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A COUNTEREXAMPLE CONCERNING

SMOOTH APPROXIMATION

CHRISTOPHER J. BISHOP

(Communicated by Theodore W. Gamelin)

Abstract. We answer a question of Smith, Stanoyevitch and Stegenga in the
negative by constructing a simply connected planar domain Ω with no two-
sided boundary points and for which every point on Ωc is an m2-limit point
of Ωc and such that C∞(Ω) is not dense in the Sobolev space W k,p(Ω).

1. Introduction

Suppose Ω ⊂ R2 is simply connected. Let C∞(Ω) denote the restriction to Ω of
C∞(R2) and let W k,p(Ω) denote the Sobolev space of functions on Ω defined by

‖f‖Wk,p(Ω) = ‖f‖Lp(Ω) +
∑
|α|≤k

‖Dαf‖Lp(Ω) <∞.

Let Ωc = R2 \ Ω denote the complement of Ω and let m1, m2 denote linear and
two-dimensional Lebesgue measures. We say that a point z ∈ E is an m2 limit
point of E if m2(E ∩ B(z, r)) > 0 for every disk centered at z. Also, x ∈ ∂Ω is
called a two-sided boundary point of Ω if there is a δ(x) > 0 so that for every
0 < δ < δ(x), B(x, δ) ∩ Ω has at least two components whose closures contain x.

Meyers and Serrin [1] proved that C∞(Ω) is always dense in W k,p(Ω), but it
is known that C∞(Ω) need not be. In their paper [2] Smith, Stanoyevitch and
Stegenga prove several interesting theorems describing when C∞(Ω) is dense in
W k,p(Ω) and give several examples where it is not dense. Based on their results
they asked the following.

Question. If Ω is a simply connected planar domain without two-sided boundary
points and for which all points in Ωc are m2-limit points of Ωc, then does it follow
that C∞(Ω) is dense in W k,p(Ω)?

The purpose of this note is to show the answer is no.

2. The construction

We start by constructing a family of Cantor sets E(t) ⊂ [0, 1]. These sets will
depend continuously on t ∈ [0, 1] and will satisfy m1(E(t)) = t. To begin, let
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E0(t) = [0, 1] and let I0(t) be the open interval of length 1
2 (1 − t) centered at 1

2 .

Then E1(t) = [0, 1]\I0(t) consists of 2 closed intervals each of length 1
2 (1− 1

2 (1−t)) =
1
4 (1+t). Let I2(t) be the union of the two open intervals, each of length 1

8 (1−t) and
concentric with the components of E1(t). Let E2(t) = E1(t)\I2(t). Continue in this
way, obtaining a sequence of nested compact sets E1(t) ⊃ E2(t) ⊃ · · · ⊃ En(t) ⊃
. . . where En(t) = En−1(t) \ In(t) consists of 2n closed intervals, each of length
2−n(1 − (1 − 2−n)(1 − t)). The intersection of these sets is a Cantor set E(t) of
linear measure t.

Let F be any Cantor set of linear measure 1 in [−1, 1], say F = 2E(1/2)− 1, so
that m1(F ) = 1. Let

K = {(x, y) : −2 ≤ x ≤ 2, y ∈ E(min(
1

2
, dist(x, F )))}.

See Figure 2.1. It may help to visualize the set if we note that K is homeomorphic
to a Cantor set times an interval. The vertical cross sections of K are all sets of
the form E(t). For x ∈ [−2,− 3

2 ] ∪ [3
2 , 2] the cross section is E(1/2) and for x ∈ F

it is E(0). Since K has vertical cross section of positive linear measure for a open
dense set of x’s, K has positive area and every point of K is an m2-limit of K.

Figure 2.1. The set K.

The set K is not connected, and we add rectangles to make it so. More precisely,
for n even let

Rn = [−2,−3

2
]× In(1/2),

and for n odd define

Rn = [
3

2
, 2]× In(1/2).

Set J = K∪
⋃
nRn. Each “horizontal tube” in the complement of K is now blocked

by exactly one rectangle, so J is connected.
Let Ω = (−3, 3)× (0, 3) \ J . See Figure 2.2. It is easy to check that Ω is simply

connected, has no two-sided boundary points and every point of Ωc is an m2-limit
of Ωc. Thus it only remains to show that C∞(Ω) is not dense in W k,p(Ω). In fact,
by Hölder’s inequality we need only show it is not dense in W 1,1(Ω).

Let Ω0 ⊂ Ω be the component of Ω ∩ {(x, y) : −1 < x < 1} which contains the
point (0, 2). On Ω0 let f(x, y) = x. On the two components Ω+, Ω− of Ω \ Ω0 let
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f be the constant ±1, chosen to make f continuous. We claim that this function
cannot be approximated in W 1,1(Ω) by elements of C∞(Ω).

Figure 2.2. Ω and f .

Suppose g ∈ C∞(Ω). Let Ω1 be the component of Ω ∩ {(x, y) : −1 ≤ x ≤ 1}
which contains the point (0, 1

2 ). By the definition of E(t), we see that Ω1 ⊂ Ω+

and

{(x, y) : −1 < x < 1,
3

8
< y <

5

8
} ⊂ Ω1 ⊂ {(x, y) : −1 < x < 1,

1

4
≤ y ≤ 3

4
}.

Thus f is the constant 1 on Ω1, so for any δ > 0 there is an ε > 0 such that∫
Ω

|f − g|dxdy < ε

implies g > 1/2 on a set S ⊂ Ω1 of measure ≥ (1 − δ)m2(Ω1). If δ is small
enough then the vertical projection of S must hit F in a set F ′ of measure at least
1
2m1(F ) = 1

2 .
Write F ′ = F1 ∪ F2 where

F1 = {x ∈ F ′ : g(x, y) ≥ 0 for all 0 ≤ y ≤ 3

4
},

F2 = {x ∈ F ′ : g(x, y) ≤ 0 for some 0 ≤ y ≤ 3

4
}.

One of these two sets must have measure greater than 1
4m1(F ) = 1

4 .

First suppose m(F1) ≥ 1
4 . Then |f − g| ≥ 1 on the set (F1× [0, 1/4])∩Ω−. Thus

‖f − g‖W1,1(Ω) ≥
∫

Ω

|f − g|dxdy ≥ m2((F1 × [0, 1/4])∩ Ω−) > 0,

independent of g.
On the other hand, suppose m1(F2) ≥ 1/4. If x ∈ F2, then g varies by at least

1/2 on the segment Ix = {x} × [0, 3/4] so∫ 3/4

0

|∂g
∂y

(x, y)|dy ≥ 1/2.
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Since ∇f = 0 on Ω \ Ω0, we get

‖f − g‖W1,1(Ω) ≥
∫

(F2×[0,3/4])∩Ω

|∂g
∂y

(x, y)|dxdy.

Since F2 ⊂ F , x ∈ F2 implies m1(Ω ∩ Ix) = m1(Ix); this is where we use the fact
the vertical cross sections of K have zero length when x ∈ F . Hence∫

(F2×[0,3/4])∩Ω

|∂g
∂y

(x, y)|dy =

∫
F2×[0,3/4]

|∂g
∂y

(x, y)|dy,

and so

‖f − g‖W1,1(Ω) ≥
∫
F2×[0,3/4]

|∂g
∂y

(x, y)|dy ≥ 1

2
m1(F2) ≥ 1

8
.

Therefore in both cases we have shown that ‖f − g‖W1,1(Ω) is bounded away

from zero with an estimate independent of g. This proves that C∞(Ω) is not dense
in W 1,1(Ω) and hence not dense in any W k,p(Ω) for k ≥ 1 or 1 ≤ p <∞.
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