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eCh. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. VuorinenApril 10, 2000Abstra
tWe study the 
onformality problems for quasiregular mappings in spa
e. Our ap-proa
h is based on some new Gr�otzs
h { Tei
hm�uller type modulus estimates that areexpressed in terms of the mean value of the dilatation 
oeÆ
ients.1991 Mathemati
s Subje
t Classi�
ation. AMS (MOS) 30C55,60.1. Introdu
tionLet G be an open set in Rn : A 
ontinuous mapping f : G ! Rn is 
alled K {quasiregular, K � 1; if f 2W 1;nlo
 (G) and ifjjf 0(x)jjn � K Jf (x) a:e:(1.1)where Jf (x) stands for the Ja
obian determinant of f 0(x) and jjf 0(x)jj = sup jf 0(x)hjwhere the supremum is taken over all unit ve
tors h 2 Rn : A homeomorphi
 K {quasiregular mapping is 
alled K { quasi
onformal. We shall employ the followingdistortion 
oeÆ
ientsKf (x) = jjf 0(x)jjnJf (x) ; Lf (x) = Jf (x)`(f 0(x))n ; Hf (x) = kf 0(x)k`(f 0(x)) ;(1.2)that are 
alled the outer, inner and linear dilatation of f at x; respe
tively. Here`(f 0(x)) = inf jf 0(x)hj: These dilatation 
oeÆ
ients are well{de�ned at regular pointsof f and, by 
onvention, we let Kf (x) = Lf (x) = Hf (x) = 1 at the nonregular pointsand for a 
onstant mapping.It is well{known that if n � 3 and one of the dilatation 
oeÆ
ients of a quasiregularmapping f; say Lf (x); is 
lose to 1; then f is 
lose to a M�obius transformation. In spiteof this Liouville's phenomenon the pointwise 
ondition Lf (x) ! 1 as x ! y; y 2 G;does not imply in general neither 
onformality for f at y nor the properties typi
al forthe 
onformal mappings. The mappingf(x) = x(1� log jxj); f(0) = 0;(1.3)shows that jf(x)j=jxj ! 1 as x ! 0 although Lf (x) = (1 � 1= log jxj)n�1 ! 1:Nevertheless, the 
onformal behavior of f at a point 
an be studied using another1



2 Conformal Distortion in Spa
emeasures of 
loseness of the distortion 
oeÆ
ient to 1: The �rst su
h result is due toTei
hm�uller [T℄ and Witti
h [W℄. They proved that if f : G! R2 is a quasi
onformalhomeomorphism su
h that Zjx�yj<r Lf (x)� 1jx� yj2 dx! 0 as r! 0;(1.4)for some y 2 G then jf 0(y)j = �; where � > 0: In what follows we will 
all su
h �the 
onformal distortion 
oeÆ
ient of f at y: Similar problems have been studied byBelinski [B℄, Shabat [SH℄, Lehto [L℄, Rei
h and Wal
zak [RW℄, Brakalova and Jenkins[BJ℄ in plane and by Reshetnyak [R2℄ and Suominen [Su℄ in spa
e. Another approa
hto the investigation of the pointwise behavior of the quasi
onformal mappings basedon the Beltrami equation is due to Bojarski [BO℄ (see, also [S
h℄, [Iw℄).Consider the 
lass of spa
e radial mappings f : B ! B de�ned on the unit ball Bin Rn 
entered at the origin asf(x) = xe��(jxj); �(jxj) = 1Zjxj Lf (t)� 1t dt; f(0) = 0;(1.5)where Lf (t) stands for an arbitrary lo
ally integrable fun
tion on [0; 1℄ su
h thatLf (t) � 1 for almost all t 2 [0; 1℄: It follows from (1.5) that Lf (x) = Jf (x)=`(f 0(x))na.e. and therefore Lf (x) agrees with the inner dilatation 
oeÆ
ient of f at x: A simpleobservation shows that f is 
onformally di�erentiable at the origin i� the integral in(1.5) 
onverges as x! 0: For an arbitrary quasiregular mapping f : B ! B; f(0) = 0;the latter 
onvergen
e assumption 
an be written in the formZjxj<r Lf (x)� 1jxjn dx! 0 as r! 0(1.6)and one 
an expe
t that the 
ondition (1.6) is ne
essary for f(x) to be 
onformal atx = 0:In this paper we derive Gr�otzs
h type modulus inequalities for quasiregular map-pings in Rn ; n � 2; where integrals similar to (1.6) 
ontrol the distortion. Then wemake use of su
h estimates to prove that a spa
e version of the Tei
hm�uller { Witti
hresult for non
onstant quasiregular mappings holds if we repla
e the assumption (1.4)by (1.6). Finally we give a 
ondition that guarantees the existen
e of the 
onformaldistortion 
oeÆ
ient for f at every point of a 
ompa
t set E � G and apply the lat-ter result to study Carleson's re
ti�ability problem for quasispheres, see [CA℄, [BP℄,[ABL℄. For 
onvenien
e we will prove the main statements only for the inner dilatation
oeÆ
ient Lf (x) be
ause for the other dilatations the 
orresponding results will followfrom the well{known relations (see, e.g., [V℄, p. 44)Lf (x) � Kn�1f (x); Kf (x) � Ln�1f (x); Hnf (x) = Kf (x)Lf (x)(1.7)that hold for every n � 2:The following standard notations will be used in this paper. The norm of a ve
torx 2 Rn is written as jxj = (x21 + : : : + x2n)1=2 where x1; : : : ; xn are the 
oordinates of



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 3x: If 0 < a < b < 1; the domain R(a; b) = B(b) n B(a) is 
alled a spheri
al annulus,where B(r) is the ball fx 2 Rn j jxj < rg:
2. Modulus EstimatesLet E be a family of Jordan ar
s or 
urves in spa
e Rn : A nonnegative and Borelmeasurable fun
tion � de�ned in Rn is 
alled admissible for the family E if the relationZ
 �ds � 1(2.1)holds for every lo
ally re
ti�able 
 2 E : The quantityM(E) = inf� ZRn �ndx;(2.2)where the in�mum is taken over all � admissible with respe
t to the family E is 
alledthe modulus of the family E (see, e.g, [V℄, p.16, [G2℄). This quantity is a 
onformalinvariant and possesses the monotoni
ity property whi
h says, in parti
ular, that ifE1 < E2; that is every 
 2 E2 has a sub
urve whi
h belongs to E1; then (see, e.g., [V℄,p. 16) M(E1) � M(E2):(2.3)A spa
e ring R is de�ned as a �nite domain in Rn whose 
omplement 
onsists oftwo 
omponents C0 and C1: A 
urve 
 is said to join the boundary 
omponents in Rif 
 lies in R; ex
ept for its endpoints that lie in di�erent boundary 
omponents of R:In these terms the modulus of a spa
e ring has the representation (see, e.g., [G2℄,[H℄) modR = �!n�1M(�)�1=(n�1)(2.4)where � is the family of 
urves joining the boundary 
omponents in R and !n�1 is the(n� 1){dimensional surfa
e area of the unit sphere Sn�1 in Rn ( see, e.g., [Z℄, [G2℄).Note also, that the modulus M(�) 
oin
ides with the 
onformal 
apa
ity of thespa
e ring R by a result of L�owner [LC℄ (see, e.g., [G2℄).In the sequel we will employ only the following two families of 
urves, lying inthe spheri
al annulus R(a; b); and its images under quasi
onformal mappings. The�rst one, that we denote by �R(a;b); 
onsists of all lo
ally re
ti�able 
urves 
 that jointhe boundary 
omponents in R(a; b): The se
ond family ��R(a;b); with � 2 Sn�1 �xed,
onsists of all lo
ally re
ti�able 
urves 
 that join in R(a; b) the two 
omponents ofL \R(a; b) where L = ft� : t 2 Rg:In order to derive the desired estimates we need the following two statements.



4 Conformal Distortion in Spa
e2.5. Lemma. Let f : G ! G0 be a quasi
onformal mapping with the inner di-latation 
oeÆ
ient Lf (x): Then for ea
h 
urve family � in GM(f(�)) � ZG �nLf (x)dx(2.6)for every � admissible for �:Proof. To prove (2.6) we �rst re
all the following V�ais�al�a's inequalityM(�) � ZG ��n(f(x))kf 0(x)kndx(2.7)that holds for every 
urve family � in G and every �� admissible for �0 = f(�): Thisinequality is 
ontained in the proof of Theorem 32.3 from [V℄.Indeed, let �0 denote the family of all lo
ally re
ti�able 
urves 
 2 � su
h that f isabsolutely 
ontinuous on every 
losed sub
urve of 
: Sin
e f is ACLn; it follows fromFuglede's theorem (see, e.g., [V℄, p. 95) that M(� n �0) = 0: Hen
e M(�) = M(�0):Let �� be admissible for �0: De�ne � : Rn ! R by�(x) = ��(f(x))L(x; f)(2.8)for x 2 G and �(x) = 0 for x =2 G whereL(x; f) = lim suph!0 jf(x+ h)� f(x)jjhj :(2.9)If 
 2 �0 then Theorem 5.3 from [V℄ yieldsZ
 �ds � ZfÆ
 ��ds � 1(2.10)Thus, � is admissible for �0 and thereforeM(�) = M(�0) � ZG �ndx = ZG ��n(f(x))Ln(x; f)dx =(2.11) = ZG ��n(f(x))kf 0(x)kndx;sin
e f is di�erentiable almost everywhere in G and L(x; f) = kf 0(x)k at every pointof di�erentiability.Applying formula (2.7) to the inverse of f yieldsM(f(�)) � ZG �nLf (x)dx(2.12)for every � admissible for �:
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e ring that 
ontains the spheri
al annulus R(a; b)and let E1; E2 be two disjoint subsets of R su
h that ea
h sphere Sn�1(t); a < t < b;meets both E1 and E2: If E is the family of all 
urves joining E1 and E2 in RnfE1[E2gthen M(E) � 
n log ba(2.14)where 
n = 12!n�20� 1Z0 t 2�nn�1 (1 + t2) 11�n1A1�n :(2.15)If R = R(a; b) and E1; E2 are the 
omponents of L\R(a; b); where L is a line throughthe origin in the dire
tion of a unit ve
tor �; thenM(E) = 
n log ba:(2.16)This useful result, the proof of whi
h is based on the 
ombination of the spa
emoduli te
hnique and Hardy{Littlewood{Polya's symmetrization prin
iple, is due toGehring [G1℄ (see, also, [V℄, p. 27, [C℄, p. 58, [R1℄, p. 108).Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasi
onformal mapping. We will use thefollowing standard notationsMf (r) = maxjxj=r jf(x)j; mf (r) = minjxj=r jf(x)j:(2.17)2.18. Theorem. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasi
onformal mappingwith the inner dilatation 
oeÆ
ient Lf (x): Then for every spheri
al annulus R(a; b)log ba �mod f(R(a; b)) �(2.19) � modn f(R(a; b))Pn�1k=1 logn�k bamodk f(R(a; b)) 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:Proof. Let R(a; b) be an arbitrary spheri
al annulus in Rn and let �R(a;b) be thefamily of 
urves whi
h join the boundary 
omponents of R(a; b): Then (2.6) yieldsM(f(�R(a;b))) � ZR(a;b) �nLf (x)dx(2.20)for every � admissible with respe
t to a family �R(a;b):Using the formula (2.4), we obtain from (2.20)(mod f(R(a; b)))1�n � 1!n�1 ZR(a;b) �nLf (x)dx:(2.21)



6 Conformal Distortion in Spa
eOn the other hand the fun
tion �0(x) = 1jxj log ba ;(2.22)is admissible with respe
t to �R(a;b) sin
e for every 
urve 
 2 �R(a;b)Z
 �0ds � bZa 1r log ba dr = 1:(2.23)Substituting �0 in (2.21) and noting that1!n�1 ZR(a;b) �n0 (x)dx = �log ba�1�n(2.24)we arrive at the inequality(mod f(R(a; b)))1�n � �log ba�1�n � 1!n�1(log ba )n ZR(a;b) Lf (x)� 1jxjn dx(2.25)that 
an be rewritten in the form (2.19). The proof is 
ompleted.2.26. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasi
onformal map-ping with the inner dilatation 
oeÆ
ient Lf (x): Then for every spheri
al annulus R(a; b)log ba �mod f(R(a; b)) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.27)Proof. If log(b=a) � mod f(R(a; b)); then the inequality (2.27) is trivial. Iflog(b=a) > mod f(R(a; b)); then (2.25) 
an be rewritten as����n�1 � 1 � M�where � = log(b=a); � = mod f(R(a; b)) and M is the right hand side of (2.27). Now�� � 1 � ����n�1 � 1 � M� � M�and this gives (2.27).2.28. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasi
onformal map-ping with the inner dilatation 
oeÆ
ient Lf (x): Then for every spheri
al annulus R(a; b)log ba � log Mf (b)mf (a) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.29)
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e the spa
e ring f(R(a; b)) is 
ontained in the spheri
al annulusR(mf (a); Mf (b)); the monotoni
ity prin
iple for the modulus yieldsmod f(R(a; b)) � modR(mf (a);Mf (b)) = log Mf (b)mf (a)(2.30)be
ause for every annulus R(a; b)modR(a; b) = log ba(2.31)(see, e.g., [V℄, p. 22).2.32. Theorem. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a quasi
onformal mappingwith the inner dilatation 
oeÆ
ient Lf (x): Then for every spheri
al annulus R(a; b)M(f(��R(a;b)))� 
n log ba � ZR(a;b) �n0 (x; �)Lf (x)� 1jxjn dx(2.33)where �0(x; y) = (
n=!n�2) 1n�1 �1� hx=jxj; y=jyji2� 2�n2(n�1)(2.34)and 
n is the 
onstant de�ned by (2.15).Proof. Fix a unit ve
tor � = y=jyj 2 Rn and 
onsider the family ��R(a;b) of 
urveswhi
h join ft� : �b < t < �ag to ft� : a < t < bg in R(a; b): By Lemma 2.5M(f(��R(a;b))) � ZR(a;b) �nLf (x)dx(2.35)for ea
h admissible � with respe
t to ��R(a;b):Now we are going to show that the fun
tion��(x) = 1jxj�0(x; y)(2.36)is admissible for the family ��R(a;b) for every �xed � = y=jyj:Indeed, let 
 be a re
ti�able 
urve in ��R(a;b) and let '(x) = x=jxj: Then ' Æ 
 is a
urve on Sn�1 and 
 joins the antipodal points �y=jyj: Sin
e j'0(x)j = 1=jxj then (see[V℄, Cor. 5.4) Z
 ��(x)ds = Z
 �0('(x); y)j'0(x)jjdxj � Z'Æ
 �0(x; y)ds:(2.37)In order to 
ontinue the estimation of the above integral, let us rewrite �0(x; y) inthe form �0(x; y) = p�1n  (1� hx=jxj; y=jyji2) 122 ! 2�nn�1(2.38)



8 Conformal Distortion in Spa
ewith pn = 2 1Z0 r 2�nn�1 (1 + r2) 11�n dr(2.39)and introdu
e a 
ertain 
oordinate system on the sphere Sn�1:Denote by Vn�1 a hyperplane passing through the origin and orthogonal to theve
tor y=jyj: Let t = P (x) : Sn�1 ! Vn�1 be the stereographi
 proje
tion with thepole at the point y=jyj and F (t) be the inverse mapping. Provide the sphere Sn�1with the spheri
al 
oordinates �1; :::; �n�1 in su
h a way that �1 stands for the anglebetween the radius ve
tors going from the origin to the points x and �y=jyj of the unitsphere. In these terms jtj = tan(�1=2) and therefore, sin�1 = 2jtj=(1 + jtj2): On theother hand, 1� hx=jxj; y=jyji2 = sin2 �1; so�0(�; y) Æ F (t) = p�1n  1 + jtj2jtj !n�2n�1 :(2.40)Sin
e x = F (t) is 
onformal and jF 0(t)j = 2=(1 + jtj2) we getZ'Æ
 �0ds = ZFÆ'Æ
 �0 Æ F jF 0(t)jjdtj � 2p�1n 1Z0 jtj 2�nn�1 (1 + jtj2) 11�ndjtj = 1(2.41)having 
ompleted the veri�
ation of the admissibility.Noting that ZR(a;b) �n�dx = bZa 0B� ZSn�1(r) �n�dmn�11CAdr =(2.42) bZa 24 ZSn�1 �n� (ru)rn�1dmn�1(u)35 dr = bZa drr ZSn�1 �n0dmn�1(x) = 
n log ba;sin
e ZSn�1 �n0dmn�1(x) = 
n(2.43)and substituting ��(x) in the inequality (2.35) we getM(f(��R(a;b)))� 
n log ba � ZR(a;b) �n0 (x; y)Lf (x)� 1jxjn dx(2.44)and arrive at the stated 
on
lusion. Here we have also used the following relationZSn�1 �n0dmn�1(x) = 2n�1 ZVn�1 �n0 (F (t); y)(1 + jtj2)n�1dmn�1(t) =(2.45) p�nn 2n�1 ZVn�1 jtjn(2�n)n�1 (1 + jtj2)n(n�2)n�1 (1 + jtj2)1�ndmn�1(t) =
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n:The proof is 
ompleted.2.46. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasi
onformalmapping with the inner dilatation 
oeÆ
ient Lf (x): ThenZSn�1 M(f(��R(a;b)))dmn�1(�) � 
n ZR(a;b) Lf (x)dxjxjn :(2.47)Proof. The fun
tion �0(x; y) is symmetri
 in the sense that �0(x; y) = �0(y; x);x; y 2 Sn�1; and thereforeZSn�1 �n0dmn�1(y) = ZSn�1 �n0dmn�1(x) = 
n:(2.48)If we integrate the inequality (2.33) with respe
t to the parameter y over the sphereSn�1 then, by Fubini's theorem and relation (2.48), we getZSn�1 M(f(��R(a;b)))dmn�1(�) � 
n ZR(a;b) Lf (x)dxjxjn :(2.49)The proof is 
omplete.2.50. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasi
onformalmapping with the inner dilatation 
oeÆ
ient Lf (x): Thenlog mf (b)Mf (a) � log ba � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.51)Proof. If mf (b) � Mf (a) then the inequality (2.51) is trivial. Assume thatmf (b) > Mf (a): Then the spa
e ring R = f(R(a; b)) 
ontains the spheri
al annulusR(Mf (a); mf (b)): The 
urve family f(��R(a;b)) satis�es all the assumptions of Lemma2.13 with the spheri
al annulus R(Mf (a);mf (b)) as a subset of f(R(a; b)): Therefore,inequality (2.14) and (2.16) imply thatM(f(��R(a;b))) � M(��R(Mf (a);mf (b))) = 
n log mf (b)Mf (a) :(2.52)This together with (2.47) yields (2.51).The following statements may be of independent interest.



10 Conformal Distortion in Spa
e2.53. Theorem. Let f be a K { quasi
onformal mapping of a spheri
al annu-lus R(a; b) onto another spheri
al annulus R(
; d) with the inner dilatation 
oeÆ
ientLf (x): Then � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx � log ba � log d
 �(2.54) � logn(d=
)Pn�1k=1 logn�k(b=a) � logk(d=
) � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:Proof. The left inequality follows from Corollary 2.50 and the right one is a
onsequen
e of Theorem 2.18.If f is a K { quasi
onformal mapping in the plane, then (2.54) yields� ba� 1K � d
 � � ba�K(2.55)and we re
ognize the 
lassi
al Gr�otzs
h inequality for annuli (see, e.g., [LV℄, p. 38).2.56. Corollary. Let f be a K { quasi
onformal mapping of a spheri
al annu-lus R(a; b) onto another spheri
al annulus R(
; d) with the inner dilatation 
oeÆ
ientLf (x): Then ����log d
 � log ba ���� � 1!n�1 ZR(a;b) Lf (x)� 1jxjn dx:(2.57)Indeed, if log(d=
) > log(b=a) then (2.57) follows from the inequality (2.51). Iflog(d=
) < log(b=a) then (2.57) follows from the inequality (2.29).For n = 2 we arrive at the modulus estimations under quasi
onformal mappings inthe plane with the variable dilatation 
oeÆ
ient established by Belinski [B℄.Note that all the inequalities proved in this se
tion remain valid also for ACLnhomeomorphisms in Rn with lo
ally integrable dilatation 
oeÆ
ients. Moreover, theestimates (2.54) and (2.57) are sharp. For instan
e, the radial mappings of the type(1.5) provide the equality in (2.57).
3. Conformal DistortionWe apply estimates proved in Se
tion 2 to a spa
e version of the regularity problemstudied by Tei
hm�uller [T℄ and Witti
h [W℄.



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 113.1. Theorem. Let f : Rn ! Rn ; n � 3; f(0) = 0; be a non
onstant K {quasiregular mapping with the inner dilatation 
oeÆ
ient Lf (x) andI(r) = 1!n�1 Zjxj<r Lf (x)� 1jxjn dx! 0 as r ! 0:(3.2)Then the radius of injetivity of f at 0; Rf (0); satis�es Rf (0) > 0 and there exists a
onstant C; minjxj=R jf(x)je�I(R)R � C � maxjxj=R jf(x)jeI(R)R ; 0 < R � Rf (0);(3.3)su
h that jf(x)jjxj ! C as x! 0:(3.4)3.5. Remark. The proof of Theorem 3.1 is also valid if n = 2 and f is a home-omorphism.3.6. Corollary. Let f : Rn ! Rn ; f(0) = 0; n � 2; be a K { quasi
onformalmapping satisfying (3.2). Then jf(x)j � Cjxj as x ! 0 and inequalities (3.3) 
an berepla
ed by minjxj=1 jf(x)je�I(1) � C � maxjxj=1 jf(x)jeI(1):(3.7)In the 
ase n = 2 we arrive at the Tei
hm�uller { Witti
h result for K { quasi
on-formal mappings in the plane (see, also, [LV℄, Lemma 6.1). For n � 3 the asymptoti
behavior of f des
ribed in Corollary 3.6 has been proved by Suominen [Su℄ for K {quasi
onformal mapping in Riemannian manifolds.3.8. Remark. The above statements hold if we repla
e the inner dilatation Lf (x)by the outer dilatation Kf (x) or linear dilatation Hf (x), respe
tively.It is well-known that a sense-preserving lo
ally L-bilips
hitz mapping f : G ! Rnis L2(n�1) - quasiregular; a lo
ally L-bilips
hitz mapping f satis�es for ea
h L0 > L;x 2 G; and for some Æ > 0 the double inequality1=L0 � jf(y)� f(z)j=jy � zj � L0(3.9)whenever y; z 2 B(x; Æ): A more general 
lass than sense - preserving lo
ally bilips
hitzmappings is provided by the 
lass of mappings of bounded length distortion (BLD),see [MV℄. These mappings form also a sub
lass of quasiregular mappings as well.
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e3.10. Corollary. Let f : G! Rn ; be a bilips
hitz mapping with the 
oeÆ
ient ofquasiisometry L(x): If y 2 G and1!n�1 Zjx�yj<r L(x)� 1jx� yjn dx! 0 as r ! 0;(3.11)then there is a 
onstant C > 0 su
h thatjf(x)� f(y)jjx� yj ! C as x! y:(3.12)This statement was proved re
ently in [K℄.3.13. Remark. If we repla
e (3.2) by the following stronger requirement1Z0 Æf (t)t dt <1;(3.14)where Æf (t) = ess supjxj<t (Kf (x)� 1);(3.15)then, by the well{known Reshetnyak theorem (see [R2℄, p. 204), f(x) will be 
onformallydi�erentiable at the origin.The well { known Liouville's theorem in spa
e states that if the dilatation 
oeÆ
ientof a quasiregular mapping is 
lose to 1; then f is 
lose to a M�obius transformation. Thenext lemma, that gives a weak integral 
ondition for this phenomenon, will be used forthe proof of Theorem 3.1. Before its statement, let us re
all some basi
 notions fromthe spa
e in�nitesimal geometry studied in [GMRV2℄.Let f : G ! Rn ; n � 2; be a non
onstant K{quasiregular mapping, y 2 G; t0 =dist(y; �G); R(t) = t0=t; t > 0: For x 2 B(0; R(t)) we setFt(x) = f(tx+ y)� f(y)�(y; f; t) ;(3.16)where �(y; f; t) = �meas f(B(y; t))
n � 1n :(3.17)Here 
n denotes the volume of the unit ball B in Rn : Let T (y; f) be a 
lass of all thelimit fun
tions for the family of the mappings Ft as t ! 0; where the limit is takenin terms of the lo
ally uniform 
onvergen
e. The set T (y; f) is 
alled the in�nitesimalspa
e for the mapping f at the point y: The elements of T (y; f) are 
alled in�nitesimalmappings and the family (3.16) is 
alled an approximating family for f at y: T (y; f) isnot empty and 
onsists only of non
onstant K { quasiregular mappings F : Rn ! Rnnormalized by F (0) = 0; F (1) =1; measF (B) = 
n; see [GMRV2℄, Th. 2.7.
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onstant K { quasiregularmapping with the inner dilatation 
oeÆ
ient Lf (x) and let E be a 
ompa
t subset ofG: If 1
ntn Zjx�yj<t (Lf (x)� 1)dx! 0 as t! 0(3.19)uniformly in y 2 E then:i) The in�nitesimal spa
e T (y; f) 
onsists of the linear isometri
 mappings only;ii) For n � 3 the mapping f is lo
ally homeomorphi
 in E;iii) The mapping f preserves in�nitesimal spheres and spheri
al annuli 
entered aty in the sense that maxjx�yj=r jf(x)� f(y)jminjx�yj=r jf(x)� f(y)j ! 1 as r ! 0;(3.20)and for ea
h 
 � 1; 
�1 � jxj=jzj � 
;jf(x+ y)� f(y)jjf(z + y)� f(y)j � jxjjzj ! 0(3.21)as x; z ! 0 uniformly in y 2 E:Proof of Lemma 3.18. i) Let Ft be the approximating family for f at y: Assumethat tj ! 0 as j ! 1 and Ftj (x) ! F (x) lo
ally uniformly as j ! 1: By formula(3.16) we get that KFtj (x) = Kf (tjx+ y) a:e:(3.22)and hen
e (3.19) 
an be written asZjxj<R (KFtj (x)� 1)dx! 0 as j !1(3.23)for every positive 
onstant R: The latter limit implies that KFtj (x) ! 1 as j ! 1 inmeasure in Rn : Without loss of generality we may assume that KFtj (x) ! 1 almosteverywhere and Ftj (x) ! F (x) lo
ally uniformly as j ! 1. This 
an be a
hieved bypassing to a subsequen
e. By Theorem 3.1 from [GMRV1℄, the limit mapping F (x) isa non
onstant 1 { quasiregular mapping. Applying Liouville's theorem we see that fis a M�obius mapping. Be
ause of the above normalization, F (x) is a linear isomerty.ii) By Lemma 4.5 from [MRV℄ we see thatlim supj!1 iFtj (0) � iF (0) = 1;(3.24)where if (x) denotes the lo
al topologi
al index of f at x: Thus all the mappings Ftj (x)are lo
ally inje
tive at 0 for j > j0: By (3.16) we dedu
e that f is lo
ally inje
tive aty; too.iii) Let us assume the 
onverse. Then there exist 
 � 1; sequen
es yj 2 E; xj; zj ! 0as j !1 satisfying the 
ondition 
�1 � jxj j=jzj j � 
; su
h that
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e����� jf(xj + yj)� f(yj)jjf(yj + yj)� f(yj)j � jxj jjyjj ����� � " > 0:(3.25)By analogy with the pre
eding 
onsiderations, we introdu
e the following auxiliaryfamily of non
onstant K { quasiregular mappingsFj(x) = f(jxjjx+ yj)� f(yj)�(yj; f; jxj j)(3.26)with the distortion 
oeÆ
ients KFj (x) = Kf (jxj jx+ yj): Then the 
onvergen
e1
ntn Zjx�yj j<t (Kf (x)� 1)dx! 0 as t! 0(3.27)uniform in y 2 E with t = jxj jR; R > 0; implies thatZjxj<R (KFj (x)� 1)dx! 0 as j !1(3.28)for every positive R: Sin
e E is a 
ompa
t subset of G; then we 
an repeat the 
orre-sponding sequential arguments to show that every limit fun
tion for the family of themappings Fj(x) as j ! 1; is a linear isometry F (x): Without loss of generality wemay assume that Fj(x)! F (x) as j !1:Set �j = xj=jxj j; wj = zj=jxj j: We may assume that �j ! �0; j�0j = 1; andwj ! w0; 
�1 � jw0j � 
; as j ! 1: Otherwise we 
an pass to some appropriatesubsequen
es. Sin
e Fj(�j) = (f(xj + yj)� f(yj))=�(yj ; f; jxj j)! F (�0) and Fj(wj) =(f(zj + yj)� f(yj))=�(yj ; f; jxjj)! F (w0) and F is linear isometry it follows that0 = jF (�0)jjF (w0)j � j�0jjw0j = limj!1 ����� jFj(�j)jjFj(wj)j � jxjjjzj j ����� =(3.29) limj!1 ����� jf(xj + yj)� f(yj)jjf(zj + yj)� f(yj)j � jxj jjzj j ����� :Formula (3.29) provides a 
ontradi
tion to the inequality (3.25). The relation (3.21) isa simple 
onsequen
e of (3.20).Proof of Theorem 3.1 Let f : G! Rn ; n � 3; be a non
onstant K { quasiregularmapping. For every su
h mapping f(x) and every y 2 G we de�ne the radius ofinje
tivity Rf (y) of f at y as a supremum over all � > 0 su
h that f(x1) 6= f(x2) forx1 6= x2 in the ball jx� yj < � in G; see [MRV℄.Let us now assume that the integralI(r) = 1!n�1 Zjxj<r Lf (x)� 1jxjn dx(3.30)
onverges. The evident inequality1rn Zjxj<r (Lf (x)� 1)dx � Zjxj<r Lf (x)� 1jxjn dx(3.31)
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nrn Zjxj<r (Lf (x)� 1)dx! 0 as r ! 0;(3.32)and we make use of the weak 
onformality result, stated in Lemma 3.18. It providesus, in parti
ular, with the information that the mapping f is lo
ally homeomorphi
 atthe origin, Rf (0) > 0; and that limr!0 log Mf (r)mf (r) = 0:(3.33)Hen
e, in order to dedu
e (3.4) it suÆ
es to show thatlimr!0 logMf (r)r = a(3.34)and for this we use the Cau
hy 
riterion�" < log Mf (r2)Mf (r1) � log r2r1 < ":(3.35)Let us �x a positive number R; 0 < R < Rf (0); and �rst prove the left inequalityin (3.35).The 
onvergen
e of the integral (3.30) implies that given " > 0 there exists Æ > 0su
h that I(Æ) < "=2: Therefore, for every 0 < r1 < r2 < Æ by Corollary 2.28log r2r1 � log Mf (r2)mf (r1) � I(Æ) < "=2:(3.36)On the other hand, without loss of generality, we may assume that the relation (3.33)yields logMf (r2)mf (r1) = log Mf (r2)Mf (r1) + logMf (r1)mf (r1) � log Mf (r2)Mf (r1) + "=2:(3.37)From (3.36) and (3.37) we derive the left inequality in (3.34).For proving the right inequality in (3.34) we �rst note that by Corollary 2.50 wemay assume that log mf (r2)Mf (r1) � log r2r1 � I(Æ) < "=2:(3.38)Applying (3.33) we see thatlog Mf (r2)Mf (r1) � log mf (r2)Mf (r1) = logMf (r2)mf (r2) < "=2:(3.39)Combining (3.38) with (3.39) we obtain the right side inequality (3.34) and therefore,the Cau
hy 
riterion (3.35).In order to prove inequalities (3.3) let us �rst note that by Corollary 2.28log Rr � log Mf (R)mf (r) < I(R)(3.40)



16 Conformal Distortion in Spa
efor every 0 < r � R: Using relation (3.33) we dedu
e thatlog Mf (r)r < logMf (R)R + I(R) +O(r):(3.41)Thus limr!0 log Mf (r)r � log Mf (R)R + I(R):(3.42)Next, by Corollary 2.50 log mf (R)Mf (r) � log Rr < I(R):(3.43)Sin
e (3.39) implies thatlogMf (r)r > �I(R) + log mf (R)R +O(r)(3.44)we get limr!0 log Mf (r)r � log mf (R)R � I(R)(3.45)and thus 
omplete the proof.The following statement is a strengthened version of Theorem 3.1.3.46. Theorem. Let ' : G ! Rn ; n � 3; be a non
onstant K { quasiregularmapping and let E be a 
ompa
t set in G: IfI(r) = 1!n�1 Zjx�yj<r L'(x)� 1jx� yjn dx! 0 as r ! 0;(3.47)uniformly in y 2 E; then there exists a positive 
ontinuous fun
tion C(y); y 2 E; su
hthat jf(x)� f(y)jjx� yj ! C(y) as x! y(3.48)uniformly in y 2 E and for 0 < R < Rf (y)minjx�yj=R jf(x)� f(y)je�I(R)R � C(y) � maxjx�yj=R jf(x)� f(y)jeI(R)R :(3.49)Here Rf (y) stands for the radius of inje
tivity of f at y:Proof. For ea
h �xed y 2 G we will 
onsider the following auxiliary K { quasireg-ular mappings f(x) = '(x+ y)� '(y)(3.50)de�ned for jx� yj < dist (y; �G): Denoting by Lf (x; y) the inner dilatation 
oeÆ
ientfor f we see that Lf (x; y) = L'(x+y) a.e. in a neighborhood of the point y 2 G: Then(3.47) implies that



Ch. Bishop, V.Ya. Gutlyanski�i, O. Martio, M. Vuorinen 17Zjxj<r Lf (x; y)� 1jxjn dx! 0 as r ! 0(3.51)uniformly in y 2 E:So, the mapping f satis�es all the 
onditions of Theorem 3.1 and hen
ejf(x)jjxj = j'(x+ y)� '(y)jjxj ! C(y) as x! 0(3.52)for every �xed y 2 E:In order to show that the limit (3.52) is uniform with respe
t to y 2 E we have toanalyze the proof of Theorem 3.1. It is based on the following two distortion estimatesof Corollary 2.50 and Corollary 2.28log r2r1 � logMf (r2)mf (r1) � 1!n�1 ZR(r1;r2) Lf (x; y)� 1jxjn dx;(3.53) log mf (r2)Mf (r1) � log r2r1 � 1!n�1 ZR(r1;r2) Lf (x; y)� 1jxjn dx;(3.54)and the weak 
onformality 
onsequen
elogMf (r)mf (r) ! 0 as r ! 0;(3.55)provided by Lemma 3.18. Lemma 3.18 states also that the uniform 
onvergen
e (3.47)with respe
t to the parameter y implies the uniform 
onvergen
e (3.55). Hen
e from(3.53) { (3.55) and the uniform 
onvergen
e (3.47) we obtain that for every " > 0 thereis Æ > 0 su
h that 0 < r1 < r2 < Æ implies�����logMf (r2)Mf (r1) � log r2r1 ����� < "(3.56)for every y 2 E whereMf (r) = maxjxj=r jf(x)j = maxjxj=r j'(x+ y)� '(y)j:(3.57)Thus, we have arrived at the Cau
hy 
riterion for the fun
tionMf (r)=r to 
onverge toa nonzero limit uniformly in y 2 E: The proof is 
omplete.3.58. Corollary. Let f : G ! Rn ; be a lo
ally bilips
hitz mapping with the 
oef-�
ient of quasiisometry L(x) and let E be a 
ompa
t set in G: IfZjx�yj<r L(x)� 1jx� yjn dx! 0 as r ! 0;(3.59)lo
ally uniformly in y 2 E; then there exists a positive 
ontinuous fun
tion C(y); y 2 E;su
h that jf(x)� f(y)jjx� yj ! C(y) as x! y(3.60)
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euniformly in y 2 E:This statement follows immediately from Theorem 3.46 if we re
all that every lo
allyL-bilips
hitz mapping in G is K - quasiregular with K � L2(n�1):3.61. Corollary. Let f : G! Rn ; n � 2; be a K { quasi
onformal mapping andlet E be a 
ompa
t subset of G: If1!n�1 Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.62)uniformly in y 2 E; then there exists a positive 
onstant L su
h that1L jx� zj � jf(x)� f(z)j � Ljx� zj(3.63)whenever x; z 2 E:Proof. We �rst show thatM = supx;z2E;x6=z jf(x)� f(z)jjx� zj <1:(3.64)Let us assume the 
onverse. Then there exist sequen
es xj ; zj 2 E su
h thatlimj!1 jf(xj)� f(zj)jjxj � zj j =1:(3.65)Without loss of generality we may assume that xj ! x0; zj ! z0: Sin
e E is a 
ompa
tset then x0; z0 2 E: If x0 6= z0 thenlimj!1 jf(xj)� f(zj)jjxj � zj j = jf(x0)� f(z0)jjx0 � z0j 6=1:(3.66)If x0 = z0 = y then limj!1 jf(xj)� f(zj)jjxj � zj j = C(y);(3.67)by Theorem 3.46. Sin
e C(y) <1 then (3.67) provides a 
ontradi
tion to the relation(3.65).Repeating the pre
eding arguments and taking into a

ount both the inje
tivity off in G and the inequality C(y) > 0; y 2 E; we get thatN = infx;z2E;x6=z jf(x)� f(z)jjx� zj > 0:(3.68)The inequalities (3.64) and (3.68) imply the existen
e of a positive 
onstant L su
hthat (3.63) holds whenever x; z 2 E:Next we will apply Theorem 3.46 to a spa
e version of the re
ti�ability problem forquasi
onformal mappings studied by Carleson [CA℄. It is well-known that a quasi
on-formal mapping f : G ! Rn being an ACLn homeomorphism need not be absolutely
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ontinuous on some subsets E of G of a smaller dimension than n: Hen
e the imagef(
) of a re
ti�able 
urve 
 � G under quasi
onformal mapping f may fail to be re
-ti�able. The following statement provides a suÆ
ient 
ondition that guarantees there
ti�ability of f(
):3.69. Corollary. Let f : G! Rn ; n � 2; be a K { quasi
onformal mapping andlet 
 be a re
ti�able 
urve in G: If1!n�1 Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.70)uniformly in y 2 
; then � = f(
) is re
ti�able and moreover,Zf(
) dS = Z
 C(y)ds;(3.71)where C(y) is de�ned by (3.48).Proof. The following double inequality is trivial`(f 0(y))ds � dS � jjf 0(y)jjds(3.72)where ds and dS stand for the element of the length of the 
urve 
 at the point y 2 
and its image under the mapping f; respe
tively. On the other hand, Theorem 3.46provides the expli
it representation for the 
onformal distortion 
oeÆ
ient of f at yand hen
e `(f 0(y)) = jjf 0(y)jj = limh!0 jf(y + h)� f(y)jjhj = C(y):(3.73)From (3.72) we dedu
e that the line elements of 
 and f(
) are 
onne
ted by therelation dS = C(y)ds and thus, we arrive at the formula (3.71). Re
ti�ability of f(
)now follows from Corollary 3.61 be
ause 
 is 
ompa
t and therefore C(y) � L; y 2 
:Note that formula (3.71) provides the following double inequality1L � length f(
)length
 � L(3.74)and the 
onstant L 
an be also estimated by means of formula (3.49).Using the pre
eding approa
h we 
an apply Theorem 3.46 to the study of somegeometri
 properties of K - quasispheres, that is, images of the unit sphere Sn�1 of Rnunder K { quasi
onformal mappings of Rn :When n = 2; they are 
alled quasi
ir
les orquasi
onformal 
urves and studied in details in a number of the well-known papers, see,e.g., [ABL℄, [BP℄, [BG℄. The problem 
on
erns suÆ
ient 
onditions whi
h guaranteethe re
ti�ability of a quasisphere.For a set E � Rn and for Æ > 0 let�Æ�(E) = 
n;� inffBjg Xj d(Bj)�;(3.75)
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ewhere the in�mum is taken over all 
ountable 
overings fBjg of E with d(Bj) < Æ:Here the Bj are balls of Rn and d(Bj) is the diameter of Bj (see, e.g., [F℄, p. 7). Thequantity ��(E) = limÆ!0�Æ�(E);(3.76)�nite or in�nite, is 
alled the �-dimensional normalized Hausdor� measure of the setE: P. Mattila and M. Vuorinen [MVM℄ proved that if f : Rn ! Rn is K { quasi
on-formal, K(t) = (f j [jxj=1 B(x; t)); �(t) = K(t)1=(n�1); then the Dini 
ondition1Z0 1� �(t)t dt <1(3.77)implies that �n�1(f(Sn�1)) <1:This result 
an be strengthened in the following dire
tions. First, the well { knownReshetnyak's theorem states that the Dini 
ondition (3.77) implies the uniform 
on-formal di�erentiability of the mapping f in Sn�1 (see [R2℄, p. 378). Hen
e (3.77)gives a suÆ
ient 
ondition for the quasisphere f(Sn�1) to be smooth. On the otherhand, the following statement provides a 
ondition weaker then (3.77) for f(Sn�1) tobe re
ti�able.3.78. Corollary. Let f : Rn ! Rn ; n � 2; be a K { quasi
onformal mappingand let Zjx�yj<r Lf (x)� 1jx� yjn dx! 0 as r ! 0(3.79)uniformly in y 2 Sn�1: Then��(f(Sn�1)) = Zf(Sn�1) d� = ZSn�1 Cn�1(y)d� � Ln�1!n�1(3.80)where L = maxy2E C(y): Here d� stands for the (n � 1) - dimensional surfa
e areaelement for Sn�1 and C(y) is de�ned by (3.48).Referen
es[ABL℄ Anderson J.M., Be
ker J., Lesley F.D., Boundary values of asymp-toti
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onformal mappings, J. London Math. So
. 38 (1988), 453 { 462.[BP℄ Be
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