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Abstract

We study the conformality problems for quasiregular mappings in space. Our ap-
proach is based on some new Grotzsch — Teichmuller type modulus estimates that are
expressed in terms of the mean value of the dilatation coefficients.
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1. Introduction

Let G be an open set in R™. A continuous mapping f : G — R" is called K —
quasiregular, K > 1, if f € VVZIO’:(G) and if

(1.1) 1/ @)|" < K Jp(2) ae.

where Jy(z) stands for the Jacobian determinant of f'(z) and ||f'(z)|| = sup|f'(z)h]|
where the supremum is taken over all unit vectors h € R™. A homeomorphic K —
quasiregular mapping is called K — quasiconformal. We shall employ the following
distortion coefficients

2 Kf(x):%’ L) = iy @) = iy

that are called the outer, inner and linear dilatation of f at z, respectively. Here
0(f'(xz)) = inf|f'(x)h|. These dilatation coefficients are well-defined at regular points
of f and, by convention, we let Ky(x) = Ly(xz) = Hy(x) = 1 at the nonregular points
and for a constant mapping.

It is well-known that if n > 3 and one of the dilatation coefficients of a quasiregular
mapping f, say Ly(x), is close to 1, then f is close to a Mobius transformation. In spite
of this Liouville’s phenomenon the pointwise condition L¢(z) — 1 as x = y, y € G,
does not imply in general neither conformality for f at y nor the properties typical for
the conformal mappings. The mapping

(1.3) f(z) = (1 —log|z[), f(0)=0,

shows that |f(z)|/|z] — oo as z — 0 although Ls(z) = (1 — 1/log|z|)" !t — 1.
Nevertheless, the conformal behavior of f at a point can be studied using another
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measures of closeness of the distortion coefficient to 1. The first such result is due to
Teichmiiller [T] and Wittich [W]. They proved that if f : G — R? is a quasiconformal
homeomorphism such that

(1.4) / Mdm —0 as r—0,
|z —yl?
lz—y|<r

for some y € G then |f'(y)] = A\, where A > 0. In what follows we will call such A
the conformal distortion coefficient of f at y. Similar problems have been studied by
Belinski [B], Shabat [SH], Lehto [L], Reich and Walczak [RW], Brakalova and Jenkins
[BJ] in plane and by Reshetnyak [Rg2] and Suominen [Su] in space. Another approach
to the investigation of the pointwise behavior of the quasiconformal mappings based
on the Beltrami equation is due to Bojarski [BO] (see, also [Sch], [Iw]).

Consider the class of space radial mappings f : B — B defined on the unit ball B
in R™ centered at the origin as

1

(1.5) f(x) = ze =D a(|z]) = /

|z

Mdt, f(()) =0,

where L¢(t) stands for an arbitrary locally integrable function on [0,1] such that
L¢(t) > 1 for almost all ¢ € [0,1]. It follows from (1.5) that L¢(z) = J¢(z)/L(f'(x))"
a.e. and therefore Ly (x) agrees with the inner dilatation coefficient of f at . A simple
observation shows that f is conformally differentiable at the origin iff the integral in
(1.5) converges as  — 0. For an arbitrary quasiregular mapping f : B — B, f(0) =0,
the latter convergence assumption can be written in the form

L -1
(1.6) / Ldac—)O as r — 0
[
|z|<r
and one can expect that the condition (1.6) is necessary for f(z) to be conformal at
z=0.

In this paper we derive Grotzsch type modulus inequalities for quasiregular map-
pings in R”, n > 2, where integrals similar to (1.6) control the distortion. Then we
make use of such estimates to prove that a space version of the Teichmiiller — Wittich
result for nonconstant quasiregular mappings holds if we replace the assumption (1.4)
by (1.6). Finally we give a condition that guarantees the existence of the conformal
distortion coefficient for f at every point of a compact set £ C GG and apply the lat-
ter result to study Carleson’s rectifiability problem for quasispheres, see [CA], [BP],
[ABL]. For convenience we will prove the main statements only for the inner dilatation
coefficient L f(x) because for the other dilatations the corresponding results will follow
from the well-known relations (see, e.g., [V], p. 44)

(L.7) Li(e) < K'"\(2), Kj(z) < L0(2), H}) = K;(2)Ly(x)

that hold for every n > 2.

The following standard notations will be used in this paper. The norm of a vector

z € R is written as |z| = (27 + ... + 22)"/? where zy,...,z, are the coordinates of
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2. 1If 0 < a < b < oo, the domain R(a,b) = B(b) \ B(a) is called a spherical annulus,
where B(r) is the ball {z € R" | |z| < r}.

2. Modulus Estimates

Let £ be a family of Jordan arcs or curves in space R™. A nonnegative and Borel
measurable function p defined in R™ is called admissible for the family £ if the relation

(2.1) pds > 1
/

holds for every locally rectifiable v € £. The quantity
(2.2) M(E) = inf / de,
Rn

where the infimum is taken over all p admissible with respect to the family £ is called
the modulus of the family £ (see, e.g, [V], p.16, [G2]). This quantity is a conformal
invariant and possesses the monotonicity property which says, in particular, that if
&1 < &y, that is every v € & has a subcurve which belongs to &, then (see, e.g., [V],
p. 16)

(2.3) M(Er) > M(Es).

A space ring R is defined as a finite domain in R” whose complement consists of
two components Cy and C;. A curve v is said to join the boundary components in R
if v lies in R, except for its endpoints that lie in different boundary components of R.

In these terms the modulus of a space ring has the representation (see, e.g., [Ga],

[H])
(2.4) od e — (wn1>1/(n1)

M(T)

where I' is the family of curves joining the boundary components in R and w,_; is the
(n — 1)-dimensional surface area of the unit sphere S"~! in R" ( see, e.g., [Z], [G2]).

Note also, that the modulus M(T') coincides with the conformal capacity of the
space ring R by a result of Lowner [LC] (see, e.g., [G2]).

In the sequel we will employ only the following two families of curves, lying in
the spherical annulus R(a,b), and its images under quasiconformal mappings. The
first one, that we denote by I'g(,,p), consists of all locally rectifiable curves y that join
the boundary components in R(a,b). The second family L iap) With v € S fixed,
consists of all locally rectifiable curves « that join in R(a,b) the two components of
LN R(a,b) where L = {tv : t € R}.

In order to derive the desired estimates we need the following two statements.
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2.5. Lemma. Let f: G — G’ be a quasiconformal mapping with the inner di-
latation coefficient Ly(x). Then for each curve family I' in G

(2.6) M(/(D) < [ p"Ls(@)do
G

for every p admissible for T

Proof. To prove (2.6) we first recall the following Viiséild’s inequality

(2.7) /p )£ (@)|"de

that holds for every curve family I’ in G and every p* admissible for I" = f(T'). This
inequality is contained in the proof of Theorem 32.3 from [V].

Indeed, let I'y denote the family of all locally rectifiable curves v € I' such that f is
absolutely continuous on every closed subcurve of . Since f is ACL", it follows from
Fuglede’s theorem (see, e.g., [V], p. 95) that M(I' \ I'y) = 0. Hence M(I") = M(I).

Let p* be admissible for I, Define p : R® — R by

(2.8) p(x) = p*(f(2))L(z, )

for € G and p(z) =0 for z ¢ G where

et k)~ f()
(2.9) L(z, f) =1 haop ] .

If v € Ty then Theorem 5.3 from [V] yields
(2.10) /pds > / prds > 1
gl for

Thus, p is admissible for I'g and therefore

(2.11) M(T) = M(Ty /p dx—/p L™, f)de

= [ F (@) @),

G

since f is differentiable almost everywhere in G and L(z, f) = ||f'(z)|| at every point
of differentiability.
Applying formula (2.7) to the inverse of f yields

(2.12) M) < [ p"Lg(w)do
G

for every p admissible for I'.
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2.13. Lemma. Let R be a space ring that contains the spherical annulus R(a,b)
and let E1, Ey be two disjoint subsets of R such that each sphere S" 1(t), a < t < b,
meets both By and Ey. If € is the family of all curves joining Ey and Es in R\{E1UE3}
then

b
(2.1}) M(€) = ¢, log =
where
00 1-n
1 2-n 9L
(2.15) n = 52 /tn—l 1+ |
0

If R = R(a,b) and Ey, E5 are the components of LN R(a,b), where L is a line through
the origin in the direction of a unit vector v, then

(2.16) M(E):cnlogg.

This useful result, the proof of which is based on the combination of the space
moduli technique and Hardy—-Littlewood—Polya’s symmetrization principle, is due to
Gehring [G1] (see, also, [V], p. 27, [C], p. 58, [R1], p. 108).

Let f:R* - R", f(0) =0, n > 2, be a quasiconformal mapping. We will use the
following standard notations

(2.17) My(r) = max |f(z)|, ms(r) = |min |f(x)].

T|(=r xrl=r
|| |

2.18. Theorem. Letf:R"* — R", f(0) =0, n > 2, be a quasiconformal mapping
with the inner dilatation coefficient Ly(x). Then for every spherical annulus R(a,b)

(2.19) log * — mod f(R(a, b)) <
mod” f(R(a,b)) 1 Ly(z) -1
= > Hog" ™k gmodk f(R(a,b)) wn—1 / || de.

a,b)

Proof. Let R(a,b) be an arbitrary spherical annulus in R" and let I'p, ;) be the
family of curves which join the boundary components of R(a,b). Then (2.6) yields

(2:20) MU Crao)) < [ 0" Lylada
R(a,b)

for every p admissible with respect to a family I'p(, p)-
Using the formula (2.4), we obtain from (2.20)

(2.21) (mod f(R(a, b)) < wl / oL (2)da.
nilR(a,b)
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On the other hand the function

1

(2.22) pole) = ———
|z| log a

is admissible with respect to I'p(4 ) since for every curve v € I'pq )

1.

b
1
(2.23) /pods > pdr =
J rlog >

Substituting pp in (2.21) and noting that

1 " b 1—n
dr = | log —
— [ = (1og-)

R(a,b)

(2.24)

we arrive at the inequality

1-n ) —
(2.25)  (mod f(R(a,b)))' ™ — <logg> < ﬁ / Ly(z) -1,

log 2)n z|"
B oy

that can be rewritten in the form (2.19). The proof is completed.

2.26. Corollary. Let f: R* — R", f(0) =0, n > 2, be a quasiconformal map-
ping with the inner dilatation coefficient Ly(x). Then for every spherical annulus R(a,b)

(2.27) 1ogg — mod f(R(a, b)) < —— / %dm
a,b)

Proof. If log(b/a) < mod f(R(a,b)), then the inequality (2.27) is trivial. If
log(b/a) > mod f(R(a,b)), then (2.25) can be rewritten as

(g g

where 8 =log(b/a), & = mod f(R(a,b)) and M is the right hand side of (2.27). Now

é_1§<§>n1_1§%<%

« 8 T «

and this gives (2.27).

2.28. Corollary. Let f: R* — R", f(0) =0, n > 2, be a quasiconformal map-
ping with the inner dilatation coefficient Ly(x). Then for every spherical annulus R(a,b)

M¢(b 1 L -1
(2.29) log 2 — 1og 1) _ / o) =1,
a mys(a Wn—1 |z|™
R(a,b)
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Proof. Since the space ring f(R(a,b)) is contained in the spherical annulus
R(my(a), Mys(b)), the monotonicity principle for the modulus yields
My (b)

(2.30) mod f(R(a,b)) < mod R(my(a), M¢(b)) = log (@)

because for every annulus R(a,b)
b
(2.31) mod R(a,b) = log —
a

(see, e.g., [V], p. 22).

2.32. Theorem. Let f:R"* — R", f(0) =0,n > 2, be a quasiconformal mapping
with the inner dilatation coefficient L¢(x). Then for every spherical annulus R(a,b)

(2.33) M(f(F%(a,b))) Cn log < / o0 (z y)%d
R(a,b)

where B

(2.34) po(a,y) = (en/wn2) 7T (1= (/]al,y/ly))?) """

and cy, is the constant defined by (2.15).

Proof. Fix a unit vector v = y/|y| € R" and consider the family I';, ) of curves
which join {tv: —b <t < —a} to {tv: a <t < b} in R(a,b). By Lemma 2.5

(2.35) M(f (Tk(a,p)) / P Ly(x

for each admissible p with respect to I'Y Rab)"
Now we are going to show that the function

1
(2.36) puv () = mﬂo(w,y)
is admissible for the family F%,/( ab) for every fixed v = y/|y|.
Indeed, let y be a rectifiable curve in I'; ) and let o(x) = z/|x|. Then po~yisa

curve on S"~! and « joins the antipodal points +y/|y|. Since |¢'(z)| = 1/|z| then (see
[V], Cor. 5.4)

(237) [ pui@ids = [ ool le @lldal = [ poey)ds
Y Y Py

In order to continue the estimation of the above integral, let us rewrite pg(z,y) in
the form

(1 (ol y/l)2)E\
(2.38) po(z,y) = p,* ( 5 )

n
1
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with

—-n
1

(2.39) Dn = 2/7"T
0

2)ﬁdr

3|

and introduce a certain coordinate system on the sphere S”~L.

Denote by V*~! a hyperplane passing through the origin and orthogonal to the
vector y/|y|. Let t = P(z) : S ! — V" be the stereographic projection with the
pole at the point y/|y| and F(t) be the inverse mapping. Provide the sphere S™~!
with the spherical coordinates ayi, ..., ap—1 in such a way that «; stands for the angle
between the radius vectors going from the origin to the points z and —y/|y| of the unit
sphere. In these terms |t| = tan(a;/2) and therefore, sina; = 2|t|/(1 + |#|?). On the
other hand, 1 — (z/|z|,y/|y|)? = sin? a1, so

(2.40 w o r0 =it (FE)

Since x = F(t) is conformal and |F'(t)| = 2/(1 + |t|?) we get

(0.0
@a1) [ ds= [ poo FIF @Y 2 2" [ 1070+ ) TRl = 1
oy Fopoy 0

having completed the verification of the admissibility.
Noting that

(2.42) / p”dx—/ / prdmy, 1 | dr =

n—l(r)

b b
[ [ et = [ ] g s

n 1 Sn—1

since
(2.43) / podmy_1(z) =
1
and substituting p,(z) in the inequality (2.35) we get

b Ly(x) —
(2:44) MU () —enlog s < [ ooy e
R(a,b)
and arrive at the stated conclusion. Here we have also used the following relation

(2.45) / prdm, 1(z) =21 / Mdmnl(@:

1+ [T
Sn—1 yr-1

—n2n—1 t n(j:ln) t i 1 t 1— nd
Pn i (L4 1) 55 (U 1) " dma (1) =
ynr—1
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—n2n—1p_n

1-non—2 __
wn—an 2 n 2 -

= Wnp_2P Cn.

The proof is completed.

2.46. Corollary. Let f : R* — R", f(0) =0, n > 2, be a K — quasiconformal
mapping with the inner dilatation coefficient Ly(x). Then

Lf(ac)dac‘

kgl

(2.47) | MU Chp)dma ) < [

gn—1 R(a,b)

Proof. The function pg(z,y) is symmetric in the sense that po(x,y) = po(y,x),
z,y € S*!, and therefore

(2.48) /pgdmnq(y): / podmn—1(z) = cy.
Sn—1 Sn—1

If we integrate the inequality (2.33) with respect to the parameter y over the sphere
S"=1 then, by Fubini’s theorem and relation (2.48), we get

Lf(ac)dac‘

|z

(2.49) / M(F (DY) 1 (V) < e /

gn-1 R(a,b)

The proof is complete.

2.50. Corollary. Let f: R* — R", f(0) =0, n > 2, be a K - quasiconformal
mapping with the inner dilatation coefficient Ly(x). Then

b b 1 L -1
(2.51) log my) log — < / () dx.

|z

RO

Proof. If ms(b) < My(a) then the inequality (2.51) is trivial. Assume that
mys(b) > My(a). Then the space ring R = f(R(a,b)) contains the spherical annulus
R(My(a), mg(b)). The curve family f(F’I’%(a,b)) satisfies all the assumptions of Lemma
2.13 with the spherical annulus R(M/(a), ms(b)) as a subset of f(R(a,b)). Therefore,
inequality (2.14) and (2.16) imply that

m(b)
My (a)’

(2.52) M(f (TRea,))) = MR (0).m s 8))) = Cnlog
This together with (2.47) yields (2.51).

The following statements may be of independent interest.
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2.53. Theorem. Let f be a K - quasiconformal mapping of a spherical annu-
lus R(a,b) onto another spherical annulus R(c,d) with the inner dilatation coefficient
Ly(x). Then

1 L -1
(2.54) - / 1) =l 1ogl —10gd <
Wn—1 |z | a c
R(a,b)
log™(d 1 L -1
< -1 ?% /e k ' / (@) dz.
> =i log" *(b/a) - log®(d/c) wn_1R( |z|™

a,b)

Proof. The left inequality follows from Corollary 2.50 and the right one is a
consequence of Theorem 2.18.

If f is a K — quasiconformal mapping in the plane, then (2.54) yields

B sts ()

and we recognize the classical Grotzsch inequality for annuli (see, e.g., [LV], p. 38).

2.56. Corollary. Let f be a K — quasiconformal mapping of a spherical annu-
lus R(a,b) onto another spherical annulus R(c,d) with the inner dilatation coefficient

L¢(x). Then
d b < 1 / Lf(x) — ldw.

log — — log — -
c al = wp1 ||

a,b

(2.57)

Indeed, if log(d/c) > log(b/a) then (2.57) follows from the inequality (2.51). If
log(d/c) < log(b/a) then (2.57) follows from the inequality (2.29).

For n = 2 we arrive at the modulus estimations under quasiconformal mappings in
the plane with the variable dilatation coefficient established by Belinski [B].

Note that all the inequalities proved in this section remain valid also for ACL"
homeomorphisms in R” with locally integrable dilatation coefficients. Moreover, the
estimates (2.54) and (2.57) are sharp. For instance, the radial mappings of the type
(1.5) provide the equality in (2.57).

3. Conformal Distortion

We apply estimates proved in Section 2 to a space version of the regularity problem
studied by Teichmiiller [T] and Wittich [W].
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3.1. Theorem. Let f: R* — R*, n > 3, f(0) = 0, be a nonconstant K -
quasiregular mapping with the inner dilatation coefficient Ly(x) and

1 L -1
(3.2) I(r) = / () dr =0 as r—0.
Wn_1 ||
|| <r

Then the radius of injetivity of f at 0, Rs(0), satisfies Ry(0) > 0 and there exists a
constant C,

—I(R) I(R)

(33 min |f(@)| " < C < max |f(@)

0 < R < Rf(0),

such that

|f ()]

—C as 2 — 0.
|z|

(3.4)

3.5. Remark. The proof of Theorem 3.1 s also valid if n =2 and f is a home-
omorphism.

3.6. Corollary. Let f : R* — R”, f(0) =0, n > 2, be a K — quasiconformal
mapping satisfying (3.2). Then |f(z)| ~ C|z| as x — 0 and inequalities (3.3) can be
replaced by

(3.7) min 1f(2)|eI® < € < max|f(z)]e! ™.

In the case n = 2 we arrive at the Teichmiller — Wittich result for K — quasicon-
formal mappings in the plane (see, also, [LV], Lemma 6.1). For n > 3 the asymptotic
behavior of f described in Corollary 3.6 has been proved by Suominen [Su| for K —
quasiconformal mapping in Riemannian manifolds.

3.8. Remark. The above statements hold if we replace the inner dilatation L (x)
by the outer dilatation Ky(x) or linear dilatation H(x), respectively.

It is well-known that a sense-preserving locally L-bilipschitz mapping f : G — R"
is L2(n=1) quasiregular; a locally L-bilipschitz mapping f satisfies for each L' > L,
z € G, and for some § > 0 the double inequality

(3.9) YL <|fy) - F@)ly -2 < I

whenever y, z € B(z, ). A more general class than sense - preserving locally bilipschitz
mappings is provided by the class of mappings of bounded length distortion (BLD),
see [MV]. These mappings form also a subclass of quasiregular mappings as well.

11
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3.10. Corollary. Let f: G — R"™, be a bilipschitz mapping with the coefficient of
quasiisometry L(z). If y € G and

1 L(x)—1
(5.11) / de%O as r — 0,
Wn—1 |z —y["
|lz—y|<r

then there is a constant C > 0 such that

|[f(z) = f(y)]

(3.12) =l

—C as z—y.

This statement was proved recently in [K].

3.13. Remark. If we replace (3.2) by the following stronger requirement

1
0y (t)
(3.14) O/Tdt<oo,
where
(3.15) 07(t) = ess sup (Kj(x) — 1),
|z|<t

then, by the well-known Reshetnyak theorem (see [Raof, p. 204), f(x) will be conformally
differentiable at the origin.

The well — known Liouville’s theorem in space states that if the dilatation coefficient
of a quasiregular mapping is close to 1, then f is close to a Mobius transformation. The
next lemma, that gives a weak integral condition for this phenomenon, will be used for
the proof of Theorem 3.1. Before its statement, let us recall some basic notions from
the space infinitesimal geometry studied in [GMRV3].

Let f: G — R",n > 2, be a nonconstant K—quasiregular mapping, y € G, t) =
dist(y, 0G), R(t) = to/t, t > 0. For x € B(0, R(t)) we set

fltz +y) — f(y)

(3.16) Ra) = VSR
where
(3.17) T(y, f,t) = <mea$ féf(y’t))y.

Here Q,, denotes the volume of the unit ball B in R". Let T'(y, f) be a class of all the
limit functions for the family of the mappings F; as ¢ — 0, where the limit is taken
in terms of the locally uniform convergence. The set T'(y, f) is called the infinitesimal
space for the mapping f at the point y. The elements of T'(y, f) are called infinitesimal
mappings and the family (3.16) is called an approximating family for f at y. T'(y, f) is
not empty and consists only of nonconstant K — quasiregular mappings F : R — R"
normalized by F'(0) =0, F'(co) = 0o, meas F(B) = 2, see [GMRV;], Th. 2.7.
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3.18. Lemma. Let f: G — R*, n > 2, be a nonconstant K — quasireqular
mapping with the inner dilatation coefficient Ly(x) and let E be a compact subset of

G. If
(3.19)

o (Lf(x) =1)dz =0 as t =0
lz—y|<t

uniformly iny € E then:
i) The infinitesimal space T (y, f) consists of the linear isometric mappings only;
ii) For n > 3 the mapping f is locally homeomorphic in E;
iii) The mapping f preserves infinitesimal spheres and spherical annuli centered at
y in the sense that

MaAX | y|=r |f(z) = f(y)l
min|$,y|:r |f(z) = f(y)]
and for each ¢ > 1, ¢! < |z|/|2| < ¢,

flz+y) = f)| ||
1f(z+y) = fy) 2]

as x,z — 0 uniformly iny € E.

(5.20) =1 as r—0,

(3.21)

Proof of Lemma 3.18. i) Let F; be the approximating family for f at y. Assume
that t; — 0 as j — oo and Fy, () — F(r) locally uniformly as j — oo. By formula
(3.16) we get that

(3.22) K, (x) = K¢(tjzr +y) a.e.

and hence (3.19) can be written as

(3.23) / (Kth () = 1)dx — 0 as j — o0
|z|<R

for every positive constant R. The latter limit implies that K Fy () > 1lasj — oo in

measure in R”. Without loss of generality we may assume that K Fy () — 1 almost

everywhere and Fy, (r) — F(z) locally uniformly as j — oo. This can be achieved by

passing to a subsequence. By Theorem 3.1 from [GMRV], the limit mapping F(z) is

a nonconstant 1 — quasiregular mapping. Applying Liouville’s theorem we see that f

is a M6bius mapping. Because of the above normalization, F'(z) is a linear isomerty.
ii) By Lemma 4.5 from [MRV] we see that

(3.24) limsupip, (0) <ip(0) =1,
J—00 J
where if(x) denotes the local topological index of f at . Thus all the mappings Fi; (z)
are locally injective at 0 for j > jo. By (3.16) we deduce that f is locally injective at
Yy, too.
iii) Let us assume the converse. Then there exist ¢ > 1, sequences y; € F, z;,2z; — 0
as j — oo satisfying the condition ¢™! < |z;]/|zj| < ¢, such that

13
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1f(ys+u5) = Flydl lysl
By analogy with the preceding considerations, we introduce the following auxiliary

family of nonconstant K — quasiregular mappings

with the distortion coefficients Ky, (r) = Kf(|x;|z + y;). Then the convergence

(3.27) / (Kj(2) — 1)dz — 0 as t -0

|a:—yj\<t

0, 1"
uniform in y € F with ¢ = |z;|R, R > 0, implies that

(3.28) / (Kp;(7) —1)dz — 0 as j — o0
|z|<R

for every positive R. Since F is a compact subset of G, then we can repeat the corre-
sponding sequential arguments to show that every limit function for the family of the
mappings Fj(z) as j — 00, is a linear isometry F'(z). Without loss of generality we
may assume that Fj(z) — F(z) as j — oo.

Set ¢; = zj/|r;|, wj = z;/|z;|. We may assume that (; — (o, |(o] = 1, and
wj — W, c ! < |wy|] € ¢, as j — oo. Otherwise we can pass to some appropriate
subsequences. Since F;((;) = (f(zj +y;) — f(y;))/7(y;, [, |z;]) = F(Co) and Fj(w;) =
(f(zj +y;) — f(y;)/7(yj, f,]xj]) = F(wp) and F is linear isometry it follows that

B (L R ) T 1 (9 R 7

[F(wo)|  Jwo| — 3500 |[Fj(w))] 7]
i | @ ys) = Pyl gl
i=oo | [f(zj +y) — fly)|l 12l

Formula (3.29) provides a contradiction to the inequality (3.25). The relation (3.21) is
a simple consequence of (3.20).

(3.29) 0

Proof of Theorem 3.1 Let f : G — R, n > 3, be a nonconstant K — quasiregular
mapping. For every such mapping f(z) and every y € G we define the radius of
injectivity Ry(y) of f at y as a supremum over all p > 0 such that f(z1) # f(z2) for
x1 # z2 in the ball |z — y| < p in G, see [MRV].

Let us now assume that the integral

(3.30) I(r) = 11 / Li@ =1,

converges. The evident inequality

(3.31) rin (Ly(x) — 1)dz < / L@ -1,
|z|<r |z|<r
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yields

(3.32) !

Qrm

/ (Ly(z) = 1)dz — 0 as r — 0,
lz|<r
and we make use of the weak conformality result, stated in Lemma 3.18. It provides

us, in particular, with the information that the mapping f is locally homeomorphic at
the origin, R(0) > 0, and that

M
(3.33) lim log 20 _ ¢
r—0 mf('r)

Hence, in order to deduce (3.4) it suffices to show that

M
(3.34) lim log M) =aqa
T

r—0

and for this we use the Cauchy criterion

My (ro) T
3.35 —e<lo —log = < e.
( ) g Mf(’)"l) g A

Let us fix a positive number R, 0 < R < Ry(0), and first prove the left inequality
in (3.35).

The convergence of the integral (3.30) implies that given £ > 0 there exists § > 0
such that I(d) < /2. Therefore, for every 0 < r; < ry < § by Corollary 2.28

M
(3.36) log "2 — 1og M2(r2)
1 my(ry)

< I(0) <e/2.

On the other hand, without loss of generality, we may assume that the relation (3.33)
yields

M M M M
log £(r2) =1lo 1(r2) + log 1(r1) 1(r2)
my(ry) My (ry) my(ry) My(r1)
From (3.36) and (3.37) we derive the left inequality in (3.34).

For proving the right inequality in (3.34) we first note that by Corollary 2.50 we
may assume that

(3.37) < log +e/2.

mf(rg) 9
3.38 log ——=£ —log = < I()) < /2.
( ) g Mf(?"1) gn = ( ) /

Applying (3.33) we see that

My (ro) my(r2) My (ro)
log og = log ————= < ¢/2.

Mf(rl) Mf(’l“l) mf(TQ)
Combining (3.38) with (3.39) we obtain the right side inequality (3.34) and therefore,
the Cauchy criterion (3.35).

In order to prove inequalities (3.3) let us first note that by Corollary 2.28

(3.39)

M;(R)
my(r)

(3.40) log E_ log < I(R)
T

15
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for every 0 < r < R. Using relation (3.33) we deduce that

M M¢(R
(3.41) log # < log My(R) I(R) + O(r).
Thus u MR
(3.42) lim log 20 1o MrB) I(R).
r—0 r R
Next, by Corollary 2.50
mys(R) R
3.43 | —log — < I(R).
(3.43) B ) 18T < (R)
Since (3.39) implies that
M R
(3.44) log # > —I(R) + log me() + O(r)
we get
M R
(3.45) lim log # > log me() ~ I(R)

and thus complete the proof.
The following statement is a strengthened version of Theorem 3.1.

3.46. Theorem. Let ¢ : G — R* n > 3, be a nonconstant K — quasireqular
mapping and let E be a compact set in G. If

1 L -1
(8.47) I(r)y=—— / %d,ﬁc—)() as r — 0,
Wn—1 |$ - y|n
lz—yl<r
uniformly in y € E, then there exists a positive continuous function C(y), y € E, such
that

(3.48) w —C(y) as z —y

uniformly iny € E and for 0 < R < Ry(y)

I(R)

R SCW) < max [f(z) = Fly)l—7—

(3.49)  min |f(x) = f(0)

lz—y|=

Here Ry(y) stands for the radius of injectivity of f at y.

Proof. For each fixed y € G we will consider the following auxiliary K — quasireg-
ular mappings

(3.50) f(z) = oz +y) —ey)

defined for |z — y| < dist (y, 0G). Denoting by Ly (z,y) the inner dilatation coefficient
for f we see that Ly(x,y) = L,(x+y) a.e. in a neighborhood of the point y € G. Then
(3.47) implies that
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L ~1
(3.51) / Lr@w) =L, 0 as r—0

uniformly in y € F.
So, the mapping f satisfies all the conditions of Theorem 3.1 and hence

[f @) _ ez +y) — o)
] ]

(3.52) —C(y) as z—0

for every fixed y € E.

In order to show that the limit (3.52) is uniform with respect to y € £ we have to
analyze the proof of Theorem 3.1. It is based on the following two distortion estimates
of Corollary 2.50 and Corollary 2.28

r Me(r 1 Le(z,y)—1
(3.53) log -2 — log 1(r2) < / &dx,
r my(ry Wn—1 || ™
R(r1,r2)
m (7 T 1 Ls(x -1
(3.54) log rlra) log = < / &dx,
My(r1) T Wpet ="
R(r1,r2)

and the weak conformality consequence

My (r)
m(r)
provided by Lemma 3.18. Lemma 3.18 states also that the uniform convergence (3.47)
with respect to the parameter y implies the uniform convergence (3.55). Hence from
(3.53) — (3.55) and the uniform convergence (3.47) we obtain that for every ¢ > 0 there
is > 0 such that 0 < ry < r9 < J implies

(3.55) log —0 as r =0,

My (ro) 9
3.56 lo —log—=|<e¢
(3.56) g M () g

for every y € E where

(3.57) My(r) = max |f(z)] = max lo(z +y) — o(y)l-

Thus, we have arrived at the Cauchy criterion for the function My(r)/r to converge to
a nonzero limit uniformly in y € E. The proof is complete.

3.58. Corollary. Let f : G — R™, be a locally bilipschitz mapping with the coef-
ficient of quasiisometry L(x) and let E be a compact set in G. If

L(z) -1
Lndx—)O as r — 0,

(3.59) /

|z -yl
|lz—y|<r

locally uniformly iny € E, then there exists a positive continuous function C(y), y € E,

such that
|f(z) = fy)l

3.60 —-Cy) as z—y
(3.60) o ow

17
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uniformly iny € K.

This statement follows immediately from Theorem 3.46 if we recall that every locally
L-bilipschitz mapping in G is K - quasiregular with K < L=,

3.61. Corollary. Let f:G — R", n>2, be a K — quasiconformal mapping and
let E be a compact subset of G. If

1 L(z)—1
(3.62) / L@ =1 50 asr—0
Wn-1 |z —y|™
|lz—y|<r

uniformly in y € E, then there exists a positive constant L such that

1
(3.63) Tle =zl < |f(@) = f(z) < Ll — 2|
whenever x,z € E.

Proof. We first show that

(3.64) M= sup @) = /()] < 00.

r,2€E, v#2 |$ - Z|
Let us assume the converse. Then there exist sequences z;, z; € E such that
jooo|ry — zj
Without loss of generality we may assume that z; — @9, 2; — 2p. Since F is a compact
set then xg, zp € E. If 2y # 2y then
[f(z5) = F(z)] _ |f(x0) — F(20)]

(3.66) lim = # 00
j—00 |$j — Zj| |$0 - Z0|

If zg = 29 = y then

(3.67) lim Fleg) = Hz)l C(y),
by Theorem 3.46. Since C(y) < oo then (3.67) provides a contradiction to the relation
(3.65).

Repeating the preceding arguments and taking into account both the injectivity of
f in G and the inequality C(y) > 0, y € E, we get that

(3.68) A e Gl

> 0.
T,2€E, x#£2 |$ — z|

The inequalities (3.64) and (3.68) imply the existence of a positive constant L such
that (3.63) holds whenever z,z € E.

Next we will apply Theorem 3.46 to a space version of the rectifiability problem for
quasiconformal mappings studied by Carleson [CA]. It is well-known that a quasicon-
formal mapping f : G — R" being an AC L™ homeomorphism need not be absolutely
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continuous on some subsets E of G of a smaller dimension than n. Hence the image
f(7) of a rectifiable curve v C G under quasiconformal mapping f may fail to be rec-
tifiable. The following statement provides a sufficient condition that guarantees the
rectifiability of f(vy).

3.69. Corollary. Let f: G — R", n>2, be a K — quasiconformal mapping and
let v be a rectifiable curve in G. If

1 L(z) -1
(3.70) / L@ =1 50 asr—0
Wp—1 |$ - y|n
jo—yl<r

uniformly in y € v, then I' = f(v) is rectifiable and moreover,
(3.71) / dS:/C’(y)ds,
f() v

where C(y) is defined by (3.48).

Proof. The following double inequality is trivial

(3.72) ((f'(y))ds < dS < |[f'(y)||ds

where ds and dS stand for the element of the length of the curve v at the point y € v
and its image under the mapping f, respectively. On the other hand, Theorem 3.46
provides the explicit representation for the conformal distortion coefficient of f at y
and hence

(3.73) ) = [l = fmy LU =0

From (3.72) we deduce that the line elements of v and f(y) are connected by the
relation dS = C(y)ds and thus, we arrive at the formula (3.71). Rectifiability of f(v)
now follows from Corollary 3.61 because v is compact and therefore C(y) < L, y € .

= C(y).

Note that formula (3.71) provides the following double inequality
1_lengthf(y) _,
L = length~

and the constant L can be also estimated by means of formula (3.49).

(3.74)

Using the preceding approach we can apply Theorem 3.46 to the study of some
geometric properties of K - quasispheres, that is, images of the unit sphere S”~! of R®
under K — quasiconformal mappings of R". When n = 2, they are called quasicircles or
quasiconformal curves and studied in details in a number of the well-known papers, see,
e.g., [ABL], [BP], [BG]. The problem concerns sufficient conditions which guarantee
the rectifiability of a quasisphere.

For a set E C R"™ and for § > 0 let

(3.75) AU(E) = Yna inf > d(B))*",
ApA
J
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where the infimum is taken over all countable coverings {B;} of E with d(B;) < 6.
Here the B; are balls of R" and d(Bj) is the diameter of B; (see, e.g., [F], p. 7). The
quantity

(3.76) Aa(B) = lim Aq (),

finite or infinite, is called the a-dimensional normalized Hausdorff measure of the set
E.

P. Mattila and M. Vuorinen [MVM] proved that if f : R® — R" is K — quasicon-
formal, K (t) = (f| Ujz=1 B(z,1)), a(t) = K (t)Y(=1) then the Dini condition

1
1—
(3.77) / Dt < o
0

implies that A, 1(f(S"!)) < .

This result can be strengthened in the following directions. First, the well — known
Reshetnyak’s theorem states that the Dini condition (3.77) implies the uniform con-
formal differentiability of the mapping f in S" ! (see [Ra], p. 378). Hence (3.77)
gives a sufficient condition for the quasisphere f(S™~!) to be smooth. On the other
hand, the following statement provides a condition weaker then (3.77) for f(S" ') to
be rectifiable.

3.78. Corollary. Let f : R* — R*, n > 2, be a K — quasiconformal mapping
and let

L
(5.79) / %dm—)() as v — 0
lz—y|<r

uniformly in y € S*~'. Then

(3.80) Ao (f (8™ / do = / C" Yy)do < L" tw, 4
Sn 1

where L = maxycp C(y). Here do stands for the (n — 1) - dimensional surface area
element for S"~! and C(y) is defined by (3.48).
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