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UNIFORMLY ACUTE TRIANGULATIONS OF POLYGONS

CHRISTOPHER J. BISHOP

Abstract. We show that any polygon Γ has an acute triangulation T where every
angle lies in the interval [30◦, 75◦], except for triangles that contain a vertex v of Γ
where Γ has an interior angle θv < 30◦; such triangles are isosceles with angles θv,
and 90◦ − θv/2.

1. Introduction

A polygon is a Jordan curve P in the plane consisting of a finite number of distinct

vertices V = {z1, . . . , zn} and open segments {(z1, z2), . . . , (zn−1, zn), (zn, z1)} that

are pairwise disjoint. The bounded connected component of R2 \ P is called the

interior of P and is denoted Int(P ); for brevity we will often call this open domain Ω.

The domain’s closure is Int(P ) = Int(P )∪P ; this will be called the polygonal region

associated to P . A polygon with three vertices is a triangle, and when the meaning is

clear from context, we will abuse notation and refer to both the curve and the closed

triangular region it bounds as “triangles”.

A triangulation of a polygon P is a finite collection {Tk} of triangular regions

contained in Int(P ) so that: (1) the union covers Int(P ), (2) the triangles have disjoint

interiors, and (3) the triangles have the simplex property: any two triangles are either

disjoint, intersect in a single point which is a vertex of each triangle, or intersect in a

segment that is an edge of each triangle. The triangles may have vertices other than

those of P , and these “extra” vertices are called the Steiner points of the triangulation.

Given a polygon P , finding triangulations (with or without Steiner points) with few
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elements and/or nice geometric properties is a fundamental problem of computation

geometry. In this paper, we are concerned with the geometric question: if we allow

any number of elements, what is the smallest angle θ so that every polygon P has

a triangulation with almost every angle ≤ θ? (The meaning of “almost” will be

explained below.) If we insist on bounding every angle of the triangulation, then

θ = 90◦ is the best we can hope for. It is known that every polygon has an acute

triangulation (all angles < 90◦) e.g., see [1], [11], [30], [35]. If P has a vertex v with

small interior angle θv, then any triangulation of P has a triangle T containing v and

this triangle must have an angle ≤ θv, and hence another angle ≥ 90◦ − θv/2. Thus

no uniform angle bound strictly less than 90◦ can hold. However, such a bound holds

if we simply ignore one triangle for each “small” vertex, i.e., θv < 30◦.

Theorem 1.1. Every polygon P has a triangulation T so that every triangle T in T
has its angles in the interval [30◦, 75◦], unless T contains a vertex v of P with interior

angle θv < 30◦; then T is isosceles with angles θv and 90◦ − θv/2.

A triangulation using only angles ≤ φ is called a φ-triangulation. A φ-triangulation

is called non-obtuse if φ = 90◦ and is called acute if φ < 90◦. Theorem 1.1 implies

every polygon has a φ-triangulation with φ = 90◦ − min(30◦, θmin)/2, where θmin is

the minimum interior angle of P . A stronger bound is possible: [9] proves that every

polygon has a φ-triangulation with φ = 90◦ −min(36◦, θmin)/2, and that this bound

is sharp. The bound is a consequence of a more general result in [9] that computes

Φ(P ) = inf{φ : P has a φ-triangulation} for any given polygon. However, Theorem

1.1 is not a corollary of this result because the construction given in that paper in [9]

can create multiple triangles with angles outside [36◦, 72◦] for each angle of P that

is less than 36◦, whereas Theorem 1.1 creates just one triangle with angles outside

[30◦, 75◦] for each vertex with angle < 30◦.

To explain the distinction more carefully, I will (very) briefly review the construc-

tion in [9]. It divides the interior of P into a finite number of pieces, and on each

piece the triangulation is defined as the image of a nearly equilateral triangulation

of a corresponding “model region” under a conformal map. Each vertex v ∈ P is

associated to a piece that is a small truncated sector with vertex v and angle θv, the

interior angle of P at v. The corresponding model region is another sector whose

angle ψv is an appropriate integer multiple of 60◦, and such a sector has a natural
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triangulation by equilateral triangles. The conformal map between the sectors is a

power map z → a+ bzα with α = θv/ψv. Angles of triangles touching v are distorted

by a factor of α, but the distortion diminishes as the distance to v increases; see

Corollary 3.3. Far enough from v the image triangles are nearly nearly equilateral,

and can easily be merged with the triangulation of an adjacent piece of the polygon.

Thus several angles > 72◦ may occur near v; numerical experiments indicate 6 excep-

tional triangles can occur as θv ց 0. Theorem 1.1 reduces this to just 1 exceptional

triangle per small vertex by increasing the angle bound from 72◦ to 75◦.

Remark 1: Theorem 1.1 is the triangular analog of a result for quadrilateral

meshes in [7]: every polygon P has a quadrilateral mesh with all angles in [60◦, 120◦],

except for quadrilaterals that contain a vertex v of P where the interior angle is

θv ≤ 60◦. The exceptional quadrilaterals are kites with opposite angles θv and 120◦,

and the remaining pair of opposite angles are both equal to 120◦ − θv/2.

Remark 2: Theorem 1.1 is also the polygonal version of a result for planar straight

line graphs (PSLGs) given in [6]. That paper proves that there is a θ0 > 0 so that

every PSLG Γ has a conforming triangulation with all angles in [θ0, 90
◦ − θ0/2],

except for triangles containing a vertex v of Γ with interior angle smaller than θ0.

Such triangles are isosceles with angles in [θv, 90
◦ − θv] where θv is the minimum

interior angle of Γ at v (a PSLG may have more than one angle at a vertex). In

particular, a PSLG with minimum angle θmin has a conforming triangulation with

all angles ≤ 90◦ − min(θ0, θmin)/2. The argument for PSLGs in [6] is significantly

more involved than the proof for polygons given here. It depends on compactness, so

it does not give an explicit value for θ0 (the optimal value remains unknown). One

purpose of this paper is to show that the argument simplifies in the special case of

polygons, and that we can obtain the explicit value θ0 = 30◦.

Remark 3: Finding acute triangulations of polygons and PSLGs has a long history

and many applications, e.g, see [8] or [41] for lists of algorithms that work better with

acute or non-obtuse triangulations. Very briefly, in 1960 Burago and Zalgaller [11]

showed that any polyhedral surface has an acute triangulation. See also [12]. In 1984

Gerver [19] used the Riemann mapping theorem to show that if a polygon’s angles

all exceed 36◦, then there exists a dissection of it into triangles with maximum angle

72◦ (a dissection satisfies conditions (1) and (2) of a triangulation, as defined earlier,
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but not (3)). He conjectured an optimal angle bound for dissections of arbitrary

polygons, and this was later proven in [9]. In 1988 Baker, Grosse and Rafferty [1]

rediscovered (a weaker form of) the Burago-Zalgaller theorem, by proving that any

polygon has a nonobtuse triangulation, and their construction also gave a lower angle

bound in some cases. In 2002 Maehara [30] showed that any nonobtuse triangulation

with N triangles can be refined to an acute triangulation with O(N) elements. Thus

finding an acute triangulation (angles < 90◦) reduces to finding a nonobtuse one

(angles ≤ 90◦). A different proof of this was given by Yuan in [37], and also by

Saraf [35]. Besides the papers cited earlier, a few other highlights and surveys of

the theory include [2], [3], [4], [5], [8], [16], [18], [20], [27], [32], [34]. The problem of

acutely triangulating particular polygons has arisen in recreational mathematics, e.g.,

finding the smallest acute triangulation of a square (it uses 8 triangles) is considered

by Lindgren [28] and Cassidy and Lord [13]. Eppstein [17] discusses optimal angle

bounds for triangulating a square, a question of John Tromp from a 1996 sci.math

post. Eppstein mentions that Gerver proved 72◦ is optimal for dissections, but Gerver

also proved it is optimal for triangulations (see Figure 4 of [19]). (Surprisingly, the

optimal bounds for dissections and triangulations are the same for any polygon; see

Corollary 1.3 of [9].) Acute triangulations of other shapes and surfaces are considered

in [21], [22], [23], [24], [29], [31], [38], [39], [40]. Higher dimensional analogs are

extremely interesting but much more difficult, e.g., the best known acute triangulation

of the 3-cube has thousands of tetrahedron. See [10], [25], [26].

I thank the two anonymous referees for their detailed and thoughtful reports, which

provided numerous concrete suggestions for improving the exposition of the paper.

2. Model domains

As noted in the introduction, the general idea used in this paper is the same as

in [9]: given a polygon P we construct another polygon P ′ and a conformal map

between their interiors. The model polygon P ′ is chosen so that its interior has an

nearly equilateral triangulation (defined below). Away from the vertices of P , the

conformal map between P ′ and P nearly preserves the shape of these triangles, and

this gives a nearly equilateral triangulation of P away from its vertices; a separate

construction is needed in a neighborhood of each vertex.
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Unlike the construction in [9], where P ′ is chosen to be a finite polygon, the P ′ we

use in this paper is unbounded, and thus not a polygon at all, in the sense of the first

paragraph of this paper. The interior of P ′ is of the form

Ω′ = Int(P ′) = (R× [0, 1]) \ ∪n
k=1Uk,

where the {Uk} are pairwise disjoint, closed, unbounded subsets of S = R × [0, 1].

Each Uk is bounded by an unbounded Jordan arc (a homeomorphic, proper image of

R 7→ R
2) containing two infinite horizontal rays, whose finite endpoints are joined by

a polygonal arc consisting of two finite line segments, so that all three interior angles

of Uk are 120◦. See Figure 1.

Figure 1. A model domain is a subset of an infinite strip that has
four closed regions removed. Each closed region is bounded by an
unbounded Jordan curve consisting of two horizontal infinite rays and
two finite segments and has three angles of 120◦. In this figure, the
model domain has an equilateral triangulation, although most model
domains only have nearly equilateral triangulations (see Lemma 2.1).
In this picture there are six infinite ends: three go left, three go right,
and there are two ends each of thicknesses 1, 2 and 3.

Given a polygon P with n vertices, the model P ′ will be chosen to have n infinite

ends and so that there is a conformal map f sending each infinite end of P ′ to a

vertex of P : more precisely, this means that as z → ∞ through one of the ends of Ω′,

f(z) tends to a vertex of P . This condition imposes restrictions on how P ′ can be

chosen, since a conformal map between general simply connected domains only allows

three boundary points to have specified images; requiring n boundary points match

up requires a very special choice of P ′. Fortunately, such a P ′ can be constructed

using the Schwartz-Christoffel formula, as discussed in Section 3.
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The model domain in Figure 1 is shown with an equilateral triangulation. In

general, not every model domain has an equilateral triangulation; it is easy to see that

only countably many model domains can have one. However, every model domain

has a nearly equilateral triangulation. This means that for any ǫ > 0 we can choose

a triangulation with all angles in [60◦ − ǫ, 60◦ + ǫ], and so that only finitely many

triangles are not equilateral (so for our model domains, the triangulation becomes

equilateral far enough down each infinite end). The following simple fact is left to

the reader (a very similar result is proven in Section 5 of [9]).

Lemma 2.1. Every model domain has nearly equilateral triangulations.

Given a nearly equilateral triangulation of a model domain, the “thickness” of

an infinite end is the number of triangles needed to connect the top and bottom

sides of the end, i.e., the number of horizontal rows of triangles in the end. By sub-

diving triangles, we can clearly make these thicknesses as large as we wish. For our

construction, we need to specify the thickness of each end independently of the other

ends, and in Section 4 we will see how to do this.

When we conformally map the model P ′ to the given domain P , the images of

the nearly equilateral triangulation will give a triangulation of P , except near the

vertices of P . Since the triangulation of P ′ has an infinite number of triangles in

each infinite end, we will only transfer the part of the triangulation inside a bounded

subset of the model defined by cutting each end with a vertical line segment S far

enough out the end that the triangulation near S is equilateral. The cut-off half-

strip maps to a sector at the corresponding vertex of P . See Figure 2. The vertical

segment at the end of the half-strip is not covered by edges of the triangulation, so

we will have to “fill in” a triangulation between the equilateral triangulation the end

and the vertical segment. This is also explained in Section 4. After that, we give an

explicit construction that extends the image triangulation into these sectors at each

each vertex v, being careful that no angles > 75◦ are used, except for one triangle

that touches v (and only then if the angle at v is < 30◦). This construction depends

heavily on numerical computations of angles for explicit families of triangulations.

We will use several “well known” lemmas about the distortion of angles under

conformal maps and, in particular, the distortion of triangles pushed forward by a

conformal map. Since these facts were recorded and explained in [9], in the context
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Figure 2. We use the conformal map to transfer a nearly equilateral
triangulation from a compact region of the model domain (shaded) to
the interior of P minus neighborhoods of each vertex. We then have to
triangulate the neighborhoods and make the meshes match up.

of constructing triangulations, we give specific citations to that paper, although the

relevant facts about conformal maps could be found elsewhere.

3. Conformal maps

We start with the following simple lemma.

Lemma 3.1. Suppose P is a polygon and Ω = Int(P ). Then there is a model domain

Ω′ with boundary P ′, and a conformal map f : Ω → Ω′ which gives a bijection between

the vertices of P and the infinite ends of Ω′.

Proof. This is a fairly standard fact and it follows from the Riemann mapping theorem

and the Schwarz-Christoffel formula. Suppose φ : D → Ω is conformal (such a map

exists by the Riemann mapping theorem) and z = {z1, . . . , zn} ⊂ T are the pre-images

of the vertices of P . Suppose the interior angles of P are απ = {α1π, . . . , αnπ}. Then
the Schwarz-Christoffel formula says that φ is given by

φ(z) = A+ C

∫ z n
∏

k=1

(1− w

zk
)αk−1dw,(3.1)

for some choice of constants A,C. See e.g., [15], [33], [36].

Let I = {Ik} be the connected components of T\z. Choose two non-adjacent Ik’s,

and then choose three points near the center of each of the other n − 2 elements of

I. Set α = 4/3 at these points. For each zk choose two points z±k on either side zk

and set α = 1/2 at these points. Then apply the Schwarz-Christoffel formula to get

a polygon, as shown on the top of in Figure 3. Take the limit as z±k → zk; the finite

polygonal domains converge to the unbounded domain described in the lemma and
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f g

f g

Figure 3. Using the Schwarz-Christoffel formula, one can map the
interior of any simple polygon to a subset of a strip as shown on top.
By taking the preimages z±k of the 90◦ corners to converge to zk, we get
a conformal map onto an unbounded model domain, as shown on the
bottom.

illustrated in Figure 3. The desired map Ω → Ω′ is just the composition of φ−1 with

this limit of Schwarz-Christoffel maps. �

Given a triangulation in Ω′ we transfer it to a triangulation in P by mapping

the vertices of each triangle and then connecting the images by line segments. The

following shows that angles are not distorted very much (this is Lemma 3.2 of [9]).

Lemma 3.2. If 0 < δ < 1

2
, f is a conformal map on a disk D(z, r) and T = ∆ABC

is a triangle inside D(z, δr), then the triangle f ∗T = ∆f(A)f(B)f(C) has angles

that are within O(δ) of the corresponding angles of T .

Corollary 3.3. Suppose f : Ω → Ω′ is a conformal map between the interiors of two

domains. Suppose that T ⊂ Ω is a triangle of diameter ǫ > 0, and that for some

z ∈ T , D(z, d) ∩ ∂Ω is empty or consists of a single line segment S so that f(S) is

a line segment in ∂Ω′. Then f maps the vertices of T to the vertices of a triangle

T ′ ⊂ Ω′ whose angles are within 1 +O(ǫ/d) of the corresponding angles of T .
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Proof. If the intersection is empty, then Lemma 3.2 applies directly to D(z, d). If the

intersection is a line segment S as described, then f can be extended from D(z, d)∩Ω

to all of D(z, d) by Schwarz reflection, and then Lemma 3.2 is applied. �

In particular, this corollary applies to the conformal map between a polygon and

its model domain. Fix a large M < ∞. Suppose the nearly equilateral triangles

in Ω′ have diameter ǫ > 0, and that ǫ is so small that each infinite end of P ′ has

thickness ≥ M . Applying Corollary 3.3 with d = Mǫ shows that for any triangle

T ′ in Ω′ that is distance ≥ Mǫ from every vertex of P ′, the corresponding triangle

in T has angles within a factor of 1 + O(1/M) of those of T , and hence it will also

be nearly equilateral, if M is large enough. Therefore, we can transfer a nearly

equilateral triangulation of the model domain to Ω. The image triangles are all close

to equilateral by Lemma 3.2, except those near the 240◦-vertices, but by choosing the

triangulation fine enough we may assume the angles of these triangles are bounded

by 67.5◦ + ǫ for any ǫ > 0. The 67.5◦ arises because near a 240◦ vertex v ∈ P ′ in the

boundary, the conformal map acts like z3/4, sending the 240◦ angle on P ′ to 180◦ on

P . The 60◦ angles that touch v are mapped to 3

4
·60◦ = 45◦; the image triangle under

the power map is isosceles, so each of the other two angles is (180◦ − 45◦)/2 = 67.5◦.

See Figure 4. The conformal map Ω′ → Ω is not equal to the power map, so the

67.5◦ may be slightly exceeded. However, taking a fine enough triangulation ensures

all the image angles are less than 75◦.

Figure 4. Mapping an equilateral triangulation of a 240◦ sector by
z → z3/4 gives a 67.5◦-triangulation. The maximum occurs in the four
triangles touching the origin.

As noted above, the model domain can be written as a compact polygon plus a

finite number of infinite ends that are each half-strips. Inside these half-strips the
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triangulation is equilateral but infinite. Also, in the half-strips the conformal map to

Ω approximates an exponential map. In particular, a vertical segment connecting the

horizontal sides of an end maps to a close approximation of a circular arc connecting,

and orthogonal to, the two sides of P adjacent to the corresponding vertex of P . See

Figure 2. The infinite half-strip beyond the vertical segment maps to an approximate

truncated sector in the region Ω. We inscribe a polygonal arc γ withM evenly spaced

points on γ. This defines a polygonal sector. We will triangulate this sector with the

desired angle bound, without adding any vertices to γ. This is described in Sections

6 and 7.

Remark: The methods of [9] can be used attain the 67.5◦ angle bound near the

image of the 240◦ degree corner, not just approximate it. See Lemma 6.3 of [9] for

a precise statement describing of how this works. With more work, using the “420◦-

trick” from [9], the 67.5◦ bound can be further lowered to 5

7
· 90◦ ≈ 64.2857◦, but

we do not need the better estimate here. However, we will need to use the related

“120◦-trick” in the next section.

4. Interpolation between triangulations in a strip

An infinite strip has several natural equilateral triangulations Tn determined by

the number n of horizontal rows of triangles. See Figure 5 where parts of T6 and T12

are illustrated. This figure also illustrates the two interpolation problems described

in the paragraphs following Lemma 2.1.

First, the triangulations Tn do not contain vertical segments, and we will have to

construct an explicit triangulation that “fills the gap” between part of Tn and the

vertical end of a half-strip, i.e., fill in the left blank region in Figure 5. This is easy

to do, as shown in Figure 6 (in our construction, we are free to choose the “width”

of this region). Thus when we truncate the infinite ends of P ′ by vertical segments,

the region between the equilateral triangulation and the segment can be triangulated

with angles ≤ 72◦ as promised in Section 2. Corollary 3.3 applies, so the triangulation

can be transferred from P ′ to P with all angles remaining below 75◦.

The second problem illustrated in Figure 5 is to interpolate between Tn and Tm

for n 6= m. This is more difficult to deal with, and the problem will arise in our
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? ?

Figure 5. Two problems involved with merging the triangulations.
On the left we have to complete the triangulation between an equi-
lateral triangulation and the end of a half-strip. On right we have to
interpolate between two equilateral triangulations of different sizes. In
our applications, we are free to choose the widths of the intermediate
regions to be meshed.

12072

72
72

7272

72

54

36 60

60
60

60
60

60
48

Figure 6. On the left is a triangulation of an indented rectangle.
Note that every angle is ≤ 72◦. On the right we show how it “fills in”
between a partial equilateral triangulation of strip and the end of a
half-strip.

construction because each infinite end of the model domain has an equilateral tri-

angulation that is determined by its “thickness”, i.e., the number of horizontal rows

triangles. When choosing the nearly equilateral triangulation of the model domain,

the thickness of each end can be made as large as we wish by subdividing the triangu-

lation, but we can’t choose the thickness of each end independently. By interpolating

between two different equilateral triangulations of a strip, we will be able to change

the thickness of each end, independently of what happens in the other ends.

Lemma 4.1. Given N < ∞ there is an A < ∞ so that if n,m ≥ N then there is

a 72◦-triangulation Tn,m of S = R × [0, 1] that equals Tn on S ∩ {x < −A} and that

equals Tm on S ∩ {x > A}.
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Proof. Construct a “funnel strip”, as illustrated on the top of Figure 7, that has a

equilateral triangulation that is n triangles thick in one direction and m triangles

thick in the other direction. Map this to a strip as shown on the bottom of Figure 7.

If n,m are large enough, then the triangles in the image are all close to equilateral,

except near the images of the corners. Near the image of the 240◦ interior corner,

the image triangulation has angles bounded by 67.5◦; the argument is the same as

described in Section 3 for the behavior near the 240◦ angles in P ′ (recall Figure 4).

Near the 120◦ corner, a more complicated construction is needed.

Figure 7. We use a conformal map to transfer equilateral triangula-
tion from a “funnel strip” to a true strip. Enlargements of the behavior
near the 120◦ and 240◦ corners are illustrated on Figures 4 and 8. These
figures were produced with Driscoll’s SC-Toolbox [14].

Near the 120◦ corner, the conformal map acts like a power map z → z3/2. This is

made precise by Lemmas 6.2 and 6.3 of [9]. The image of the equilateral triangulation

under this power map is shown in Figure 8. Because only two triangles touch the

corner in the funnel, the images of these triangles have 90◦ angles at the image of

the corner. This is too large for our purposes. Near the image of the 120◦ angle in

the funnel, the image triangulation must be replaced by another triangulation using
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only angles ≤ 72◦. This is accomplished by the “120◦-trick” from [9]. See Figure 9.

The trick is made precise using the following result (Lemma 7.1 of [9]).

Figure 8. Near the 120◦ corner, the conformal map acts like a power
map z → z3/2. The image triangulation contains two 90◦ angles.

Figure 9. The “120◦-trick” from [9] creates a triangulation of a half-
plane with maximum angle 72◦ (right side) by taking the conformal
image of an equilateral triangulation of a 120◦-sector with some trian-
gles removed (left side). Two boundary arcs on the modified sector are
identified as one internal arc γ in the new triangulation, and an interior
vertex of degree 5 is created. The arc γ appears straight, but is actually
slightly curved to ensure the image vertices on either side of γ match
up (that this is possible is proved in [9]). The conformal map approxi-
mates z3/2 near infinity, hence the new triangulation approximates the
z3/2-triangulation from Figure 8 near infinity.

Lemma 4.2. Suppose f : P ′ → P is a conformal map between polygons that maps

vertices to vertices. Suppose f(v′) = v where v′ is a vertex of P ′ and v is a vertex

of P , with angles 120◦ and 180◦ respectively. Suppose T is a nearly equilateral trian-

gulation of P ′ and f ∗T the image triangulation. If T is fine enough, then there is a

neighborhood U of v and a triangulation S of P that equals f ∗T outside U and every

triangle of S touching U has all angles ≤ 72◦.
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Moreover, we can choose A so that the pushed forward triangulation in the strip

is as close as we wish to Tn and Tm in the two components of S \ [−A,A] × [0, 1].

Thus the pushed forward triangulation can be replaced with these in the components

while keeping all angles, except those near the corners, close to 60◦. This completes

the proof of Lemma 4.1. �

5. Polygonal sectors

A polygonal sector is a polygon with one vertex at the origin and the others in-

scribed on, and evenly spaced along, a circular arc centered at the origin. A truncated

polygonal sector is the difference of two such regions corresponding to the same an-

gular arc on two different radius circles. See Figure 10.

L

θ

Figure 10. On the left is a general polygonal sector. On the right is a
truncated polygonal sector; in this case a pentagon, the case of greatest
interest to us. We want to triangulate such pentagons with good angle
bounds without adding any vertices to the “inner” and “outer” sides.

We are most interested in sectors that are pentagons with one segment inscribed on

the smaller circle and two on the larger circle. These pentagons are symmetric with

respect to the angle bisector of the corresponding sector; we shall call these shapes

“sector pentagons”. See the right-hand side of Figure 10. The side of the pentagon

closest to the origin is the “inner” edge, the two farthest edges are the “outer” edges.

The two other sides are the “radial” edges (they lie on rays through the origin). The

“length” L of such a pentagon is the length of the radial edges. Note that in Figure

10 we have defined θ to be half the angle of the sector; this is convenient for some

formulas in later sections, and we will call θ the “sector angle”. The rest of the
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paper is devoted to finding upper angle bounds for acute triangulations of symmetric

pentagons that only place boundary vertices on the radial edges.

The importance of these pentagons is illustrated in Figure 11, which shows how to

mesh a polygonal sector with 2n outer edges by a single isosceles triangle and 2n+1−2

pentagons. If each pentagon has a 75◦-triangulation, and the vertices match up along

common boundaries, then we obtain a triangulation of the whole polygonal sector.

This will happen if the pentagon triangulations have no extra vertices on the inner

or outer edges of the pentagon; if the triangulation is symmetric, then vertices on the

radial edges match up automatically, and otherwise we can use reflected versions in

alternate pentagons (note that pentagons in the same layer have the same shape).

Figure 11. A mesh of a polygonal sector into one triangle and several pentagons.

Suppose v is a vertex of P where P has interior angle θv > 60◦. We divide the

angle into equal sub-angles that are each in (30◦, 60◦] and use the mesh in Figure 11

to each of the corresponding sub-sectors. There are at most six triangles touching

v, and each is isosceles with maximum angle ≤ 75◦. If θv ≤ 60◦, then we do not

subdivide the angle and we use a single copy of the mesh in Figure 11. The isosceles

triangle touching v will have two angles equal to 90◦ − θv/2, which will be > 75◦ if

θv < 30◦. For example, if P has angle 40◦ at v, the corresponding value of θ is 20◦;

if P has angle 100◦, we will subdivide it into two sectors of angle 50◦ and apply the

lemma twice with θ = 25◦.
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There are at most six triangles touching any vertex v, and each is isosceles with

maximum angle ≤ 75◦. Thus the sector mesh at a vertex v of P will be bounded by

k · 2j segments along its outermost edge, where k ∈ {1, . . . , 6} and j is as large as we

wish. By Lemma 4.1 we can arrange for the triangulation in the corresponding end

of P ′ to have exactly this thickness, so the conformal image of the triangulation in

the end can be joined to the triangulation of the sector. Thus to prove Theorem 1.1,

is only remains to verify the following result.

Lemma 5.1. For each 0 < θ ≤ 30◦ there is a choice of length L so that the corre-

sponding symmetric sector pentagon has a 75◦-triangulation, with no vertices on the

inner or outer edges. The triangulation is symmetric with respect to the pentagon’s

axis of symmetry.

The proof is given in the next two sections. Both sections make use of a particular

triangulation of a sector pentagon. See Figure 12 for the abstract graph. The points

labeled A,B,C,D,E, F are defined in terms of positive parameters r, s, t, x, y, z as

follows (using complex notation).

A = is, B = x, C = x+ y + it,

E = x+ r + i[s+ (x+ r) tan(θ)],

F = x+ y + z + i[s+ (x+ y + z) tan(θ)],

and D on the real line is defined by the condition that ∠EFD = 90◦ − θ/2; this

makes ∆AFD isosceles. If the figure were translated so that the line containing AF

hit the real axis at the origin O, then this angle condition would be equivalent to

|DO| = |FO|; we don’t state it this way to include the case θ = 0 where AF is

parallel to the real axis. Here XY denotes the segment with endpoints X and Y , and

|XY | is its length. The triangulation is symmetric with respect to the real line, and

for X in the plane, X denotes its complex conjugate (its reflection over the x-axis).

As motivation for what follows, we fix a value of θ, set s = 1 and then use a

computer to search for values of r, t, x, y, z that are close to minimizing the maximum

angle. A graph of the maximum angle found for each value of θ is shown in Figure

13. The graph appears to have a piecewise linear structure, but we do not investigate

this here. More importantly, the plot indicates that the maximum angle is bounded

above by 75◦, attained at the right-hand endpoint 30◦.
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r

x y z

θ

Figure 12. The triangulation T (θ) of a polygonal sector. The precise
definition is given in the text. We assume 0 ≤ θ ≤ 30◦.
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Figure 13. The maximum angle used in the triangulation T (θ) for
0 ≤ θ ≤ 30◦ based on a computerized search for parameters. This
indicates the estimate ≤ 75◦ is true with the maximum attained at 30◦.

To actually prove the 75◦ upper bound, it is convenient to break the proof into

two ranges: θ ∈ [0, 18◦] and θ ∈ [18◦, 30◦]. For the latter range, we will define the

triangulation by specifying certain angles in terms of θ. From these, the values of

several other angles can be deduced by elementary geometry. All these angles are
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easily verified to be ≤ 75◦ for all θ in the given range. However, there are four angles

with values that do not have simple formulas in terms of θ. These angles we can

compute numerically for a finite set of θs between 18◦ and 30◦, and to estimate their

values between these points we have to bound the derivative of these angles with

respect to θ. We then choose the gaps between the evaluations to be so small that

the maximum over the discrete evaluations is within .1◦ of the maximum over the

whole interval (and the discrete maximum will be ≤ 74.5).

A similar numerical strategy will be used in Section 7 to deal with the interval

[0, 18◦], but there monotonicity will be used instead of a derivative bound.

6. Lemma 5.1: 18◦ ≤ θ ≤ 30◦

We start by specifying the triangulation in terms of the sector angle θ. For 18◦ ≤
θ ≤ 30◦, set δ = 30◦ − θ. Note that 0 ≤ δ ≤ 12◦. Recall ∠EFD = 90◦ − θ/2. We set:

67.5◦ ≤ ∠DCC = ∠DCF = ∠FCE = 75◦ − δ/4 = 67.5◦ + θ/4 ≤ 75◦,

72◦∠BCE = 72◦ + δ/4 ≤ 75◦,

∠ABA = 72◦.

These values, and the symmetric ones in the lower half-plane, determine the triangu-

lation completely. Several other angles can be computed easily from these using the

fact that the angles of triangle sum to 180◦. For example,

∠CDC = 180◦ − 2∠DCC = 180◦ − 2(67.5◦ + θ/4) = 45◦ − θ/2,

so

30◦ ≤ ∠CDC = 30◦ + δ/2 = 45◦ − θ/2 ≤ 45◦.

The following estimates are proven by similar arguments and left to the reader:

60◦ ≤ ∠CDF = 60◦ + δ/4 = 67.5◦ − θ/4 ≤ 63◦

63◦ ≤ ∠BCC = 63◦ + δ/2 = 78◦ − θ/2 ≤ 69◦.

∠CFD = 45◦

30◦ ≤ ∠EFC = 30◦ + δ/2 = 45◦ − θ/2 ≤ 46◦

67.5◦ ≤ ∠CEF = 75◦ − δ/4 = 67.5◦ + θ/4 ≤ 75◦

42◦ ≤ ∠CBC = 54◦ − δ = 24◦ + θ ≤ 54◦

54◦ ≤ ∠BAE = 36◦ + θ ≤ 66◦
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Of the angles given above, the maximum is 75◦−δ/4 for 24◦ ≤ θ ≤ 30◦, and 72◦+δ/4

for 18◦ ≤ θ ≤ 24◦. In either case, the maximum angle is less than 75◦ for θ ∈ [18◦, 30◦].

Note that since ∠CEF = 75◦ − δ/4 = ∠FCE, the triangle ∆FEC is isosceles and

hence |EF | = |CF |. Also note that all the angles listed above depend linearly on θ,

and the derivative of the angle with respect to θ is always has value in {0,±1

4
,±1

2
,±1}.

In particular, the absolute value of the derivative is always ≤ 1.

There are only four other angles to consider: ∠ABE, ∠AEB, ∠EBC and ∠BEC.

These are not easily solvable in terms of θ, but they do satisfy the equations

∠ABE + ∠EBC = 180◦ − 36◦ − 1

2
∠CBC = 120◦ − θ/2,

∠AEB + ∠BEC = 180◦ − ∠CEF = 112.5◦ − θ/4,

∠AEB + ∠ABE = 180◦ − ∠BAE = 150◦ − θ,

so that knowing any one of these four angles tells us the other three. We can compute

these numerically for a finite number of θs, but in order to control the values between

the evaluated points we have estimate the derivative of these angles in terms of θ. The

sum formulas above easily imply the absolute values of the derivatives (with respect

to θ) of any two of these angles differ by at most 2, e.g. d
dθ
∠AEB = − d

dθ
∠ABE − 1.

Hence it is enough to bound one of these derivatives; we will focus on ∠BEC.

Since angles are preserved by similarities, we can normalize the triangulation as

θ varies so that the vertex F if fixed, and the segment FC has length 1. Then C

remains on the unit circle around F and the angle between CF and the horizontal

direction is θ + ∠EFC = 45◦ + θ/2. Thus C moves at most at rate 1/2 in θ. (All

derivatives of trig functions are computed in radians, despite our using degrees to

specify angles.) The segment EF makes an angle θ with the horizontal and the

length of this segment can be computed using the Law of Sines:

|EF | = |EC| sin(∠ECF )
sin(∠EFC)

=
sin(82.5◦ − θ/4)

sin(45◦ − θ/2)
.

If we compute the derivative using the quotient rule, the denominator will be larger

than sin(30◦)2 = 1/4 and the denominator is a sum of two terms, each of which is

a product of three terms that are less than 1 in absolute value (two trigonometric

functions and the derivative of the angle with respect to θ). Thus the derivative of

|EF | is bounded by 2/(1/4) = 8 in absolute value. Hence E can move with rate at

most
√
1 + 82 < 9.
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The segment BC makes angle 12◦ + θ/2 with the horizontal, and since |EC| = 1,

|BC| |BC| can be computed by applying the Law of Sines three times as

|BC| =
(

sin∠BCC

sin∠CBC

)(

sin∠CDC

sin∠CCD

)(

sin∠CDF

sin∠CFD

)

.

Differentiating using the product rule and quotient rules, gives us a sum of three

terms. Each term has two of the factors left alone and the third differentiated. As

above, the numerator of the differentiated term has absolute value at most 2. Thus

the derivative of |BC| is bounded by

2 sin∠CDC sin∠CDF

(sin∠CBC)2 · sin∠CCD · sin∠CFD
+

2 sin∠BCC sin∠CDF

sin∠CBC · (sin∠CCD)2 · sin∠CFD

+
2 sin∠BCC sin∠CDC

sin∠CBC · sin∠CCD · (sin∠CFD)2
≤ 3.7474 + 3.6786 + 3.9265 < 12,

where we have used the lower bounds

∠CCD ≥ 72◦, ∠CBC ≥ 45◦, ∠CFD ≥ 45◦,

and the upper bounds

∠BCC ≤ 69◦, ∠CDC ≤ 45◦, ∠CDF ≤ 63◦,

that we computed earlier from our assumption that 18◦ ≤ θ ≤ 30◦. Thus the vector

C − B changes at a rate of bounded by
√
1 + 122 ≤ 13. Since C changes at most at

rate 1/2, this implies B changes at rate at most 14. Finally, note that

|EC| = |EF | sin(∠EFC)
sin(∠CEF )

≥ sin(∠EFC) ≥ sin(30◦) ≥ 1/2

and

|EB| ≥ Im(E) ≥ |EC| · sin(∠BCE + ∠BCC − 90◦)

≥ |EC| · sin(45◦ + 3

4
δ) ≥ |EC| · 1√

2
>

1

3
.

Thus the C − E and B − E each move at rate at most 20 and the lengths of these

vectors are both at least 1/3. Therefore the size of ∠BEC changes at a rate ≤
3(20 + 20) = 120, and so the other three angles each change at rate ≤ 122.

Note that 1/100 degrees is π/180000 < 1/5000 radians. Thus each of our angles

changes by less than .1 radians over such an interval, and hence by less than .1

degrees. Figure 14 plots the four angles in question for θ between 18◦ and 30◦ with

gaps of (1/1000)◦. The maximum is ≈ 74.2977 attained by ∠ABE at θ = 18◦, so the
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four special angles being considered are all ≤ 74.4◦. Thus all the angles are ≤ 75◦,

completing the proof of Lemma 5.1 for θ ∈ [18◦, 30◦].

18 20 22 24 26 28 30

45

50

55

60

65

70

75

Figure 14. Plots of the four angles ∠ABE, ∠AEB, ∠EBC and
∠BED evaluated at intervals of .001◦. The maximum is 74.2977◦. 5of
these angles within the gaps is ≤ .1◦,

7. Lemma 5.1: 0◦ ≤ θ ≤ 18◦

We now turn to triangulating polygonal sectors with angles smaller than 18◦. We

will use a monotonicity argument to show that the maximum angle needed for all

0 ≤ θ ≤ 18◦ can be bounded by the maximum angles needed for a certain finite set of

triangulations corresponding to a finite set of values θ ∈ [0, 18◦]. Thus the argument

reduces to another “brute force” computation.

We use the same combinatorial triangulation as in the last section; see Figure 12

and the definitions of A,B, . . . , F at the end of Section 5. For each fixed angle θ, each

choice of x, y, z, r, t determines a triangulation. By plugging in and evaluating the

angles, we get an upper angle bound for triangulating the corresponding truncated

θ-sector. We do not claim the bounds we obtain are optimal, although they are

probably close to optimal for the given combinatorics (although other combinatorial

triangulations may give better bounds).

We will do this explicit calculation for a finite number of angles 0 = θ0 < · · · <
θn = 18◦. To obtain bounds that are valid for all angles, we will give a 1-parameter
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family of triangulations of polygonal sectors between angles θk and θk+1. For each

such interval we use a computer search to find a good set of parameters x, y, z, r, t

to define the starting triangulation Tk with sector angle θk. For each sector angle

θk ≤ τ ≤ θk+1 we describe how to move Tk in two steps (the first moves vertices E

and F , and the second moves vertex D). We obtain a triangulation of a truncated

sector with angle τ , and then use similar moves to change this to a triangulation of

a sector with angle θk+1. We will show with a monotonicity argument that every

angle for the triangulation at τ can be bounded above by some angle in one of four

associated triangulations. Thus the angle bound for any τ ∈ [0, 18◦] is bounded by

the maximum angle from a finite set of triangulations, all of which we compute.

A

A

B

C

D
C

F

F

τ

E

E

Figure 15. The first variation. We move the vertices E,E, F, F
in Figure 12 vertically so that they lie on a new line making a larger
angle with the horizontal. The other points are not moved. Every
angle changes monotonely. Since D is not moved, the new figure is not
quite a polygonal sector. This is fixed in Figure 16.

The first family of perturbed triangulations is shown in Figure 15. We draw the

lines through A and A that makes an angle τ > θ with the horizontal. The points

E,F,E, F are moved vertically to lie on this line. The new positions are denoted

E ′, F ′, E
′

, F
′

. All other points are left fixed. Triangles involving only the vertices

A,A,B,C,C,D are not changed. The angles ∠BAE, ∠CBE, ∠BCE, ∠DCE and

∠DCF increase with τ . By symmetry, so do the corresponding angles in the lower
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half-plane. The remaining angles decrease with τ . However, this is not a triangulation

of a polygonal sector of angle τ , since D is in the wrong place.

A

A

B

C

C

F

F

τ

E

E

D

Figure 16. This is the same as Figure 15, except that D has been
moved to the right, so the region becomes a polygonal sector. Only the
angles of triangles containing D are changed, and all change mono-
tonely.

In Figure 16, we show how to move D to D′, in a way that makes the region a

polygonal sector. This motion affects three triangles, hence nine angles. For an angle

that is not effected, the final value is the same as the value after the first step. Since

angles change monotonely in the first step, the final values for any τ ∈ [θk, θk+1] is

bounded by the angle values at one of the endpoints after the first step.

Similarly, no angle in the triangle CDD changes in the first step, and they all

change monotonely in the second step, so their final values for any τ are bounded

between their values when τ ∈ {θk, θk+1}.
The only angles that require some thought are those that change in opposite di-

rections in the first and second steps. For example, consider angle ∠CDF . This

increases in the first step and decreases in the second. Thus its final value is less

than its value between the two steps, and since the first step is increasing in τ , this

intermediate value is less than the value we would get by setting τ = θk+1. In symbols,

∠CD′F ′(τ) ≤ ∠CDF ′(τ) ≤ ∠CDF ′(θk+1).
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Similarly,

∠D′CF ′(τ) ≤ ∠DCF ′(τ) ≤ ∠DCF ′(θk+1).

The angle ∠CFD is slightly different: since the second step increases this angle,

we can’t bound it above by its intermediate value. Instead, we observe that we can

get to the final configuration by a different path: move D first, then move E,F,E, F .

The intermediate triangulation is shown in Figure 17. The first step of this alternate

motion increases ∠CFD, and the second step decreases it. Thus

∠CF ′D′(τ) ≤ ∠CFD′(τ) ≤ ∠CFD′(θk+1).

We have only dealt with angles in the upper half-plane, but by symmetry the same

bounds hold in the lower half-plane.

A

B

C

C

τ

E

E

D
D

F

F

A

F

F

Figure 17. This is the second variation: we move D but not E
or F . As we move D, all the angles of triangles containing D change
monotonely. To make this a polygonal sector, we then have to move
E, F and their conjugates vertically.

We have now shown that every polygonal sector of angle τ ∈ [θk, θk+1] can be

triangulated with an upper angle bound that is bounded by the maximum angle of

one of four triangulations:

(1) Tk,

(2) Tk with only E,F,E, F moved,

(3) Tk with only D moved,

(4) Tk with all five points moved.
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θ max angle x y z t r
0 74.774 1.376 0.812 0.611 0.248 0.306
1 74.572 1.411 0.826 0.636 0.254 0.298
2 74.358 1.409 0.839 0.662 0.261 0.289
3 74.185 1.488 0.854 0.691 0.268 0.281
4 74.007 1.541 0.870 0.721 0.275 0.271
5 73.791 1.500 0.880 0.747 0.281 0.260
6 73.595 1.498 0.891 0.775 0.286 0.248
7 73.400 1.472 0.899 0.802 0.291 0.234
8 73.305 1.405 0.931 0.830 0.303 0.255
9 73.315 1.478 0.997 0.877 0.324 0.301
10 73.314 1.518 1.066 0.924 0.346 0.352
11 73.290 1.465 1.123 0.962 0.365 0.399
12 73.255 1.376 1.181 0.996 0.384 0.451
13 73.317 1.378 1.215 1.036 0.403 0.464
14 73.373 1.372 1.251 1.077 0.422 0.482
15 73.437 1.370 1.288 1.119 0.443 0.498
16 73.502 1.368 1.325 1.163 0.465 0.515
17 73.573 1.366 1.364 1.209 0.488 0.533

Table 1. This gives the maximum angle used on the four different
meshes corresponding to the intervals [θ, θ+1] for θ = 0, 1, . . . , 17. All
these numbers are less than 75◦ and therefore Lemma 5.1 holds in this
interval range. We have used intervals of length 1 to save space; using
shorter intervals would give smaller angle bounds, closer to the graph
in Figure 13. The other columns give the parameter values that define
A,B, . . . , F , so that the calculations can be recreated (the values have
been normalized so s = 1).

Moving the points in this particular way is not optimal, but does give an easy-to-

analyze family of triangulations whose maximum angles can be bounded by a finite,

computable list of numbers. We can get better bounds by making the gaps between

the θk smaller; this means we only make small perturbations from configurations we

think are close to optimal. For this paper, I took the gap to be 1◦. Table 1 shows the

maximal angles used in each of the four triangulations, giving an upper bound that

is valid for all sector angles θ ∈ [k◦, (k + 1)◦], k = 0, . . . , 17. The maximum angle is

≈ 74.4774◦ < 75◦, so the lemma is proven, and hence so is Theorem 1.1.
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