PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 10, October 1996

A COUNTEREXAMPLE CONCERNING SMOOTH APPROXIMATION

CHRISTOPHER J. BISHOP

(Communicated by Theodore W. Gamelin)

ABSTRACT. We answer a question of Smith, Stanoyevitch and Stegenga in the negative by constructing a simply connected planar domain Ω with no twosided boundary points and for which every point on Ω^c is an m_2 -limit point of Ω^c and such that $C^{\infty}(\overline{\Omega})$ is not dense in the Sobolev space $W^{k,p}(\Omega)$.

1. INTRODUCTION

Suppose $\Omega \subset \mathbb{R}^2$ is simply connected. Let $C^{\infty}(\overline{\Omega})$ denote the restriction to Ω of $C^{\infty}(\mathbb{R}^2)$ and let $W^{k,p}(\Omega)$ denote the Sobolev space of functions on Ω defined by

$$||f||_{W^{k,p}(\Omega)} = ||f||_{L^{p}(\Omega)} + \sum_{|\alpha| \le k} ||D^{\alpha}f||_{L^{p}(\Omega)} < \infty.$$

Let $\Omega^c = \mathbb{R}^2 \setminus \Omega$ denote the complement of Ω and let m_1, m_2 denote linear and two-dimensional Lebesgue measures. We say that a point $z \in E$ is an m_2 limit point of E if $m_2(E \cap B(z, r)) > 0$ for every disk centered at z. Also, $x \in \partial \Omega$ is called a two-sided boundary point of Ω if there is a $\delta(x) > 0$ so that for every $0 < \delta < \delta(x), B(x, \delta) \cap \Omega$ has at least two components whose closures contain x.

Meyers and Serrin [1] proved that $C^{\infty}(\Omega)$ is always dense in $W^{k,p}(\Omega)$, but it is known that $C^{\infty}(\overline{\Omega})$ need not be. In their paper [2] Smith, Stanoyevitch and Stegenga prove several interesting theorems describing when $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$ and give several examples where it is not dense. Based on their results they asked the following.

Question. If Ω is a simply connected planar domain without two-sided boundary points and for which all points in Ω^c are m_2 -limit points of Ω^c , then does it follow that $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$?

The purpose of this note is to show the answer is no.

2. The construction

We start by constructing a family of Cantor sets $E(t) \subset [0,1]$. These sets will depend continuously on $t \in [0,1]$ and will satisfy $m_1(E(t)) = t$. To begin, let

©1996 American Mathematical Society

Received by the editors November 23, 1994 and, in revised form, April 3, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E35.

Key words and phrases. Sobolev spaces, smooth approximation.

The author is partially supported by NSF Grant DMS 92-04092 and an Alfred P. Sloan research fellowship.

C. J. BISHOP

 $E_0(t) = [0,1]$ and let $I_0(t)$ be the open interval of length $\frac{1}{2}(1-t)$ centered at $\frac{1}{2}$. Then $E_1(t) = [0,1] \setminus I_0(t)$ consists of 2 closed intervals each of length $\frac{1}{2}(1-\frac{1}{2}(1-t)) = \frac{1}{4}(1+t)$. Let $I_2(t)$ be the union of the two open intervals, each of length $\frac{1}{8}(1-t)$ and concentric with the components of $E_1(t)$. Let $E_2(t) = E_1(t) \setminus I_2(t)$. Continue in this way, obtaining a sequence of nested compact sets $E_1(t) \supset E_2(t) \supset \cdots \supset E_n(t) \supset \cdots$. where $E_n(t) = E_{n-1}(t) \setminus I_n(t)$ consists of 2^n closed intervals, each of length $2^{-n}(1-(1-2^{-n})(1-t))$. The intersection of these sets is a Cantor set E(t) of linear measure t.

Let F be any Cantor set of linear measure 1 in [-1, 1], say F = 2E(1/2) - 1, so that $m_1(F) = 1$. Let

$$K = \{(x, y) : -2 \le x \le 2, y \in E(\min(\frac{1}{2}, \operatorname{dist}(x, F)))\}.$$

See Figure 2.1. It may help to visualize the set if we note that K is homeomorphic to a Cantor set times an interval. The vertical cross sections of K are all sets of the form E(t). For $x \in [-2, -\frac{3}{2}] \cup [\frac{3}{2}, 2]$ the cross section is E(1/2) and for $x \in F$ it is E(0). Since K has vertical cross section of positive linear measure for a open dense set of x's, K has positive area and every point of K is an m_2 -limit of K.

FIGURE 2.1. The set K.

The set K is not connected, and we add rectangles to make it so. More precisely, for n even let

$$R_n = [-2, -\frac{3}{2}] \times I_n(1/2),$$

and for n odd define

$$R_n = [\frac{3}{2}, 2] \times I_n(1/2).$$

Set $J = K \cup \bigcup_n R_n$. Each "horizontal tube" in the complement of K is now blocked by exactly one rectangle, so J is connected.

Let $\Omega = (-3,3) \times (0,3) \setminus J$. See Figure 2.2. It is easy to check that Ω is simply connected, has no two-sided boundary points and every point of Ω^c is an m_2 -limit of Ω^c . Thus it only remains to show that $C^{\infty}(\overline{\Omega})$ is not dense in $W^{k,p}(\Omega)$. In fact, by Hölder's inequality we need only show it is not dense in $W^{1,1}(\Omega)$.

Let $\Omega_0 \subset \Omega$ be the component of $\Omega \cap \{(x, y) : -1 < x < 1\}$ which contains the point (0,2). On Ω_0 let f(x, y) = x. On the two components Ω_+ , Ω_- of $\Omega \setminus \Omega_0$ let

3132

f be the constant ± 1 , chosen to make f continuous. We claim that this function cannot be approximated in $W^{1,1}(\Omega)$ by elements of $C^{\infty}(\overline{\Omega})$.

FIGURE 2.2. Ω and f.

Suppose $g \in C^{\infty}(\overline{\Omega})$. Let Ω_1 be the component of $\Omega \cap \{(x,y) : -1 \leq x \leq 1\}$ which contains the point $(0, \frac{1}{2})$. By the definition of E(t), we see that $\Omega_1 \subset \Omega_+$ and

$$\{(x,y): -1 < x < 1, \frac{3}{8} < y < \frac{5}{8}\} \subset \Omega_1 \subset \{(x,y): -1 < x < 1, \frac{1}{4} \le y \le \frac{3}{4}\}.$$

Thus f is the constant 1 on Ω_1 , so for any $\delta > 0$ there is an $\epsilon > 0$ such that

$$\int_{\Omega} |f - g| dx dy < \epsilon$$

implies g > 1/2 on a set $S \subset \Omega_1$ of measure $\geq (1 - \delta)m_2(\Omega_1)$. If δ is small enough then the vertical projection of S must hit F in a set F' of measure at least $\frac{1}{2}m_1(F) = \frac{1}{2}.$ Write $F' = F_1 \cup F_2$ where

$$F_1 = \{ x \in F' : g(x, y) \ge 0 \text{ for all } 0 \le y \le \frac{3}{4} \},$$

$$F_2 = \{ x \in F' : g(x, y) \le 0 \text{ for some } 0 \le y \le \frac{3}{4} \}.$$

One of these two sets must have measure greater than $\frac{1}{4}m_1(F) = \frac{1}{4}$. First suppose $m(F_1) \ge \frac{1}{4}$. Then $|f-a| \ge 1$ on the set $(F_1 \times [0, 1/4]) \cap \Omega_-$. Thus

First suppose
$$m(F_1) \ge \frac{1}{4}$$
. Then $|f - g| \ge 1$ on the set $(F_1 \times [0, 1/4]) \cap \Omega_-$. Thu

$$\|f - g\|_{W^{1,1}(\Omega)} \ge \int_{\Omega} |f - g| dx dy \ge m_2((F_1 \times [0, 1/4]) \cap \Omega_-) > 0,$$

independent of g.

On the other hand, suppose $m_1(F_2) \ge 1/4$. If $x \in F_2$, then g varies by at least 1/2 on the segment $I_x = \{x\} \times [0, 3/4]$ so

$$\int_0^{3/4} |\frac{\partial g}{\partial y}(x,y)| dy \ge 1/2.$$

Since $\nabla f = 0$ on $\Omega \setminus \Omega_0$, we get

$$||f - g||_{W^{1,1}(\Omega)} \ge \int_{(F_2 \times [0,3/4]) \cap \Omega} |\frac{\partial g}{\partial y}(x,y)| dx dy.$$

Since $F_2 \subset F$, $x \in F_2$ implies $m_1(\Omega \cap I_x) = m_1(I_x)$; this is where we use the fact the vertical cross sections of K have zero length when $x \in F$. Hence

$$\int_{(F_2 \times [0,3/4]) \cap \Omega} \left| \frac{\partial g}{\partial y}(x,y) \right| dy = \int_{F_2 \times [0,3/4]} \left| \frac{\partial g}{\partial y}(x,y) \right| dy,$$

and so

$$|f - g||_{W^{1,1}(\Omega)} \ge \int_{F_2 \times [0,3/4]} |\frac{\partial g}{\partial y}(x,y)| dy \ge \frac{1}{2} m_1(F_2) \ge \frac{1}{8}.$$

Therefore in both cases we have shown that $||f - g||_{W^{1,1}(\Omega)}$ is bounded away from zero with an estimate independent of g. This proves that $C^{\infty}(\overline{\Omega})$ is not dense in $W^{1,1}(\Omega)$ and hence not dense in any $W^{k,p}(\Omega)$ for $k \ge 1$ or $1 \le p < \infty$.

Acknowledgements

I thank the referee for several helpful remarks.

References

- 1. N. Meyers and J. Serrin, H=W, Proc. Nat. Acad. Sci. USA ${\bf 51}$ (1964), 1055–1056. MR ${\bf 29:}1551$
- W. Smith, A. Stanoyevitch, and D.A. Stegenga, Smooth approximation of Sobolev functions on planar domains, J. London Math. Soc. 49 (1994), 309–330. MR 95e:46043

Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794-3651

E-mail address: bishop@math.sunysb.edu

3134