervals have

comparable lengths, that the length of any interval is less than the distance to E and

the lengths only tend to zero as we approach E. This gives a partition of T \E that

we denote J = {Jk}.

Suppose 0 < λ < 1 (a precise value of will be chosen below in order to satisfy

certain estimates; think of λ near 1, so 1− λ is small). For each element Jk of J let

zk ∈ T be its center point and define

wk = zk(1−
ℓ(Jk)

1− λ
).

This point is the vertex of a “tent” with base Jk and that is approximately (1−λ)−1

times higher than it is wide. Thus viewed from wk, the interval Jk has harmonic

measure about 1− λ.

Joining the points {wk} for all the intervals Jk in the partition of a single interval

I ∈ I defines a curve γI that joins the endpoints of I through D. The subdomain

of D bounded by I and γI will be denoted by VI and the union of these subdomains

over all I ∈ I will be denoted V . Let V ′ ⊂ V be the image of V under the map

z → z/
√

|z|. Near the boundary this map approximately halves the distance to the

boundary, so ∂V ′
I ∩ D is a curve that lies approximately halfway between γI and I.

Figure 5. Joining the points wk creates the curve γ and the region
V between γ and ∂D. In this figure λ = 1/2; Each point wk is centered
above an interval Jk at height twice Jk’s length. Black dots indicate
the endpoints of I and white dots the endpoints for J . The region V ′

is bounded by a curve about halfway between γ and ∂D.

For each component γI of ∂V ∩D, choose points {an} along ∂V ∩D that are spaced

approximately unit distance apart in the pseudo-hyperbolic metric (since the points
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wn are spaced about distance 1− λ apart, there will be about one point an for every

(1−λ)−1 wn’s). If K is any arc on T and Q is the Carleson square with base K, then
∑

ak∈Q

1− |ak| ≤ Cℓ(K).

This implies the sequence is an interpolating sequence (see Chapter VII of [7]) and

hence the corresponding Blaschke product

B(z) =
∏ |an|

an

z − an
1− ānz

,

converges and is an interpolating Blaschke product. In particular, there is a δ > 0 so

that |B(z)| > δ whenever infk ρ(z, ak) > δ.

Lemma 3.1. There is C <∞ so that for B as above,

1

C

(1− λ)

ℓ(Jk)
≤ |B′(z)| ≤ C

(1− λ)

ℓ(Jk)

for all z ∈ Jk ∈ J .

Proof. This is a standard estimate involving Poisson kernels (e.g., see Chapter VII of

[4]), but we give the proof for completeness.

B extends to be holomorphic in the region obtained by reflecting V across the

circle and is uniformly bounded on the region V ′ and its reflection across the circle.

The region V ′ contains a disk of radius ≃ ℓ(Jj)/(1 − λ) centered at zk ∈ Jk, so the

Cauchy estimate implies |B′| ≤ C(1− λ)/ℓ(Jk) for some uniform C.

Since the Blaschke product B maps each arc in I into the circle T,

|B′(z)| =
∂

∂θ
arg(B(reiθ)),

for z = reiθ on such an arc. Moreover,

∂

∂θ
arg(B(eiθ)) =

∑

k

Pak(e
iθ),

where Pa denotes the Poisson kernel with respect to the point a. This kernel satisfies

the estimates
1

C

1

1− |a|
≤ Pa(e

iθ) ≤ C
1

1− |a|

for eiθ on the interval Ka of length (1 − |a|) centered at a/|a|. This gives the lower

bound and finishes the proof of the lemma. �
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4. Proof of Theorem 1.2

Let notation be as in the introduction and let K denote the partition edges on ∂Ω

induced by τ . Then W = C \ ∪jΩj is a simply connected domain, so it is the image

of the unit disk under a Riemann map Φ : D → W . Each preimage Ij = Φ−1(∂Ωj) is

an open arc on the unit circle, T = ∂D and the elements of K map to intervals {Jk}

that partition each of the Ij’s. Moreover, adjacent J ’s have comparable length, with

a uniform constant (depends only on ρ). We let I be the collection of intervals {Ij}

and let J denote the Jk’s.

We now apply Lemma 3.1. Suppose λ has be chosen close enough to 1 so that

ǫ

ℓ(Jk)
≤ |B′(z)| ≤ πℓ(Jk),

for all k and for some fixed ǫ > 0. This means that the image of Jk under B is less

than a half-circle but more than a fixed fraction of the unit circle. Let X ⊂ ∪jIj be

the countable set of points where B = 1. This partitions each arc Ij into subarcs.

Since B maps each of these subarcs onto a full circle, each subarc must hit at least 3

of the Jk, and hits at most a bounded number of the Jk’s.

Let Y = Φ(X). These are points on ∂Ω that partition each component ∂Ωj into

arcs. We call this partition L. Each element of L hits at least three elements of K

(since these correspond to the arcs {Jk} on the circle) but at most a bounded number

of such elements. We can construct a quasiconformal map ψ : D → D that is the

identity on X and off V and so that ϕ = φ ◦ Φ−1 is length respecting on L (length

respecting means that |ϕ′| is constant on elements of L, i.e., lengths of subsets of

element of L are multiplied by a constant that may depend on the element).

Thus each curve ∂Ωj is partitioned in two ways: the partition induced by the

conformal map τ of Ωj to a half-plane and the partition induced using the map Φ

from the unit disk to W . Elements of the two partitions are “similar in size” in the

sense that each element hits several only a uniformly bounded number of elements

from the other partition. In fact, we can perturb K slightly so that each element of

L is actually a finite union of elements from K. This is possible by a simple lemma

from [1]:

Lemma 4.1. Suppose I = {Ij} is a partition of the real numbers such that every

interval has length ≥ 1 and there is an M <∞ so that adjacent intervals have lengths
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within a factor of M of each other. Then there is a bi-Lipschitz map of the real line

that sends every element of the partition to an interval with odd integer length (the

bi-Lipschitz constant only depends on M). This map has a quasiconformal extension

to the upper half-plane that is the identity outside the strip {x+ iy : 0 < y < 1}.

By definition, iτ maps K to the integer partition of R and we define I to be the

image of L. Now apply the lemma to define a map ψ that send the partition I to

a partition L with integer endpoints and odd, uniformly bounded, lengths. We can

now apply the construction in Section 2 to construct a quasiconformal folding map

ψj of each Ωj into a subdomain Wj of itself that either identifies an element of K

with another element of K or with an element of L. Moreover, we can take ψj to be

length respecting on each element of K.

Thus setting g = exp ◦τj ◦ψ
−1
j on Wj and g = B ◦ψ ◦Φ on W defines a continuous

quasi-regular function on the plane. Thus there is a quasiconformal map φ of the

plane so that f = g ◦ φ is entire. Clearly f has no critical values in {|f | > eR} and

hence is in B. Moreover, the strip {x+ iy : 0 < y < 1} and the set V both map into

T (r) (under τ−1 and Φ respectively) so φ is only non-conformal in T (r).

This is not quite what was claimed in the theorem, since the dilatation of φ is

supported in T (r), instead of T (r) \ Ω. However, we can fix this with a simple

trick. Take Ω′′ = τ−1(Hr − ρ/2). Then Ω ⊂ Ω′′ ⊂ Ω′ and ∂Ω′′ has a partition that

corresponds 1-to-1 with the partition of ∂Ω. Corresponding partition elements have

comparable sizes that are also comparable to their distance apart, so for any s > 0

we can choose an r > 0 so that T ′′(s) = TΩ′′(s) ⊂ TΩ(r). So if we construct φ with

dilatation supported in T ′′(s) \ Ω then it is also supported in T (r) \ Ω.

To do this, we apply the construction given above to Ω′′ with one small change.

Fix a number M > 1 and define a horizontal stretch

ν(x, y) = (min(
2M

ρ
(x+

ρ

2
), x+M), y).

This takes the vertical strip {−ρ
2
< x < 0} to the strip {0 < x < M} quasiconfor-

mally, and translates Hr to Hr+M . Then σ = τ−1◦ν ◦τ is a QC map of Ω′′ → Ω and

Ω′′ \ Ω is mapped to a region that covers T (r) ∩ Ω if M is large enough (depending

only on r). Defining g = exp ◦τj ◦ ψj ◦ σ, gives a quasiregular function on the plane
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(the boundary values of g on ∂Ω′′ are not changed by σ since σ fixes ∂Ω), but now

the dilatation is supported in TΩ(r) \ Ω, as desired.

To prove the final statement in the theorem, we use a theorem of Walsh [12] that

all the critical points of a Blaschke product are inside the hyperbolic convex hull of

the zeros. For the product we constructed, this means they all lie in D \ V . It easy

to see that |B| < 1− η on ∂V . By the maximum principle this means |B| ≤ 1− η on

D \ V and hence at every critical point. The lower bound follows because the zeros

of our Blaschke product form an interpolating sequence with a uniformly bounded

constant. This implies there are positive ǫ and δ, depending only on our choice of λ,

so that

(1) |B| > δ outside a ǫ-neighborhood of the zero set

(2) B′ never vanishes inside this ǫ-neighborhood.

Thus |B| is bounded below on its critical set, and this completes the proof of Theorem

1.2.

5. Proof of Theorem 1.5

We start by recalling a result from [1] that contains most of the work needed to

prove Theorem 1.5.

Suppose f ∈ S and the critical values of f are exactly {−1, 1}. Let T = f−1([−1, 1]).

Let U = C\[−1, 1] and let Ω = f−1(U). Then each component of Ω is siply connected

and f acts as a covering map from each component of Ω to U . The boundary of Ω

is an infinite tree where the vertices are the preimages of {−1, 1}. Given r > 0 and

and edge e on ∂Ω we define a neighborhood

e(r) = {z : dist(z, e) < diam(e)},

and define a neighborhood of ∂Ω by takeing the union over all edges. As before this

neighborhood will be denoted T (r) or TΩ(r). For each connected component of Ω

there is a conformal map τ to Hr so that f = cosh ◦τ . The edges of ∂Ω are mapped

to intervals of length π on ∂Hr.

Now suppose we start with an infinite tree T and want to construct an f so that

T = ∂Ω = ∂f−1(U). We say the graph T has “bounded geometry” if:

(1) every edge is twice differentiable with uniform bounds.

(2) edges meet at angles uniformly bounded away from zero.
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f cosh

exp
τ

_
z
1

2
_1 (z+   )

Figure 6. A function with two critical values at {−1, 1} and no finite
asymptotic values. T = f−1([−1, 1]) is a tree with vertices labeled ±1
(shown as black and white dots). τ is a conformal map from each
complementary component of T to the right half-plane. f = cosh ◦τ .

(3) adjacent edges have uniformly comparable lengths.

(4) non-adjacent edges e, f satisfy dist(e, f)/diam(e) > 0 with a uniform bound.

The following is the main result from [1] for constructing functions in S.

Theorem 5.1. Suppose T is a bounded geometry infinite tree and each component

of Ω = C \ T has a conformal map τ : Ω → Hr that maps each edge to an interval

of length ≥ π on ∂Hr. Then there exists f ∈ S with critical values ±1, a r > 0 and

a K-quasiconformal φ so that f ◦ φ = cosh ◦τ off T (r) and φ is conformal off T (r).

The constants r,K only depend on the bounded geometry constants of T .

The proof of Theorem 1.5 from Theorem 5.1 starts just like the proof of Theorem

1.2. Let W = C \∪jΩj. This is a proper simply connected domain in the plane so by

the Riemann mapping theorem there is a conformal map Φ : D → W . Each ∂Ωj has

an open arc Ij ⊂ T as a preimage The partition K of ∂Ωj induced by τ corresponds

via Φ to a partition J of Ij such that adjacent intervals in J have comparable lengths

(with a fixed constant, independent of j). In particular, we can choose a point vj for

each Ij so that the distances from vj to each endpoint of Ij are comparable. We call

this the “approximate center” of Ij.
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Consider a Whitney decomposition of the disk, as illustrated in Figure 7. This

consists of a central disk of radius 1/2. The annulus {1
2
< |z| < 3

4
} is divided into

eight equal sectors, the annulus {3
4
< |z| < 7

8
} into sixteen sectors, and so on. Each

box has two radial sides and two circular arc sides concentric with the origin. The

arc closer to the origin is called the top of the box and the arc further from the origin

is called the bottom. Each bottom arc is divided into two pieces by the tops of the

Whitney boxes below it. We call these the left and right sides of the bottom arc (left

is the one further clockwise).

Figure 7. On the left is the Whitney decomposition of the disk. On
the right is an enlargement near the boundary. Any boundary point can
be joined to the central disk by a path moving along edges of Whitney
boxes: move radially towards the origin whenever possible, and move
counterclockwise (right in the picture) otherwise.

Each point on the unit circle can be connected to the central disk by a path lying

on the decomposition boundaries that moves towards the origin whenever possible

and moves counterclockwise otherwise. See Figure 7. Note that such a path never

contains the “left-half” of the bottom of any Whitney box. For each arc Ij we connect

the approximate center of Ij to the central disk by such a path. The union of all

such paths is a closed set and divides the disk into countably many simply connected

subdomains. Every such subdomain is an infinite union of Whitney boxes; a finite

union would contain a box closest to the unit circle and the bottom of this box would

be on a path, which is impossible since the left side of the bottom can’t be on any

path.
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Thus every subdomainW has a boundary that hits T, and ∂W ∩T must be a closed

interval (otherwise there is a component of ∂W \T that doesn’t intersect the central

disk, which is impossible by construction). This interval must hit E (otherwise two

paths where generated in the same component of T\E, contrary to the construction),

and it must hit E in a single point (otherwise W separates some component I of

T \ E from the central disk, contradicting the fact that the approximate center of

Ik is connected to the central disk). Thus we can choose a conformal map of each

subdomain W to Hr with the single point ∂W ∩ E mapping to ∞.

If we add the vertices of the Whitney graph to ∂W there will be infinitely many

of them accumulating to some partition point vj, and this prevents ∂W from being a

bounded geometry tree. To fix this, we choose a dyadic Carleson box Qj containing

vj with base Jj ⊂ Ij and
1

8
ℓ(Ij) ≤ ℓ(Jj) ≤

1

4
ℓ(Ij).

We then replace the arc of ∂Wj ∩Qj by a line segment with the same endpoints. The

length of this segment is comparable to the distance between vj and its neighboring

partition points and is also comparable to the adjacent segment in the path ∂Wj \Qj.

Now ∂W is a bounded geometry tree when we add the partition points of J . If we

had a conformal map from each component W to Hr that maps each edge to length

≥ π then we would could apply Theorem 5.1 and would be done. However, this need

not be the case. In particular, some of the elements of J might be so short that

they have small image. However, we can fix this by subdividing each W . Let Ψ be a

conformal map of W to Hr sending E ∩ ∂W to ∞ and let P be the partition of ∂Hr

induced by Ψ and the partition of ∂W . DecomposeHr into countably many horizontal

half-strips corresponding to the partition of the boundary. Adjacent half-strips have

comparable width, so if we add vertices to the horizontal edges whose spacing is equal

to the thinner of the two adjacent strips, we get a bounded geometry tree. Moreover,

each half-strip has a conformal maps to Hr of the form σ = z → λ cosh(π z
wj

− yj)).

If we choose λ≫ 1 appropriately on each half-strip, we can insure that every edge of

the tree get has as large σ-length as we want.

The map Ψ−1 transfers this decomposition of Hr to a decomposition of W and

σj ◦Ψ are the desired conformal maps to Hr. Thus Theorem 5.1 can be applied and

gives
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Theorem 5.2. Suppose Ω is as in Theorem 1.1. Then there is a f ∈ S and a K-

quasiconformal map φ of the plane so that f ◦ φ = cosh ◦τ on Ω and φ is conformal

on Ω \ T (r). The constants K, r < ∞ depend on ρ but are otherwise independent of

Ω and τ . f has no finite asymptotic values, exactly two critical values, ± exp(−ρ/2),

and every critical point has degree ≤ 4.

This is Theorem 1.5 except that the exponential function has been replaced by

cosh and φ is conformal on Ω \ T (r) instead of Ω.

We can fix the first problem as follows. Let Ω′ be as in Theorem 1.1 and let

Ω′′ = τ−1(Hr −
1
2
ρ). Then Ω ⊂ Ω′′ ⊂ Ω′ and we can apply Theorem 1.5 to Ω′′ with

τ(z) replaced by τ̃(z) = τ(z) + ρ/2. Let E denote the ellipse that is the image of

the vertical line L = {x + iy : y = ρ/2} under cosh and let C be the image of

this line under ez (C is just the circle of radius eρ/2 around the origin). Let σ be

a quasiconformal map of the plane that maps E to C, is conformal outside E, fixes

each point of [−1, 1] and is symmetric with respect to both the real and imaginary

axes. Then ez = σ(cosh(z)) to the right of the line L. Thus σ ◦ f is quasiregular and

by the measurable Riemann mapping theorem there is a quasiconformal ψ so that

f ◦ ψ = σ ◦ f . Moreover, our choices give σ ◦ f = eτ on Ω,

To fix the fact that the dilatation of φ is supported in Ωc ∪ T (r) and not T (r), we

use the same trick of replacing Ω by Ω′′ as we did in the proof of Theorem 1.2 (see

the end of Section 4). However, one additional fact is needed from [1]: in Theorem

5.1, if Ωj is a component of Ω so that τ maps every edge of ∂Ωj to length π on Hr,

then the dilatation of φ◦ τ−1 (this is a QC map on Hr) is supported the vertical strip

{x + iy : 0 < x < 1}. In our application, the partition of Ω is defined to have this

property (it is only the new components we add where the τ -length might be large).

This completes the proof of Theorem 1.5.

6. Proof of Theorem 1.6

For a ∈ S(f) and ǫ < η/4, let Da = D(a, ǫ) and let 2Da = D(a, 2ǫ). For each

a, the set Ω(a, ǫ) = f−1(Da) has simply connected components, and on each such

component W the map f : W → Dj acts either as

(1) a 1-to-1 map onto Dj,

(2) a (d+ 1)-to-1 branched cover of Dj with a single critical value at a or
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(3) a ∞-to -1 cover of Da \ {a}.

In the first two cases W is bounded and in the third it is unbounded and contains a

path to ∞ along which f as asymptotic value a.

As noted in the introduction, the preimages f−1(a+ ǫ) partition ∂Ω(a, ǫ) into arcs.

For eachDa we can choose a curve γa connecting it to ∂DR insideX = DR\∪a∈S(f)Da.

The family of paths homotopic to γa has positive, finite extremal length, and since

there are only finitely many families, there is a maximum such extremal length, say

Λ. By conformal invariance, any partition arc I of any ∂Ω(a, ǫ) can be joined to a

partition arc J of ∂Ω by a path family of extremal length at most Λ. This implies

that

dist(I, J) = O(diam(J)),

with a constant that depends on Λ.

Moreover, since f−1 is univalent on any disk of radius ǫ/2 centered on ∂Da, the

Koebe distortion theorem implies that diam(I) = O(dist(I, J)), with an absolute

constant. Hence I ⊂ J(r) for some r that depends only on Λ. Similarly J ⊂ I(r).

Thus ∂Ω(a, ǫ) ⊂ T (r) and this implies f−1(X) ⊂ T (r), as claimed. This completes

the proof of the theorem.

If the critical points of f have uniformly bounded degree D, then the components

of Ω(a, ǫ) containing critical points have boundaries with at most D partition arcs,

each with diameter comparable to the whole component (the constant depending

only on D). Since one of these arcs in contained in some J(r) the whole component

will be contained in J(Cr) for some C depending only of D. Thus

Corollary 6.1. If f ∈ S has no finite asymptotic values and every critical point has

uniformly bounded degree, then there is a r > 0 so that C = Ω ∪ T (r).

This is the type of function produced by Theorem 1.1 in [1]. For example, [1]

contains the construction of f ∈ S so that area({z : |f(z)| > 1}) < ∞ using high

degree crticial points and claims a similar construction is possible using asymptotic

values. The corollary above implies one of these two devices is needed to build such

an example.
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7. The half-strip is not the QC image of any S-level-set

We will show that there is not any global quasiconformal map of the plane that

takes the half-strip S = {x+ iy : x > 0, |y| < 1} to any S-level-set, i.e., there can’t be

an f ∈ S that has a single tract that is this “narrow” near infinity. The main idea is

that if we partition ∂S using conformal maps for S and its complement, we get very

different behaviors: the “inside” partition has diameters decaying exponentially, and

the “outside” has diameters growing like a square root. If S were a S-level-set, its

complement would have to approximate a component of Ω(a, ǫ) for some a ∈ S(f)

(in fact, for some asymptotic value a), and by Theorem 1.6, the partition for the

outside of S would have to be comparable to the partition for the inside, which it

clearly false. To make this argument precise, and to apply it to any quasiconformal

image of S we need to state a few technical lemmas regarding harmonic measure and

quasicircles.

Lemma 7.1. Suppose Ω is as in Theorem 1.1. If φ is a K-quasiconformal map of

the plane that is conformal on Ω, then

Tφ(Ω)(t) ⊂ φ(TΩ(r)) ⊂ Tφ(Ω)(s),

where t, s depend only on r and K.

This is immediate from the definitions and the fact that quasiconformal maps are

also quasisymmetric.

Lemma 7.2. Suppose Ω is bounded by a Jordan curve through ∞ and {J } is a

conformal partition of ∂Ω. Suppose Ω contains an unbounded quasidisk W . Then

there is a sequence of partition elements Jj ∈ J and numbers Rj ր ∞ so that Jj

hits the circle {|z| = Rj} and

diam(Jj) ≥ CR−β
j

for some C, β <∞.

Proof. If there is a sequence of partition elements so that diam(Jj) ≥ 1, we are done

by taking α = 0, so we may assume that that diam(Jj) is bounded.

We use the notation ω(z, E,Ω) for the harmonic measure of E ∩ ∂Ω in the domain

Ω with respect to the base point z. This is the value at z of the harmonic function on
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Ω with boundary values 1 on E and 0 elsewhere. See [5] for an excellent introduction

to harmonic measure.

Choose a base point for harmonic measure z0 ∈ W ⊂ Ω. Note that for R ≥ |z0|,

ω(z0,D
∗
R,W ) ≥ C1R

−α,

since W is a quasidisk. Again by properties of quasidisks, we can choose a point

w ∈ W with |w| = 3R and dist(w, ∂W ) ≥ cR so that

ω(z0, D(w, cR/2),W \D(w, cR/2)) ≥ C2R
−α.

See Figure 8.

Ω
W

z0

w

2R 3R

4R

Figure 8. This illustrates the proof that if a tract Ω is “big” enough
to contain an unbounded quasicircle, then there is a polynomial lower
bound for how quickly partition elements can shrink.

If R > minz∈∂Ω |z|, then a Brownian motion started at w has a positive chance of

hitting ∂Ω without leaving {2R < |z| < 4R}, so

ω(w,D4R \ D2R,Ω) ≥ C3 > 0.

Thus by the Markov property of harmonic measure, and the fact that W ⊂ Ω we see

ω(z0,D4R \ D2R,Ω) ≥ C4R
−α.

Moreover, by taking R large enough, we may assume that any partition arc of ∂Ω

that hits the annulus {2R < |z| < 4R} is contained in the annulus {R < |z| < 5R}

(recall we can assume partition arcs have bounded diameters). Because

ω(z0,D
∗
5R,Ω) ≥ C5R

−α,



THE GEOMETRY OF BOUNDED TYPE ENTIRE FUNCTIONS 21

there can be at most C6R
α such partition arcs. The arcs can be labeled so that the

nth arcs has harmonic measure ≃ n−2 with respect to z0 (this is true for the integer

partition of ∂Hr and harmonic mesure is a conformal invariant. Hence at least one of

these arcs, say J , has harmonic measure ≥ (C3/C6)R
−α with respect to w (since the

union of these arcs covers ∂Ω ∩ {2R < |z| < 4R} and hence the union has measure

≥ C3 > 0 with respect to w). By Beurling’s projection theorem (e.g., Corollary 9.3

of [5]),

ω(w, J,Ω) ≤ C
√

diam(J)/dist(w, ∂Ω),

which leads to

diam(J) & ω(w, J,Ω)2 · dist(w, ∂Ω) & R1−2α,

as desired with β = 1− 2α. �

Lemma 7.3. Suppose Ω is the image of the half-strip S = {x + iy : x > 0, |y| < 1}

under a quasiconformal map φ of the plane and J is a conformal partition of ∂Ω.

Then all the partition elements satisfy

diam(J) ≤ Cdist(J, 0)−γ ,

for every γ > 0, i.e., the diameters tend to zero faster than any power.

Proof. Without loss of generality we can assume 0 ∈ Ω and 0 is fixed by φ. We can

write φ as a composition of two K-quasiconformal maps φ = φ2 ◦ φ1, where φ1 has

dilatation µ1 supported in S and φ2 is conformal on W = φ1(S). Since
∫

S

dxdy

1 + x2 + y2
≤ ∞,

a theorem of Teichmüller and Wittich implies that |φ1(z)/z| has a limit as z → ∞.

Thus by rotating and dilating, we can assume

W ∩ D
∗
R ⊂ {z : arg(z) < δ},

for every δ > 0, where R is chosen large enough depending on δ. The Ahlfors

distortion theorem then implies

ω(0,D∗
R,W ) = O(R−α),

for every α <∞, i.e., harmonic measure in W near ∞ dies faster than any power.

Consider the square Sn inside S between {x = n} and {x = n + 1}. Then Wn =

φ1(Sn) is a quasidisk and its preimage in Hr under the conformal map τ : Hr → W
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is generalized quadrilateral Qn with two sides on ∂Hr and modulus bounded above

and below. Because of these bounds, the diameters of Qn must grow exponentially,

and hence ∂Qn hits ≥ cecn partition intervals for some fixed c (depending only on

K). Hence Wn hits the same number of partition arcs on ∂W . Because Wn is a

quasidisk, each of these partition arcs has diameter bounded by Cdiam(Wn) exp(−an)

for another constant a depending only on K.

Let Rn = dist(Wn, 0). As noted above, ω(0,Wn,W ) ≤ CR−α
n and so the same

estimate is true for ω(1, ∂Qn,Hr). But we also know that ω(1, ∂Qn,Hr) ≥ ce−cn.

Combining these upper and lower bounds we get

c exp(−cn) ≤ CR−α
n ,

and this implies

Rn = O(exp(cn/α)),

for any α <∞. Since diam(Wn) = O(Rn), we deduce that all the partition elements

hitting Wn have diameters less than O(exp(cn/α − an)) where a, c are positive con-

stants that depend only on K and α is as large as we wish. Taking α large enough,

we see that the partition elements hitting Wn have diameters bounded by

exp(−an/2) = exp(−(a/2)(cn/α)(α/c)) = O(R−(aα)/(2c)
n ) = O(R−γ

n ),

for any γ <∞, as desired. See Figure 9.

Since φ2 is conformal on W , the partition for Ω is just the image of the partition

for W under φ2, and since φ2 is bi-Hölder, it follows that the partitions still decay

faster than any power. �

Lemma 7.4. There is no f ∈ S with a single tract Ω that is the quasiconformal

image of the half-strip S = {x+ iy : x > 0, |y| < 1}.

Proof. Suppose there were a K-quasiconformal map φ of the plane taking S to the

level-set Ω = {z : |f(z)| > R} of some f ∈ S. Choose d and ǫ as in Theorem 1.6 and

let r be as given by the theorem. Let s be as given by Lemma 7.1.

As in the proof of Lemma 7.3, write φ = φ2 ◦ φ1 where φ1 is conformal off S and

set W = φ1(S). By our earlier estimates

W ∪ TW (s) ⊂ V = DR ∪ {z : | arg(z)| < π/4},
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Sn

Qn

Wn

sinh

φ

τ

Figure 9. Partition elements for a half-strip have lengths that decay
exponentially and this is also true for any quasiconformal image of a
half-strip. Roughly speaking, this holds since QC maps are Hölder
continuous and hence preserve exponential bounds. However, if the
map is not conformal on S, then the conformal partition need not be
preserved and an extra argument is needed.

If R is chosen large enough depending on s. Note that V c is a quasidisk and hence

so is the image V ′ = φ2(V
c) and that by Lemma 7.1, this domain is contained in

the complement of Ω ∪ TΩ(t). Therefore v
′ is contained inside some component U of

Ω(a, ǫ) for a ∈ S(f).

Lemma 7.2 applies to U and Lemma 7.3 applies to Ω, giving estimates that con-

tradict the conclusion of Theorem 1.6 that partition elements for ∂U are contained

in r-neighborhoods of partition elements for ∂Ω. This proves that Ω could not have

been the level-set of any f ∈ S. �
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