
A SET CONTAINING RECTIFIABLE ARCS

QC-LOCALLY BUT NOT QC-GLOBALLY

CHRISTOPHER J. BISHOP

Abstract. We construct a Sierpinski carpet E ⊂ R
2 of area zero and a K0 > 1

with the property that every K0-quasiconformal image of E contains rectifiable
curves, but such that E has some quasiconformal image containing no non-constant
rectifiable curves.

1991 Mathematics Subject Classification. Primary: 30C62 Secondary:
Key words and phrases. A1 weight, quasiconformal mappings, Jacobian problem, rectifiable

curves, Sierpinski carpet.
The author is partially supported by NSF Grant DMS 01-03626.

1



1

1. Introduction

In [1] I constructed an A1 weight on the plane which is not comparable to the

Jacobian of any quasiconformal mapping, answering a question that had been posed

in various places (e.g., [4], [7], [8], [9] and [13]). The main idea was to construct

a compact set E and a weight w that blows up on E, but such that the image of

E under any quasiconformal map f with Jacobian comparable to w would have to

contain rectifiable curve γ. Then the Jacobian of f−1 would vanish on γ, which

implies f−1(γ) is a point, a contradiction.

This result leads to various natural questions which are posed at the end of [1],

e.g., is there a set E of zero area such that any quasiconformal image of E contains

a rectifiable curve? Is it possible that this can happen for small quasiconformal

constants, but not for large ones? In this note, we answer the last question with:

Theorem 1.1. There is a compact set E ⊂ R
2 of area zero and a K0 > 1 so that

every K0-quasiconformal image of E contains rectifiable curves, but there is some

quasiconformal image of E which contains no rectifiable curves.

Corollary 1.2. There is a compact set E of zero area and a K0 > 1 so that no

function w such that w(z) → ∞ as z → E can be comparable to the Jacobian of a

K0-quasiconformal map.

Suppose E ⊂ R
2 and let QCK(E) denote the collection ofK-quasiconformal images

of E. We say that E has a property QC-globally it holds for all sets in ∪K≥1QCK(E)

and say it holds QC-locally if it holds for all sets in QCK(E) when K is close enough

to 1. Thus Theorem 1.1 can be restated by saying there is a compact set of zero area

which contains rectifiable curves QC-locally but not QC-globally.

The set we construct will be a type of Sierpinski carpet where E = ∩nEn with

E1 ⊃ E2 ⊃ . . . , and where En+1 is obtained by writing En as a union of squares and

then replacing each square with one of two types of “building blocks”. Each type is

a polygonal region with a finite number of square holes removed. Both types have

the property that each hole is surrounded by a thick annulus. This property implies

that the set, and any small quasiconformal deformation of it, contains rectifiable

curves. The first type of building block is fairly simple, used frequently, and has

enough holes to make sure the the area of En tends to zero. The second type of
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block is more complicated and occurs more sparsely. It has its holes arranged so that

any sufficiently long line segment that hits the block must come close to a hole with

precise estimates; using this property and a characterization of tangents in terms of

Peter Jones’ β’s we will construct a quasiconformal image of E which contains no

rectifiable subset.

This paper is a sequel to [1] which was motivated by lectures and conversations at

the May 2005 Ahlfors-Bers colloquium in Ann Arbor. Many thanks to the organizers

for an exciting and informative conference and to Juha Heinonen and Mario Bonk

for helpful remarks on the problems considered here. Also thanks to Yuval Peres

for the statement and proof of Lemma 2.3 and Joe Mitchell for related comments. I

thank the referee for a careful reading of the manuscript and especially for pointing

out an error in the original proof of Theorem 1.1 (fixed in the current version by an

application of the strong law of large numbers).

In Section 2 we will review some results needed in the construction. In Section 3

we will prove Theorem 1.1.

2. Preliminaries

In this section we discuss some results that will be needed in the construction of the

set E. These deal with conditions for showing a set either does or does not contain

a rectifiable curve.

2.1. A sufficient condition for having rectifiable subcurves. The following

criteria for containing a rectifiable curve is taken from [1].

Lemma 2.1. Suppose that E0 ⊃ E1 ⊃ E2 ⊃ E3 . . . are compact sets and E =

∩En. Suppose there is a K < ∞, C > 0 and sequences of positive numbers {Pn},
{Qn} so that the following holds. For n = 1, 2, . . . , suppose En = ∪kΩk,n = En−1 \
∪k,jWj,k,n (disjoint except for boundaries) where Ωk,n consists of a closed K-quasidisk

Wk,n with a finite number of open K-quasidisks Wj,k,n removed (called the omitted

regions). Moreover, for each j, k assume there is a collection of disjoint disks {Dn} =

{D(xn, rn)} so that with the properties that

1. dist(Dn, ∂Wk,n) ≥ Cdiam(Wk,n).

2. Wj,k,n ⊂ D(xn, rn/Qn) ⊂ D(xn, Pnrn) ⊂ Wj,k.

If
∑

n P
−2
n < ∞ and

∑

n Q
−3
n < ∞, then E contains rectifiable curves.
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The main idea of the proof is to start with a line segment in E0 with endpoints on

the boundary. In general if we are given a polygonal curve in En with its vertices all

on the boundaries of nth generation squares then we perturb the curve to remain in

En+1 with only a small gain in length. Taking the limit as n → ∞ gives a rectifiable

curve in E. The details are discussed in [1].

2.2. A sufficient condition for having no rectifiable subsets. To show a set

E contains no rectifiable curves, we will use the fact that every rectifiable curve has

tangents almost everywhere and that this holds in a quantifiable way. Suppose Γ is

a compact set in R
2. For x ∈ Γ and t > 0 define β(x, t) as

β(x, t) = inf
L
{sup dist(z, L)

t
: z ∈ Γ ∩D(x, t)}

where the infimum is taken over all lines L passing through D(x, t). These are called

Peter Jones’ β’s; he used them to characterize connected sets of finite length in the

plane (see [2], [3],[10], [11], [12]). If a curve Γ has a tangent at a point x then clearly

β(x, t) → 0 as t → 0. We shall use the following, more quantitative, version of this

fact (Theorem 3 of [3] or Theorem X.2.5 in [6]).

Theorem 2.2. Suppose Γ is a compact, connected set. Then except for a set of zero

1-dimensional measure, x ∈ Γ is a tangent point of Γ iff
∫ 1

0

β2(x, t)
dt

t
< ∞.

We will use this in a slightly different form.

Lemma 2.3. Suppose Γ is a rectifiable curve and x ∈ Γ. Suppose that associated to

each x there are sequences {an(x)} ⊂ [0, 1] and {tn(x)} ց 0 with tn+1(x) <
1
2
tn(x)

so that any line segment of length tn(x) with x as one endpoint also contains a point

y with dist(y, E) ≥ an(x)tn(x). Then for almost every x ∈ Γ,
∑

n a
2
n(x) < ∞.

Proof. Suppose x ∈ Γ and {tn} is as in the lemma. Without loss of generality we

assume the scales are all less than diam(Γ). Then for tn/2 < r ≤ tn, β(x, r) ≥ an/4,

for otherwise Γ would be trapped inside a ant/2-wide strip inside D(x, tn) which is

impossible since Γ has larger diameter. Hence β(x, r) ≥ an/2 for tn/2 < r < tn and

so
∫ tn

tn/2

β2(x, r)dr/r ≥ ln 2

16
a2n.
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Thus Lemma 2.2 implies
∑

a2n converges for a.e. x ∈ Γ.

We shall use this later as follows. We will construct a set E and a quasiconformal

map f and will want to prove that f(E) contains no rectifiable curves. We will

assume that it does contains such a curve Γ and prove that there is a subset X ⊂ Γ

of positive length so that for every x ∈ X we can choose {an} and {tn} as in Lemma

2.3 so that
∑

a2n = ∞ almost everywhere on X. This contradicts Lemma 2.3 and

hence shows f(E) contains no rectifiable arcs.

2.3. How far can you see in a forest? Suppose we stand in forest with tree trunks

of radius ǫ and no two trees centered closer than unit distance apart. How far can we

see? If the trees are placed on the usual square lattice we can see forever by looking

horizontally at height 1/2. It is also easy to show that you can always see at least

distance ∼ 1/ǫ from some point. Can we arrange the trees so that we can never see

farther than some distance L < ∞, no matter where we stand or what direction we

look in? How is L bounded in terms of ǫ?

We will say the set E ⊂ R
2 is an (ǫ, C, α)-forest for a set X ⊂ R

2 if there is an

r > 0 so that

1. Any two points of E are separated by at least r,

2. any line segment of length L ≥ Cǫ−αr which hits X comes within ǫr of some

point of E.

The following result and proof was provided to me by Yuval Peres. It shows there

is a forest in the plane where visibility from any point is less than O(ǫ−4). A similar

example was suggested independently by Joe Mitchell.

Lemma 2.4 (Yuval Peres, personal communication). There is a C < ∞ so that for

any ǫ ∈ (0, 1] there is a set E ⊂ R
2 which is a (ǫ, C, 4)-forest.

Proof. We will first build a set which hits lines which are close to horizontal, i.e. line

segments of the form

I = {(x, y) : y = bx+ d with x0 ≤ x ≤ x0 + L/2},(2.1)

for some real d and b with |b| < 1. We may assume x0 is an integer.

The set E will consist of the union of a horizontal translate of the usual square

lattice Z
2 and a copy of this lattice under a vertical irrational shear. More precisely,
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let E = S0 ∪ S1, where

S0 = Z
2 + (

1

2
, 0), S1 = {(m,n+mg) : m,n ∈ Z}.

Here g = (1+
√
5)/2 ≈ 1.618... is the golden mean. See Figure 1. Obviously, any two

points of E are at least distance 1/2 apart, so we can take r = 1/2.

Figure 1. The Peres forest for ǫ = .1 in the square [0, 20]2.

We use the golden mean g because it satisfies the estimate

‖gq‖ ≥ c/q,

for every integer q, where for x ∈ R
d we write ‖x‖ = dist(x,Zd). Liouville’s argument

for this (taken from Chapter VI of Cassels’ book [5]) is as follows. The number g

is a root of f(x) = x2 − x − 1. The derivative f ′(x) = 2x − 1 is bounded by

2(g+ 1
2
)− 1 = 1+

√
5 = c on the interval [g− 1

2
, g+ 1

2
] and hence |f(p

q
)| ≤

√
5|g− p

q
|.

For any integer q, q2f(p
q
) is a non-zero integer and hence |q2f(p

q
)| ≥ 1 and hence

|f(p
q
)| ≥ q−2. Moreover, for any integer q the p which minimizes |g − p

q
| satisfies

|g − p
q
| ≤ 12. For such a choice

‖gq‖ = |gq − p| = q|g − p

q
| ≥ q

1 +
√
5
f(

p

q
) ≥ q

(1 +
√
5)q2

,

as desired.

Next, we have to show that there is a C < ∞ so that any line segment I of

the form (2.1) of length L ≥ Cǫ−4 comes within ǫ of some element of E. By the
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pigeonhole principle there is an integer q ∈ (0, 2ǫ−2) so that ‖(qg, qb)‖ < ǫ. Moreover,

‖qg‖ > c/q ≥ 2cǫ2, so by the triangle inequality we have either

‖qb‖ > cǫ2(2.2)

or

‖q(g − b)‖ > cǫ2(2.3)

First suppose (2.2) holds. Then the numbers {jqb : 0 < j ≤ 2
c
ǫ−2} are ǫ-dense mod

one (since the step between j and j + 1 is at most ǫ and at least cǫ2), so we can

choose positive j ≤ 2/(cǫ2) such that m = x0 + jq satisfies ‖bm+ d+ 1
2
b‖ < ǫ. Hence

|(m+ 1
2
, n)− (m+ 1

2
, bm+ 1

2
b+ d)| < ǫ and note that x0 < m ≤ x0+L/2. Thus there

is a point of I close to S0.

Otherwise (2.3) holds, so the multiples {jq(g − b) : 0 < j ≤ 2
c
ǫ−2} are ǫ-dense.

Thus we can choose m = x0 + jq so that ‖m(b − g) + d‖ < ǫ. Hence the distance

from (m,mb+ d) ∈ I to S1 is at most ǫ.

Now for the general case. Suppose we could divide the plane into two disjoint sets

R
2 = A ∪ B with the property that there is a M < ∞ so that any line segment I of

length ≥ ML satisfies

|I ∩ A(2)| ≥ L, |I ∩ B(2)| ≥ L,

where A(r) = {z ∈ A : dist(z, ∂A) ≥ r}, and similarly for B(r). Then taking

(E ∩ A(1)) ∪ (iE ∩ B(1)) would be a (ǫ,MC, 4)-forest. Such a decomposition of the

plane is not hard to produce, e.g., see the “stairsteps” illustrated in Figure 2.

Figure 2. A division of the plane into two sets (shaded and white)
so that any sufficiently long segments hits both sets away from their
boundaries.
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We will want to use forests which are restricted to certain domains. Suppose Ω is

a bounded quasidisk with d = diam(Ω). We will need a finite set E in Ω so that any

sufficiently long line segment that hits Ω (away from its boundary) will come close

to a point of E. To be more precise, given some a > 0, we will say a finite set E is a

(a, ǫ)-forest for Ω if

1. E ⊂ Ω(ad/2),

2. points of E are separated by strictly more than Cad/2ǫ4 (C is the constant from

Lemma 2.4),

3. Any line segment L of length ≥ ad which hits Ω(ad) comes strictly within

distance ǫ5 of some point of E.

It is immediate from Lemma 2.4 that such a forest always exists (just intersect the

forest constructed there with Ω(ad/2)).

Also note that if E is an (a, ǫ)-forest for Ω and f is conformal, linear map, then f(E)

is an (a, ǫ)-forest for Ω′ = f(Ω). Because of the strict inequalities in the definition of

a forest for Ω, we can slightly perturb the points of E and still have a forest with the

same constants. We will use this observation several times in Section 3.5.

2.4. The strong law of large numbers. The strong law of large numbers can

be stated as follows: if {fn} is a bounded, orthogonal sequence of functions in

L2([0, 1], dx) then limn→∞
1
n

∑n
k=1 fk(x) = 0 for a.e. x. We shall make use of this in

the following form (which is stronger version of the Borel-Cantelli lemma). Let χE

denote the characteristic function of E, i.e., χE is 1 on E and 0 off E.

Lemma 2.5. Suppose {En} ⊂ [0, 1] is a sequence of compact sets, each of which is

a finite union of intervals. Suppose also that if I is a component of En or [0, 1] \En,

and m > n then |Em ∩ I| ≥ c1|I| for some c1 > 0, independent of n. Then for

almost every x ∈ [0, 1], {k : x ∈ Ek} has positive lower density in the integers, i.e.,
∑n

k=1 χEk
(x) ≥ 1

2
c1n, for n sufficiently large.

Proof. We define a bounded sequence of orthogonal functions {fn} on [0, 1] which are

piecewise constant on the components of En and Ec
n. First let f1 = χE1

− |E1|. Then
f0 has mean value zero over [0, 1]. In general, suppose I is a component interval of

either En−1 or its complement in [0, 1]. Define fn(x) on I as χEn
(x) − |En ∩ I|/|I|.
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Then fn has mean value zero over I and since fn−1 is constant on I, we deduce that

fn and fn−1 are orthogonal. Similarly fn is orthogonal to every fk for k < n.

Since |En ∩ I| ≤ |I|, we are subtracting a constant between 0 and 1 from χEn
, so

the function fn is clearly bounded between −1 and 1. Thus the strong law of large

numbers applies and we deduce that

lim
n→∞

1

n

n
∑

k=1

fn(x) = 0,

for a.e. x. Unwinding the definitions, this is the same as

lim
n→∞

1

n
(

n
∑

k=1

χEn
(x)− |En ∩ I|

|I| ) = 0,

which implies
n

∑

k=1

χEn
(x) ≥ nc1 + o(n) ≥ 1

2
c1n,

if n is large enough. This is the claim about positive density.

Corollary 2.6. With notation as above, suppose that for each x, {an(x)} is a de-

creasing sequence of positive reals such that
∑

n an(x) = ∞. Then for a.e. x ∈ [0, 1],
∑

n an(x)χEn
(x) = ∞.

Proof. Since {an} is decreasing, the sum of any N terms from an interval of integers

is bounded below by the sum of the last N terms. Choose A large and ǫ > 0 small

so that 1
2
c1A− 1 > ǫA for large enough n. Then

∞
∑

n=1

an(x)χEn
(x) =

∞
∑

k=1

∑

Ak−1≤n<Ak−1

an(x)χEn
(x)

≥
∞
∑

k=1

∑

(1−ǫ)Ak≤n<Ak−1

an(x)

≥
∞
∑

k=1

ǫ

A

∑

(1−ǫ)Ak≤n<(1−ǫ)Ak+1−1

an(x)

≥ Cǫ

A

∑

n>A

an(x)

= ∞,

as desired.
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2.5. Approximation by Lipschitz graphs. An ǫ-Lipschitz function on the real

line is one that satisfies |f(x)− f(y)| ≤ ǫ|x− y|. An ǫ-Lipschitz graph in the plane is

any image under a Euclidean similarity of a curve of the form Γ = {(x, f(x)) : x ∈ I}
where I is an interval and f is ǫ-Lipschitz. When ǫ is close to zero, then Γ is close

to a straight line segment. Lipschitz graphs are rectifiable, and although not every

rectifiable curve is a Lipschitz graph, every rectifiable curve can be approximated by

a Lipschitz graph in the following sense.

Lemma 2.7. Suppose Γ is a rectifiable curve in R
2. Then for any ǫ > 0 there is an

ǫ-Lipschitz graph γ so that γ ∩ Γ has positive length.

This is a standard result, but we repeat the argument briefly. Almost every point

of a rectifiable curve Γ is the tip of cone with angle π − ǫ which is disjoint from the

curve. We may assume the angle of the axis of the cone is rational, as is its angle

and diameter. Thus there is a set of positive measure on Γ for which the same choice

of angle, axis direction and diameter all work. The union of the corresponding cones

defines an ǫ-Lipschitz graph which hits Γ in positive measure.

3. The construction

The set E satisfying Theorem 1.1 will be constructed by an iterative process in-

volving two types of replacements. We start with a description of each type.

3.1. Type I pieces. Suppose L and M are positive integers and M is odd. A type

I (L,M)-piece is built as follows. Given a square Q divide it into 36 equal sized sub-

squares called type 1. The subcollection of type 1 subsquares that are adjacent to ∂Q

are called the boundary squares. Divide each of the 16 non-boundary type 1 squares

into L2 equal subsquares (type 2) and divide each of these into M2 equal subsquares

(type 3). For each type 2 square remove the unique type 3 square containing its

center. This gives a region Ω(Q,L,M) which is the type I piece associated to Q. See

Figure 3. Note that each of the removed squares has diameter ≃ diam(Q)/LM and

the total area removed is ≃ area(Q)/M2.

3.2. Type II pieces. A type II piece is a little more complicated and will depend

on a single positive integer parameter N . Given a square Q we replace it with the

region bounded by the 20-gon shown in Figure 4. We will call this a “bent square” or
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Figure 3. A type I piece for L = 2, M = 3. The boundary squares
are white, the non-boundary squares are gray and the omitted squares
are black.

a “tile”. The shape is a square with rectangles added along the top and right edges

and removed along the bottom and left edges. More precisely, take the square Q and

break it into 202 = 400 equal subsquares. Add a 5 × 5 blocks to the top and right

edges and remove them along the left and bottom edges as shown in Figure 4. Divide

the resulting region R into 400 equal sized squares. S1 is the union of subsquares

which do not touch ∂R and are shaded light gray n Figure 5. S2 is the union of

subsquares of S1 which do not touch ∂S1. These are shaded darker gray.

Figure 4. The definition of R (whole figure), S1 (all gray squares),
S2 (dark gray only) and the boundary squares (white only).

Note that if Q and Q′ are disjoint squares sharing an edge, then the corresponding

bent squares are also disjoint and share a boundary arc. See Figure 5.
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Lemma 3.1. There is a C > 0 so that the following holds. Consider the collection

of bent tiles {Qj} corresponding to the usual integer grid. Let W be the corresponding

union of interior squares (everything of the form S1 in every tile, i.e., the gray region

in Figures 4 and 5). Then any line segment L of length 2 contains a subsegment J

of length ≥ C inside W .

The proof is evident from Figure 5, since the “channels” formed by the white and

light gray regions do not contain any line segments of length 2. Any such segment

must therefore hit some point colored dark gray. Such a point is contained in a

subsegment of length at least 1/20, i.e., the side length of a light gray square.

Figure 5. The replacement pieces fit together to tile a region. When
we remove the boundary squares of each piece we are left with the
shaded region. Any long enough length line segment must hit the dark
gray region and hence spends a certain fraction of its length in the gray
region.

We actually need to use a slight generalization of Lemma 3.1. Use the same nota-

tion as before.

Lemma 3.2. There is an ǫ > 0 and C < ∞ so that the following holds. If Q is an

individual bent tile, f is a quasiconformal map of the plane so that |f(z)− z| ≤ ǫ for

all z and γ is an ǫ-Lipschitz graph of length 2diam(f(Q)) which hits f(Q), then γ
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contains a subarc of length ≥ ℓ(γ)/C which is contained in f(W ) (ℓ denotes arclength

on a rectifiable curve).

Since f is close to linear and an ǫ-Lipschitz graph is close to a line segment, this

version can be deduced from Lemma 3.1 as follows. Let I be the line segment with

the same endpoints as the curve γ̃ = f−1(γ). If ǫ is small enough, the segment and

curve are as close as we wish to each other. By our previous argument I hits a square

of the form S2 and so γ̃ comes as close as we wish to such a square, say 1/40, or half

the side length of an S1 square. Then γ̃ has a subarc of diameter ≥ 1/40 inside W .

By quasisymmetry the image arc γ has a subarc of diameter ∼ ℓ(γ) inside f(W ), as

desired.

We now make use of our parameter N , by using a forest with parameter ǫ = 1/N .

Suppose α > 4 (to be fixed later). Now take a ( 1
N
, C, 4) forest for the plane and rescale

it by a factor ∼ N−α so that points are separated by at least r = ℓ(Q)/(100CNα)

and intersect it with the interior region S1 to get a set EQ. The constant C is chosen

so that any line segment that hits S2 in length ≥ ℓ(Q)/100Nα−4 must pass within

Cℓ(Q)/Nα+1 of one of the points of EQ and that that points in EQ are ≥ N−α/C

apart.

Form the type II piece associated to Q by dividing S1 into equal squares of side

length ℓ(Q)/Nα+4. Then remove each square that contains a point of EQ in its

closure. What remains is a type II piece.

The point is that these holes are so small that Lemma 2.1 will apply and we can

construct rectifiable curves that avoid the holes. Each hole is inside a disk of radius

∼ N−α and these disks are disjoint and the distance of each disk from the edge of

the tile is ∼ 1. Thus Lemma 2.1 will apply with P ∼ Nα and Q ∼ N4. On the other

hand, in each disk we can use a rescaled power function to quasiconformally increase

the size of the holes from N−α−4 to N−α−1 (roughly this leaves P alone and decreases

Q from N4 to N). We can then apply Lemma 2.3 to show there is no rectifiable curve

in the image set.

3.3. Definition of E and proof that E has zero area. The set E will depend on

a number of parameters: increasing sequences of positive integers {Ln}, {Mn}, {Nn}
and a set of positive integers S = {nk} ⊂ N. We will see later that it suffices to take

Ln = ⌊n3/4⌋, Mn = ⌊√n⌋, Nn = ⌊nβ⌋,(3.1)
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where β will be chosen below. We will show later that our example has the desired

properties if {nk} grows fast enough. For the present, assume S is enumerated in

increasing order and that 0, 1, 6∈ S and 2Z ∩ S = ∅.
Let s0 = 1 and in general let sn = sn−1/(6LnMn) if n 6∈ {nk} and sn = sn−1/N

α+4
k

if n = nk. The number sn is the side length of the squares which we replace at stage

n+ 1 of the construction.

If n 6∈ S, then we do a type I replacement using a (Ln,Mn)-piece. Otherwise

n = nk for some k and we do a type II replacement using a Nk-piece. Let En denote

the compact set obtained at step n, and let E = ∩nEn. Each En is a union of squares

of size sn. Moreover, if n 6∈ S, then area(En+1) ≤ (1−O(M−2
n ))area(En) and hence

area(E) ≤
∏

n:n 6∈S

(1− 1

M2
n

) ≤
∏

n∈2Z

(1− 1

M2
n

) = 0,

we can deduce area(E) = 0.

3.4. Proof that E contains rectifiable curves QC-locally. It is enough to con-

sider quasiconformal maps which fix 0 and ∞. It is clear that condition 1 of Lemma

2.1 holds for both type 1 and type 2 replacement pieces as well as any normalized

quasiconformal image of such pieces. Thus we only have to check condition 2.

For a type I piece, condition 1 of Lemma 2.1 holds for Pn ∼ Ln ∼ n3/4 and

Qn ∼ Mn ∼ n1/2 and hence
∑

P−2
n ∼ ∑

n−3/2 and
∑

Q−3
n ∼ ∑

n−3/2.

For a type II piece, assume n = nk for some k and the the Lemma 2.1 holds with

Pn ∼ Nα
k ∼ kαβ and Qk ∼ N−α

k /N−α−4
k ∼ N4

k ∼ k4β. Hence
∑

P−2
n ∼ ∑

k−2αβ and
∑

Q−3
n ∼ ∑

k−12β. Both these sums converge if −2αβ < −1 and −12β < −1, so we

want β > 1/12 and α > 1/(2β). If so, then Lemma 2.1 applies to E and E contains

rectifiable curves.

Moreover, a K-quasiconformal map is quasisymmetric. In particular, if K is close

to 1 then

(
|x− y|
|x− z|)

1+η ≤ |f(x)− f(y)|
|f(x)− f(z)| ≤ (

|x− y|
|x− z|)

1−η,

with η close to 0. This means the ratios Pn and Qn can only change by a small

power. Thus the relevant series still converge for any quasiconformal image with

small enough constant. This proves E contains rectifiable curves QC-locally.
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3.5. A QC-image of E with no rectifiable subcurve. To produce a quasicon-

formal image of E which contains no rectifiable curves, we want define a map which

increases the size of the omitted squares in the special generations {nk} by a power.

For 0 < ρ < 1, consider the map

fρ(z) =











z, if |z| ≥ 1

z|z|ρ−1, if ǫ < |z| < 1

zǫρ−1, if |z| ≤ ǫ.

This map is K-quasiconformal with K = 1/ρ and maps the disk D(0, ǫ) to the disk

D(0, ǫρ). Suppose n = nk ∈ S is a generation where we use a type II replacement

in a square of size s = sn. Let N = Nk. Then the omitted squares are contained

in disjoint disks of radius ≃ s/Nα and each of them have diameter ≃ s/Nα+4. Let

this collection of disks be denoted C. In each of the disjoint disks we can apply

a rescaled version of the map fρ with ρ = 1/4 to increase the size of the omitted

square to s/Nα+1. Since the squares are centered on a forest, a line segment of length

s/Nα−4 will hit a disk contained in some enlarged omitted square. Take β = 1/10

and α = 21 > 2/β = 20. This is consistent with our previous requirements and if we

set ak = k−5β = 1/
√
k, then

∑

a2k = ∞.

Assume for the moment that we can construct a quasiconformal map f so that on

any bent tile of any generation, the map f looks like fρ, i.e., f = L◦(fρ+o(s/Nα+1)),

where L is conformal and linear. Next, suppose f(E) contains a rectifiable curve Γ.

We will show this leads to a contradiction.

By Lemma 2.7 there is an ǫ-Lipschitz graph γ which intersects Γ in positive length.

Suppose Q is a bent tile in generation nk and γ hits f(Q). Let Wk be the union of

“tile interiors”, as in Lemma 3.1, where the union is over all tiles corresponding to

an integer grid rescaled to side length s = snk
. Then by Lemma 3.2 any subarc I of

γ which hits the image f(Q) of a tile Q and has length ≥ 2diamf(Q) must contain

a subarc J ⊂ I ⊂ γ with ℓ(J) ∼ ℓ(I) and J ⊂ f(Wk).

Let Ek ⊂ γ be the union of these subarcs (where the union is taken over all tiles

hit by γ). Note that Ek takes up a fixed fraction of any arc on γ which hits some

f(Q) and has length ≫ diam(f(Q)). Since the scales {snk
} decrease rapidly, this

implies that Ek takes up a fixed fraction of the length of any component of Ej or

γ \ Ej for j < k. Thus we can apply Lemma 2.5 and deduce that there is a set X of
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full measure in γ such that each point of X is in f(Wk) for a positive density set of

k’s.

If Q is a nkth generation tile and x ∈ γ ∩ f(Q∩Wk), then because f approximates

fρ composed with a linear map with error less than the size of the holes, we deduce

that any segment of length diam(f(Q))/Nα−4 hits a ball of radius diam(f(Q))/Nα+1

which misses f(E). Thus if we take ak = N−α−1
k = N−5

k = 1/
√
k, then

∑

a2k = ∞
and Lemma 2.5 implies that γ ∩ f(E) must have zero length. This is a contradiction,

so we deduce that f(E) cannot contain any rectifiable curve.

Finally, we have to show that f approximates fρ as claimed. If we only had to

worry about one generation of type II tiles there would be nothing to do, since then

we would have f = fρ. However, when we define these power maps for more than

one generation some errors are introduced. Thus we need only see that the errors

introduced by other generations are as small as we wish if the gaps in the set S = {nk}
are sufficiently large.

The first error arises as follows. To keep the quasiconformal constant bounded,

we want to arrange for supports of the complex dilatations of maps from different

generations to be disjoint. We do this by replacing fρ by a quasiconformal approxi-

mation, gρ, whose dilatation is supported away from E. More precisely, let Fn be a

sn-neighborhood of En. Then ∩nFn = E and area(Fn) ≤ 2area(En) → 0. Define an

approximation gρ to fρ in each square by restricting its dilatation to the complement

of Fnk+1
. Since area(Fn) → 0, we have gρ → fρ uniformly (with an estimate depend-

ing on ρ, but not on f). Thus we can choose nk+1 so large that ‖f − gα‖∞ ≪ snk
.

Thus this type of error is small if the gaps are large.

The second type of error comes from the maps defined at earlier stages. We just

saw that we choose maps gm which are conformal on a neighborhood of E and hence

conformal on a neighborhood of the nth generation squares if n is large enough. In

fact, this map will be close to linear on such squares because their diameter is very

small compared to the distance to the support of gρ. In fact, we may make this ratio

as large as we wish by choosing nk+1 large enough with respect to nk.

The final type of error comes from later generations of maps. However, the map

gρ for generation nk is supported inside Enk
, which has area tending to zero as

nk+1 ր ∞, so that the corresponding conformal maps approximate the identity at

any fixed scale as nk+1 → ∞. In particular we can choose nk+1 so large that the
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perturbations at scale snk
are small compared to snk

/Nα+1
k , which is what we needed.

This completes the proof of Theorem 1.1.
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