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Abstract. The Eremenko-Lyubich class B consists of transcendental entire func-
tions with bounded singular set and the Speiser class S ⊂ B is made up of functions
with a finite singular set. In [4] I gave a method for constructing Eremenko-Lyubich
functions that approximate certain simpler functions called models. In this paper,
I show that all models can be approximated in a weaker sense by Speiser class func-
tions, and that the stronger approximation of [4] can fail for the Speiser class. In
particular, I give geometric restrictions on the geometry of a Speiser class function
that need not be satisfied by general Eremenko-Lyubich functions.
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1. Introduction

If f is an entire function, we say f is transcendental if it is not a polynomial. The

singular set of an entire function f is the closure of its finite critical values and finite

asymptotic values, and will be denoted S(f). The Eremenko-Lyubich class B consists

of transcendental entire functions such that S(f) is a bounded set. The Speiser class

S ⊂ B consists of functions for which S(f) is a finite set. We let Sn,k ⊂ S denote the

sub-collection of functions with at most n finite critical values and k finite asymptotic

values. In this paper, we will be particularly concerned with S2,0.

The Eremenko-Lyubich and Speiser classes are important in the study of transcen-

dental dynamics and it is known that the dynamical behavior in the Speiser class is

more restricted than in the Eremenko-Lyubich class. For example, a Speiser class

function cannot have a wandering domain (proved by Eremenko and Lyubich in [9],

and Goldberg and Keen in [12]) whereas an Eremenko-Lyubich function can have a

wandering domain [3]. On the other hand, various types of pathological behavior,

such as a Julia set with no non-trivial path components can be constructed in either

class (see [3] and [17]).

In this paper we prove an approximation theorem involving the Speiser class that

is analogous to a result proven for the Eremenko-Lyubich class in [4]. However, the

function we construct here fails to satisfy some of the side conditions that could be

imposed in [4]. Comparing the two results helps illustrate the differences between

the two classes of functions. To state our results precisely, we need to introduce some

notation.

Suppose Ω =
⋃

j Ωj is a disjoint union of unbounded simply connected domains so

that sequences of components of Ω accumulate only at infinity. Also suppose there

exists a map τ : Ω → Hr + ρ0 = {x+ iy : x > ρ0} that is holomorphic and such that

(1) the restriction of τ to each Ωj is a conformal map τj : Ωj → Hr + ρ0, and

(2) if {zn} ⊂ Ω and τ(zn) → ∞ then zn → ∞ .

An open set Ω as above will be called a model domain and F = eτ will be called

a model function. Note that F : Ω → {z : |z| > eρ0} is a covering map. A choice

of both a model domain Ω and a model function F on Ω will be called a model. If

ρ0 = 0 we say the model is normalized; this is the main case we will consider.
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We call the connected components, {Ωj}, of a model domain Ω the tracts of Ω.

In many cases of interest, the tracts will be Jordan domains on the Riemann sphere

with the point ∞ on the boundary. The number of tracts can be either finite or

infinite. (Usually a domain refers to an open connected set, so using “model domain”

for regions that may have several connected components might be confusing. We

are using the phrase to abbreviate “the domain of definition of the model function”

rather than invent a new term for this – terrain, territory, archipelago, . . . . Except

for this usage, the term domain will retain its usual meaning).

Given a normalized model (Ω, F ) we let

Ω(ρ) = {z ∈ Ω : |F (z)| > eρ} = τ−1({x+ iy : x > ρ}),

and

Ω(ρ, δ) = {z ∈ Ω : eρ < |F (z)| < eδ} = τ−1({x+ iy : ρ < x < δ}).

Given a tract Ωj of Ω, we let Ωj(ρ) = Ω(ρ) ∩ Ωj and similarly for Ωj(ρ, δ).

Suppose Ω is a normalized model domain and ρ > 0. The boundary of Ωj(ρ) has a

natural partition into sub-arcs with endpoints that satisfy τj(z) ∈ ρ + πiZ. We call

this a τ -partition or conformal partition of ∂Ω(ρ). It is easy to see from the distortion

theorems for conformal maps (e.g., see Section 2 of this paper or Theorem I.4.5 of

[10]) that these sub-arcs of ∂Ωj(ρ) are smooth with bounds depending only on ρ, and

that adjacent arcs have comparable lengths (again with a constant depending only

on ρ).

Suppose f is a transcendental entire function and that S(f) ⊂ DR = {z : |z| < R}

(when R = 1 we write D = D1). In [9], Eremenko and Lyubich observed that

Ω = f−1({z : |z| > R}) is a disjoint union of analytic, unbounded simply connected

domains and that f acts a covering map f : Ωj → {|z| > R} on each tract Ωj of Ω.

Thus each function f in the Eremenko-Lyubich class that satisfies S(f) ⊂ D gives rise

to a normalized model domain Ω = {z : |f(z)| > 1} and a model function F = f |Ω

(hence τ(z) is a branch of log f(z)). The components of Ω are called the tracts of

f . We call a model arising in this way an Eremenko-Lyubich model. If f is in the

Speiser class, we call it a Speiser model.

The purpose of this paper is to quantify the differences between B and S in terms of

models. In [4], I showed that Eremenko-Lyubich functions can essentially behave like

arbitrary models near ∞; the tracts can have any shape and the choice of τ on each
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Figure 1. A normalized model consists of an open set Ω with possibly
several tracts, each of which is mapped conformally by τ to Hr and
then by ez to {|z| > 1}, giving the model function F on Ω. The points
F−1(1) partition each boundary component into arcs. In the Eremenko-
Lyubich class, τ can be rescaled independently on different tracts, so
that the partitions on different tract boundaries are unrelated, but we
will prove that for the Speiser class, the partitions for different tracts
satisfy certain geometric relations.

tract is independent of the choice in other tracts. In this paper, I show that in Speiser

models the choice of τ in different tracts must satisfy certain geometric constraints

(e.g. Theorems 1.4 and 10.1); however, given any model Ω it is always possible to

add extra tracts and define τ on these new tracts so that the geometric conditions

are satisfied. Thus informally we say “every model is an Eremenko-Lyubich model”

and “every model is a sub-model of a Speiser model”. More precisely, the following

theorem is proved in [4]:

Theorem 1.1 (All models occur in B). Suppose (Ω, F ) is a normalized model and

ρ > 0. Then there is a f ∈ B and a quasiconformal homeomorphism ϕ : C → C so

that F = f ◦ ϕ on Ω(ρ). In addition,
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(1) we have |f ◦ ϕ| ≤ eρ off Ω(ρ) (i.e., f is bounded off ϕ(Ω)),

(2) the singular set satisfies S(f) ⊂ D(0, eρ),

(3) the maximal dilatation K of ϕ depends only on ρ,

(4) the map ϕ is conformal except on Ω(ρ, 2ρ).

We will review the definition and basic properties of quasiconformal mappings in

Section 2. One of the main goals of this paper is to prove the following analog of

Theorem 1.1 for the Speiser class:

Theorem 1.2 (All models occur as sub-models in S). Suppose (Ω, F ) is a normalized

model and ρ > 0. Then there is a f ∈ S and a quasiconformal homeomorphism

ϕ : C → C so that F = f ◦ ϕ on Ω(ρ). In addition,

(1) the function f has no finite asymptotic values and two critical values, ±eρ,

(2) every critical point of f has degree ≤ 12,

(3) the maximal dilatation K of ϕ depends only on ρ,

(4) the map ϕ is conformal on Ω(2ρ).

The maximal dilatation bound for ϕ remains bounded as ρ→ ∞, but blows up as

ρ→ 0 (we will not be explicit about the dependence of K on ρ, but estimates could

be derived from a careful reading of [3]). It is not true that the maximal dilatation

K tends to 1 as ρ→ ∞, at least for the construction given here, since the use of the

folding maps from [3] introduce a fixed amount of distortion, independent of ρ.

The degree of a critical point z of a holomorphic map f is taken to be the local

valence of f near z, e.g., f(z) = z3 has a critical point of degree three at 0. The bound

in (2) follows immediately from the proof of the folding theorem in [3]. However, by

making some simple changes to the construction in [3], the 12 can be improved to 4.

This will be discussed in more detail at the end of Section 3.

The crucial difference between Theorems 1.1 and 1.2 is that the latter omits the

conclusion “|f ◦ ϕ| ≤ eρ off Ω(ρ)”. The function f ∈ B constructed in Theorem 1.1

is only large where the model is large (inside Ω), so it has the same number of tracts

as the model has. However, the function f ∈ S in Theorem 1.2 might also be large

outside Ω, and so it can have “extra” tracts. This is the sense in which approximation

by Speiser functions is weaker than approximation by Eremenko-Lyubich functions.
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In fact, our proof will always introduce extra tracts; we will first give a construc-

tion that creates an infinite number of extra tracts, and then give a more intricate

construction that shows:

Theorem 1.3. The function f in Theorem 1.2 may be chosen so that the number of

tracts of f is at most twice the number of tracts of the model (Ω, F ).

Simple examples show that some models with n tracts require the approximating

Speiser class function to have 2n tracts, so the bound in Theorem 1.3 is sharp.

Roughly speaking, if Ω has n tracts, then the domain W = C \ Ω(ρ) has n distinct

“ends” at infinity. If these ends are each “large” compared to the tracts of the model,

then each end must contain at least one extra tract of the approximating Speiser

class function. A very concrete example is:

Theorem 1.4. The half-strip S = {x+ iy : x > 0, |y| < 1} cannot be mapped to any

Speiser class model domain by any quasiconformal homeomorphism of the plane.

In other words, there is no Speiser class function with a single tract, so that this

tract is the image of a half-strip under a quasiconformal map of the plane. However,

there are Speiser class functions with two tracts, one of which can be sent to a half-

strip by a quasiconformal map of the plane; moreover, this tract can approximate

the half-strip in the Hausdorff metric on the plane as closely as we wish. See Figure

17 and the remarks in Section 13. On the other hand, Theorem 1.1 implies there

are Eremenko-Lyubich functions with single tracts that approximate the half-strip as

closely as we wish in the Hausdorff metric.

The referee of this paper asked if Theorem 1.4 also holds for any tract that is

contained in the half-strip S. While our proof of Theorem 1.4 extends to cover many

cases of this type, and it is not hard to see that no subdomain of S can itself be a

Speiser class model domain, there might be such a subdomain that can be mapped

to a Speiser class model domain by some quasiconformal map of the plane. Deciding

this would be an interesting problem. It would also be very interesting to have a

geometric characterization (even up to quasiconformal maps) of the tracts of Speiser

class functions that have a single tract.

Another difference between Theorems 1.1 and 1.2 concerns the proofs. The proof

of Theorem 1.1 given in [4] is mostly self-contained and depends on constructing a
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Blaschke product in the disk that approximates a certain inner function arising from

the model. On the other hand, the proof of Theorem 1.2 in this paper depends on

the more difficult quasiconformal folding construction of Speiser class functions in

[3]. The precise statement we use will be reviewed in Section 3.

Finally, we mention an application of Theorem 1.2 to dynamics. We call a model

(Ω, F ) disjoint type if it is normalized and Ω ∩ D = ∅. An entire function is usually

called disjoint type if (1) it is hyperbolic (the singular set is bounded and every point

in it tends to an attracting periodic cycle of f under iteration) and (2) the Fatou set

is connected (the Fatou set is the largest open set on which the iterates of f form a

normal family; its complement is called the Julia set of f). Alternatively, Proposition

2.1 of [16] states that a transcendental entire function is disjoint type if and only if

there is a Jordan domain D so that S(f) ⊂ D and f(D) ⊂ D. This implies that

if (Ω, F ) is an disjoint type Eremenko-Lyubich model, then F = f |Ω where f is an

Eremenko-Lyubich entire function that is disjoint type in the sense above (just take

D = D).

We can iterate a model function F as long as the iterates keep landing in Ω, and

we define the Julia set of a model as

J (F ) =
⋂

n≥0

{z ∈ Ω : F n(z) ∈ Ω}.

If F is a disjoint type Eremenko-Lyubich model, then this is the same as the usual

Julia set of the extension of F . Lasse Rempe-Gillen has pointed out that Theorem

1.1 implies that any disjoint type model function is conjugate on its domain to a

disjoint type f ∈ B, in particular, the Julia set and the escaping set for the model

function F are homeomorphic via a quasiconformal mapping of the whole plane to the

corresponding sets for f . Thus various pathological examples in B can be constructed

simply by exhibiting a model with the desired property, e.g., see [16].

For the Speiser class, the approximating function f may have extra tracts that do

not correspond to tracts of the model. In this case, Rempe-Gillen’s argument implies

the model function F restricted to its Julia set can be conjugated to a Speiser class

function f restricted to a certain closed subset A ⊂ J (f). More precisely,

Theorem 1.5. Suppose that (Ω, F ) is any normalized, disjoint type model, that f

is a Speiser class function, and that ϕ is a quasiconformal mapping of the plane so
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that f = F ◦ ϕ on U = ϕ−1(Ω) (this is a sub-collection of tracts of f). Assume that

(U, f |U) is also a normalized, disjoint type model. Then there is a quasiconformal

map Φ : C → C so that Φ ◦ f = F ◦ Φ on U .

In other words, the Julia set of the model function F is quasiconformally conjugate

to a closed subset A of the Julia set of the Speiser class function f . The set A consists

of those points whose orbits stay within U forever, where U is the sub-collection of

f ’s tracts corresponding to the tracts of F via Φ. This result is a straightforward

application of Theorem 9.1 in [4] (which itself is simply a summary of an argument

of Rempe-Gillen from [15]).

The use of quasiconformal techniques to build and understand entire functions with

finite singular sets has a long history with its roots in the work of Grötzsch, Speiser,

Teichmüller, Ahlfors, Nevanlinna, Lavrentieff and many others. The earlier work

was often phrased in terms of Riemann surfaces and deciding if a simply connected

surface built by branching over a finite singular set was conformally equivalent to

the plane or to the disk (the type problem; in the first case the uniformizing map

gives a Speiser class function). Such constructions play an important role in value

distribution theory; see [7] for an excellent survey of these methods and a very useful

guide to this literature. Also see Chapter VII of [11]. More recent work (including this

paper) is motivated by applications to dynamics, where the Speiser class provides an

interesting mix of structure (like polynomials, the quasiconformal equivalence classes

are finite dimensional [9]) and flexibility (as indicated by the results of [3], [5], [16]

and the current paper).

Many thanks to Simon Albrecht, Adam Epstein, Alex Eremenko and Lasse Rempe-

Gillen for numerous helpful discussions about the content of this paper and about

the quasiconformal folding construction and its applications. The introduction of the

paper and the formulation of the main result in terms of models was inspired by a

lecture of Lasse Rempe-Gillen at an ICMS conference on transcendental dynamics in

Edinburgh, May 2013. The results of both this paper and [4] originally appeared in a

single 2013 preprint titled “The geometry of bounded type entire functions”. Based

partly on a referee’s report, I decided to split that manuscript in order to improve the

exposition and separate the self-contained arguments for the Eremenko-Lyubich class

(now contained in [4]) from the proofs for the Speiser class that depend crucially on
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the quasiconformal folding techniques in [3]. Theorem 1.3 is new and did not appear

in the earlier manuscript. Malik Younsi read the revised manuscript and I greatly

appreciate his comments and suggestions. The referee of the current paper produced

two detailed and thoughtful reports that contained numerous comments and sugges-

tions that improved the exposition, and I am most thankful for the great deal of

time and effort that went into these reports. Finally, I am indebted to Aimo Hinkka-

nen for for a great deal of encouragement and constructive advice that substantially

improved both this paper and its companion [4].

In this paper, the notation A . B means that A ≤ CB where A,B are quantities

that depend on some parameter and C < ∞ is a constant that is independent of

the parameter. The notation means the same as A = O(B). Similarly, A & B is

equivalent to B . A or B = O(A) . If A . B and A & B then we say A ≃ B, i.e.,

A are B are comparable, independent of the parameter.

2. Modulus and quasiconformal maps

Many of our arguments involve the modulus of path families, conformal maps and

quasiconformal maps, so we briefly review the basic facts here for the convenience

of the reader. Everything in this section can be found (in greater detail and with

proofs) in standard references such as [1] or [10].

An orientation preserving homeomorphism ϕ of the plane to itself is quasiconformal

if it is absolutely continuous on all lines and |ϕz| ≤ k|ϕz| almost everywhere (with

respect to area measure) for some k < 1. At points of differentiability, this means that

the tangent map of ϕ sends circles to ellipses of eccentricity at most K = (1+k)/(1−

k) ≥ 1. The smallest K that works for ϕ at almost every point is called the maximal

dilatation of ϕ; such a map is also called K-quasiconformal. A K-quasiconformal

map ϕ satisfies a Beltrami equation fz = µfz almost everywhere for some bounded

measurable function µ called the dilatation of f and ‖µ‖∞ ≤ k = (K − 1)/(K + 1).

A 1-quasiconformal map is conformal. The family of K-quasiconformal maps of the

plane to itself that fix two finite points (usually taken to be 0, 1) is compact.

The measurable Riemann mapping theorem (e.g., see [1]) says that given any mea-

surable µ with ‖µ‖∞ = k < 1, there is a K-quasiconformal map with dilatation µ

almost everywhere. An important consequence of this is that if f is entire and ϕ is
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quasiconformal, then there exists a quasiconformal ψ so that g = ϕ ◦ f ◦ ψ is entire.

Two entire functions f and g that are related in this way are called quasiconfor-

mally equivalent. Eremenko and Lyubich proved that if f has q singular values, then

the collection of entire functions that are quasiconformally equivalent to f forms a

(q + 2)-dimensional complex manifold (see Section 3 of [9]).

Suppose Ω is a planar open set. A non-negative Borel function ρ on Ω is called a

metric on Ω. Suppose Γ is a collection of locally rectifiable curves in Ω. We say a

metric ρ is an admissible metric for Γ if

inf
γ∈Γ

∫

γ

ρds ≥ 1,

and we define the modulus of Γ as

M(Γ) = inf
ρ

∫

Ω

ρ2dxdy,

where the infimum is over all admissible metrics for Γ. The reciprocal of M(Γ) is

called the extremal length of Γ and is denoted λ(Γ). The most important facts that

we will need are:

Conformal invariance: if f : Ω → Ω′ is conformal, Γ is a path family in Ω and

Γ′ = f(Γ), then M(Γ′) =M(Γ).

Quasi-invariance: If f : Ω → Ω′ is K-quasiconformal, Γ is a path family in Ω and

Γ′ = f(Γ), then M(Γ)/K ≤M(Γ′) ≤ K ·M(Γ).

Extension: If Γ,Γ′ are path families such that each path in Γ′ contains a sub-path

in Γ then M(Γ′) ≤M(Γ). In particular, if Γ′ ⊂ Γ, then M(Γ′) ≤M(Γ).

Parallel Rule: If Γ1, . . . ,Γn are defined on disjoint open sets, and every γ ∈ ∪jΓj

contains some curve in Γ then M(Γ) ≥
∑

j M(Γj).

Round Annuli: the modulus of the path family separating the two boundary com-

ponents of the round annulus A(r, R) = {z : r < |z| < R} is (logR/r)/2π. We call

this the modulus of the annulus. Every topological annulus Ω ⊂ C is conformally

equivalent to a round annulus, and its modulus is equal to the modulus of the corre-

sponding round annulus.

Topological Annuli: There is a M0 <∞ so that if Ω is a topological annulus with

modulusM ≥M0 then Ω contains a round annulus of modulusM ′ > 1 andM ′ tends

to ∞ as M tends to ∞.
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Reciprocity: the modulus of the path family separating the two boundary compo-

nents of a topological annulus Ω is the reciprocal of the modulus of the path family

in Ω that connects the two boundary components.

Rectangles: the modulus of the path family connecting the sides of length a in a

a× b rectangle is a/b.

Another fact that we shall use repeatedly is:

Lemma 2.1. Suppose e, f ⊂ C are disjoint Jordan arcs and let Γ be the family of

closed curves in C \ (e ∪ f) that separates them. Let M be the modulus of Γ. Then

dist(e, f) ≥ ǫ ·min(diam(e), diam(f)),(2.1)

where ǫ > 0 depends only on a lower bound for M . Conversely, if (2.1) holds, then

M is bounded away from zero with an estimate depending only on ǫ. Moreover, ǫ

tends to infinity if and only if M tends to infinity.

Proof. This is fairly standard. Let r = min(diam(e), diam(f)). If there are points

x ∈ e and y ∈ f with |x−y| ≤ ǫ, then we define a metric ρ on {z : ǫr < |x−z| < r/2}

by setting ρ(z) = (|z−x| log 2
ǫ
)−1. It is a standard exercise to show that ρ is admissible

and integrating ρ2 gives M ≤ (log 2
ǫ
)−1 which tends to 0 with ǫ. This proves the first

claim. For the other direction, suppose dist(e, f) ≥ ǫr. Then setting ρ(z) = (ǫr)−1 on

an ǫr-neighborhood of e (if diam(e) = r) or f (otherwise) gives an admissible metric

for the path family connecting e to f . Since this neighborhood has area at most

π(ǫr + r)2, computing the integral of ρ2 shows this family has modulus at most

(ǫr)−2π(ǫr + r)2 ≤ π(1 + ǫ−2).

Since this modulus is the reciprocal of the modulus of the path family separating e

and f we get a lower bound for the latter modulus in terms of ǫ. If M is large, then

by the topological annuli property there is a large round annulus separating e and

f , and hence ǫ is large. Conversely, if ǫ is large, then there is clearly a large round

annulus separating the curves and so the modulus M is large. �

We will use the following in Section 11.

Lemma 2.2. If I, J are disjoint intervals on R, let M(I, J) be the modulus of the

path family in Hu = {x + iy : y > 0} (the upper half-plane) separating I and J . If

I, J have unit length and are distance r ≥ 2 apart, then M(I, J) ≃ log r.
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Proof. There are several ways to estimate this modulus, but we will use a conformal

map. Without loss of generality, assume I = [−1, 0], J = [r, r + 1]. The Schwarz-

Christoffel formula (e.g., see [8] and its references) that saysHu is conformally mapped

to an a× b rectangle with I, J going to the sides of length a by the map

f(z) =

∫ z dw

(w + 1)1/2w1/2(w − r)1/2(w − r − 1)1/2
.

Moreover,

a =

∫ 0

−1

dx

|x+ 1|1/2|x|1/2|x− r|1/2|x− r − 1|1/2
≃

1

r

∫ 0

−1

dx

|x+ 1|1/2|x|1/2
≃

1

r
,

and similarly

b =

∫ r

0

dx

|x+ 1|1/2|x|1/2|x− r|1/2|x− r − 1|1/2

≃
1

r

∫ r/2

0

dx

|x+ 1|1/2|x|1/2

≃
1

r
+

1

r

∫ r/2

1

dx

x

≃
1

r
(1 + log r).

Therefore, by conformal invariance and the rectangle rule, M(I, J) = b/a ≃ 1+ log r

(and 1 + log r ≃ log r since r ≥ 2).

�

Other proofs of the lemma are possible. For example, one can use a Möbius trans-

formation to map I to [−1, 1], map J to the complement of [−y, y] for some y ≃ r, and

then estimate the modulus of the planar complement of these using explicit metrics.

Several times in this paper we will use Koebe’s 1
4
-theorem and its consequences.

Koebe’s theorem says that if f : D → Ω is conformal (holomorphic and 1-to-1) then

1

4
|f ′(z)|(1− |z|2) ≤ dist(f(z), ∂Ω) ≤ |f ′(z)|(1− |z|2).

See Theorem I.4.3 of [10]. A consequence of this is that if f is conformal on a region

W and E ⊂ W is compact, then |f ′| is comparable at any two points of E with a

constant that depends only on E and W (in fact, it only depends on the diameter of

E in the hyperbolic metric for W ).
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The image γ of a line under a quasiconformal mapping of the plane to itself is called

a quasi-line. Such curves γ are exactly characterized by the three-point condition:

there is a M < ∞ so that given any three points x, y, z ∈ γ with x, y in different

connected components of γ\{z}, we have |x−z| ≤M |x−y|. Equivalently, the subarc

of γ connecting x and y has diameter O(|x − y|). We will use this in the following

way.

A quasidisk is the image of D under a quasiconformal map of the plane. Abusing

notation slightly, we will say Ω is an unbounded quasidisk if it the image of a half-

plane under a quasiconformal map of the plane (this sounds better than “quasi-half-

plane”, and would be technically correct if we simply considered quasiconformal maps

of the Riemann sphere to itself, rather than just maps that fix ∞).

Lemma 2.3. Suppose Ω an unbounded quasidisk. Then there is a C < ∞ so that

given any x ∈ ∂Ω, there is a curve γ in Ω that connects x to ∞ and satisfies

dist(z, ∂Ω) ≥ |z − x|/C,

for every z ∈ γ. If |z| ≥ 2|x|, then dist(z, ∂Ω) ≥ |z|/(2C), for every z ∈ γ.

Proof. Suppose Ω = f(Hr). Without loss of generality we may assume x = f(0).

The right half-plane can easily be quasiconformally mapped to a quarter-plane by a

quasiconformal map g of the plane (leave radii fixed and contract angles by a factor of

two in one half-plane and expand them by a factor of 3/2 in the remaining half-plane;

we leave the details to the reader). Thus if Ω1 ⊂ Ω is the image of the first quadrant

under f , then it is also an unbounded quasidisk, and hence ∂Ω1 satisfies the three

point condition with some constant C.

Suppose that there was a point on γ = f(R+) that was “too close” to f(iR+) ⊂ ∂Ω,

i.e., suppose there were s, t > 0 so that

|f(s)− f(it)| < ǫ|f(s)− f(0)|.

Then the arc of ∂Ω1 connecting f(s) and f(t) must have diameter ≤ Cǫ|f(s)− f(0)|

by the three-point condition, but it contains both x = f(0) and f(s) so it has diameter

at least |f(s)− f(0)|. Thus Cǫ ≥ 1. The same argument applies to the image of the

fourth quadrant and the negative imaginary axis, and this proves the first part of the

lemma. The final claim follows easily. �
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Mori’s theorem states that K-quasiconformal maps of the plane are bi-Hölder, i.e.,

1

C|z − w|α
≤ |f(z)− f(w)| ≤ C|z − w|α,

where α depends only on K. Quasiconformal maps of the plane are also quasisym-

metric: there is a homeomorphism η from [0,∞) to itself such that |x− y| ≤ t|a− b|

implies |f(x)− f(y)| ≤ η(t)|f(x)− f(y)|. See [13] and its references.

Lemma 2.4. Given a Jordan arc γ ⊂ C define

γ(r) = {z ∈ C : dist(z, γ) ≤ r · diam(γ)}.

If f is a K-quasiconformal map of the plane to itself, then there are 0 < s < t < ∞

depending only on r and K so that if σ = f(γ) then

σ(s) ⊂ f(γ(r)) ⊂ σ(t).

Proof. Without loss of generality we may assume diam(γ) = diam(σ) = 1. Taking

the metric ρ = 1/r on γ(r) we see that the modulus of the path family connecting γ

to ∂γ(r) is bounded above by

area(γ(r))

r2
≤
π(1 + r)2

r2
= π(1 +

1

r2
).

Hence the modulus of the path family separating γ and ∂γ(r) is bounded below by

the reciprocal of this upper bound. Thus the f -image of this family therefore also has

modulus bounded below (by quasi-invariance) and thus the distance between σ and

f(∂γ(r)) is bounded below by a constant s times diam(σ). This gives the left-hand

inclusion of the lemma.

The other inclusion is easier. If t is large then the modulus of the path family

surrounding σ in σ(t) is also large and hence its pre-image under f is also large. This

means that the pre-image contains a large round annulus that surround γ and hence

contains γ(r) if t is large enough compared to r (depending on K). �

We shall also use the following well known result of Teichmüller, Wittich, Belinskĭı

and Lehto (e.g., [6], Theorem 7.3.1 of [11], [14], [18]).

Theorem 2.5. Suppose ϕ : C → C is K-quasiconformal with dilatation µ and
∫∫

|z|>R

|µ(z)|
dxdy

|z|2
<∞,



14 CHRISTOPHER J. BISHOP

for some R < ∞. Then there is a non-zero, finite complex constant A so that

ϕ(z)/Az → 1 as |z| → ∞.

3. Quasiconformal folding

In this section, we review notation and results from [3]. Recall that S2,0 ⊂ S is

the sub-collection of Speiser class functions that have 2 critical values and no finite

asymptotic values. We will start by describing how an element of S2,0 gives rise to

a locally finite, infinite planar tree; we then describe how to start with such a tree

(satisfying some geometric regularity conditions) and obtain an element of S2,0. This

construction is the main result of [3], and contains much of the work needed to prove

Theorem 1.2.

Suppose f ∈ S2,0 and that the critical values of f are exactly {−1, 1}. Let T =

f−1([−1, 1]). Let U = C \ [−1, 1] and let Ω = f−1(U). Then each component of

Ω is simply connected and f acts as a covering map from each component of Ω to

U . The boundary of Ω is an infinite tree where the vertices are the pre-images of

{−1, 1}. For each connected component of Ω there is a conformal map τ to Hr so

that f = cosh ◦ τ . The edges of ∂Ω are mapped to intervals of length π on ∂Hr. See

Figure 2.

f cosh

exp
τ

_
2
_1 1

z(z+   )

Figure 2. A function with two critical values at {−1, 1} and no finite
asymptotic values. T = f−1([−1, 1]) is a tree with vertices mapping to
±1 (shown as black and white dots). τ is a conformal map from each
complementary component of T to the right half-plane and f = cosh ◦τ .



MODELS FOR THE SPEISER CLASS 15

Given r > 0 and an edge e on ∂Ω we define a neighborhood

e(r) = {z : dist(z, e) < r · diam(e)},

and define a neighborhood of T = ∂Ω by taking the union over all edges. This

neighborhood will be denoted T (r). See Figure 3.

Figure 3. The neighborhood T (r) of a tree (a finite tree is shown,
but the definition also makes sense for infinite trees and graphs). The
dashed regions show e(r) for two edges.

Now suppose we start with an infinite planar tree T and a holomorphic map τ :

Ω → Hr where Ω = C \ T and τ is conformal from each connected component Ωj of

Ω to Hr. We want to construct an f ∈ S2,0 so that T approximates f−1([−1, 1]) and

f approximates eτ away from T . There are two basic conditions that we impose.

(I) Bounded geometry: this holds for T if:

(1) every edge is C2 with uniform bounds on the derivatives.

(2) edges meet at angles uniformly bounded away from zero.

(3) any two adjacent edges have uniformly comparable lengths and their union is

uniformly quasiconvex.

(4) non-adjacent edges e, f satisfy dist(e, f)/diam(e) > ǫ with a uniform ǫ > 0.

Here “quasi-convex” means that the arc-length distance between two points x, y on

the curve is O(|x− y|). Note that condition (2) implies that the vertex degrees of T

are uniformly bounded. A very useful alternate version of (4) comes from Lemma 2.1:
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(4) holds iff any two non-adjacent edges of T are separated by a path family with

modulus bounded uniformly away from zero. Because of the conformal invariance

of modulus, this allows us to easily verify that under certain conditions, conformal

images of bounded geometry trees still have bounded geometry. See Section 4.

Later, we will also consider a bounded geometry “forest” G that is a disjoint union

of bounded geometry trees, where (1)-(3) hold for all edges in the forest and (4)

holds for all pairs of non-adjacent edges in G (either from the same or from different

components of G).

Each edge e of the planar tree T has two sides and each side may be considered

as a boundary arc of one of the complementary components Ωj of T (possibly both

sides belong to the same component). Conversely, the boundary of each component

Ωj is partitioned into arcs by the sides of the tree T . We say that two sides of T

are adjacent if they are sides of adjacent edges of T that are on the boundary of

the same complementary component Ωj and the two sides correspond to adjacent

intervals after conformally mapping Ωj to Hr. Two sides of T can also be adjacent if

they are opposite sides of a single edge of T that has an endpoint of degree 1.

When Ωj is mapped to Hr by τj the sides of T map to intervals on ∂Hr. The

Euclidean length of the image interval is called the τ -length of the corresponding side

of T . The collection of resulting intervals on ∂Hr form a partition, denoted Pj, of

this line.

For us, a partition of a line is a locally finite collection of disjoint open intervals

whose closures cover the whole line. The endpoints of the partition intervals form

a countable, discrete set that accumulates only at ∞. We say that a partition has

bounded geometry if adjacent elements (i.e., partition intervals that share an end-

point) have comparable lengths with a constant that is independent of the intervals.

The bounded geometry constant of the partition is the supremum |I|/|J | over all

adjacent pairs of intervals. Occasionally we will also consider bounded geometry par-

titions of bounded open segments or arcs that are defined in the same way (adjacent

partition intervals have comparable lengths and accumulate only at the endpoints).

If the infinite tree T has bounded geometry then the partitions Pj of ∂Hr, corre-

sponding to each complementary component Ωj, also have bounded geometry, with

a constant depending only on the bounds in the definition of bounded geometry (see
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Lemma 4.1 of [3]). In other words, if T has bounded geometry, then adjacent sides of

T have comparable τ -length. This fact is the main way that we utilize the bounded

geometry assumption.

(II) The τ-length lower bound: The second condition we require is that every

side of T has τ -length ≥ π (but no upper bound is assumed).

An apparently weaker form of this is to simply require that for each complementary

component Ωj of T , there is a strictly positive lower bound ǫj > 0 for the length

of every interval in the partition Pj. If this weaker condition holds, then on each

component Ωj of the model domain Ω, we can replace τj by a positive multiple of

itself, namely (π/ǫj) · τj. This is still a conformal map of Ωj to the right half-plane

but now every partition arc on ∂Hr has length ≥ π. Thus if each tract has a positive

τ -length lower bound, we can easily choose a new model function for which it satisfies

the stronger ≥ π bound. Therefore, in most cases, we only need to check the weaker

condition. Note that having a positive τ -length lower bound is a geometric property

of each tract in Ω; if each tract has such a lower bound, then having a positive lower

bound that works simultaneously for all the tract depends on the particular choice

of model function F = eτ .

The following is the main result from [3].

Theorem 3.1. Suppose (T, τ) has bounded geometry and every side of T has τ -length

at least π. Then there is a f ∈ S2,0, r > 0 and a quasiconformal ϕ : R2 → R
2 so that

f ◦ ϕ = cosh ◦τ off T (r). In addition,

(1) the map ϕ is conformal off T (r),

(2) the function f has only critical values ±1, and no finite asymptotic values,

(3) the number r and and the maximal dilatation K of ϕ only depend on the

bounded geometry constants of T ,

(4) the degree of any critical point of f is bounded by 4D, where D is the maximum

degree of vertices in T .

This result is essentially Theorem 1.1 of [3]. The statement there includes con-

clusions (1), (2) and (3) explicitly. Conclusion (4) follows from the proof given in

[3]; by construction, the degree of any critical point of f equals the graph degree

of a corresponding vertex v of a tree T ′ that is obtained by adding finite trees to

the vertices of T . The bounded geometry condition implies the vertices of T have
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uniformly bounded degree, D. Each of the added trees has maximum vertex degree

4 and has degree 3 at the vertex that is attached to v ∈ T . At most deg(v) such trees

are added at v, so the new tree has maximum degree at most 4D. This gives (4).

Since the tree T that we construct in the proof of Theorem 1.2 will have maximum

vertex degree 3, this gives the “12” in part (2) of Theorem 1.2.

Conclusion (4) (and hence the estimate in Theorem 1.2) can be improved by making

some alterations to the folding construction in [3], but we only sketch the possibilities

here; details will appear elsewhere. It is fairly easy to modify the construction so that

the finite trees we add to T have degree 1 at the vertex that is attached to T ; this

requires redrawing the diagrams in Figure 8 of [3] with a new vertical segment at

endpoints of the horizontal segment and changing some corresponding bookkeeping

in the proof. This change lowers the bound in (4) above from 4D to 2D. If we replace

τ by a positive multiple of itself, we can do even better. Subdivide each edge of T

into three sub-edges, so as to give a bounded geometry tree T ′ and rescale τ so that

each new edge has τ -length at least π. We then further modify the construction in

[3] by adding two extra vertices to the horizontal edges in Figure 8 of [3] and make

corresponding changes to the bookkeeping. This results in a finite tree being added

to every third vertex of T ′ viewed from a complementary component, and we can

easily arrange all these to be the “new” vertices of T ′, and these all have degree 2.

We can add at most two trees to any such vertex, making the degree at most 4. This

makes the bound in (4) equal to max(D, 4).

As noted above, in the proof of Theorem 1.2, we apply Theorem 3.1 to a tree T

with maximal degree 3. Some of the complementary components of T correspond to

components of Ω(ρ), and on these components all the τ -lengths equal π. This implies

the folding construction does not add any trees inside these components. The other

complementary components of T are “new” components and we are free to choose

any positive multiple of τ we want on these components. Therefore we may assume

the τ -lengths in these new components are all large, and hence the sketched argument

above applies: finite trees are adjoined to vertices of degree 2 in T , and the added

trees have maximum degree 4 and degree 1 at the vertex attached to T (so the degree

2 vertex becomes degree at most 4). Thus making the appropriate changes to the

folding construction in [3] will give the upper bound 4 in part (2) of Theorem 1.2.
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One could improve the bound max(D, 4) to max(D, 3) if the finite trees we add

have maximum vertex degree 3. Figure 12 of [3] shows how degree 4 vertices arise

when adjacent trees are attached to each other. It seems plausible that this can

be avoided, but requires more extensive modifications and needs to be verified. We

would also need to add at most one tree to any vertex of T ′ (the tree obtained

from T by splitting each edge into three edges). However, this is easy to arrange by

always attaching trees one vertex to the left of a vertex of T , when viewed from the

corresponding complementary component; this will attach at most one tree to each

of the two vertices of T ′ that lie on any edge of T . Together, these improvements

would give the bound 3 in part (2) of Theorem 1.2.

4. Glueing trees using conformal maps

In this section, we describe a way to combine two or more bounded geometry trees

to obtain a new bounded geometry tree.

It is convenient to introduce a stronger version of bounded geometry. We say that

a Jordan arc γ is ǫ-analytic if there is conformal map on

γ(ǫ) = {z : dist(z, γ) < ǫ · diam(γ)}

that maps γ to a line segment. We call a bounded geometry tree T uniformly

analytic if there is an ǫ > 0 so that every edge of T is ǫ-analytic. We say a vertex

v of T is ǫ-analytic if it has degree two and the union of the two edges meeting at

v form a single ǫ-analytic Jordan arc. Note that vertices of a uniformly analytic

tree need not be analytic (the edges may meet at various angles), but that if we

add vertices to the edges of a uniformly analytic tree T1 to form a new bounded

geometry tree T2, then all the new vertices are analytic with the same constant as

T1. A bounded geometry forest in which all the edges are uniformly analytic will

be called a uniformly analytic forest. An important example of such a forest is

∂Ω(ρ), where Ω is a model domain and the vertices are the usual ones, τ−1(ρ+ iπZ).

In this case, all the vertices are analytic as well (with a uniformly bounded constant).

Lemma 4.1. Suppose T is a uniformly analytic forest and suppose Ω is a connected

component of C \T . Suppose W is either D or Hr and that τ : Ω → W is conformal.

Suppose that T0 ⊂ W is a uniformly analytic tree (all open edges of T0 are in W , but
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some vertices may lie on the boundary of W ). We assume τ−1(T0) is locally finite in

C. Suppose there is a M <∞ so that for every edge e of T0 either

(1) the edge e has hyperbolic diameter at most M (we call these the internal edges

of T0), or

(2) the edge e has one endpoint x = τ(v) ∈ ∂W , where v is an analytic vertex of

T and

1

M
diam(τ(I ∪ J)) ≤ diam(e) ≤M · diam(τ(I ∪ J)),

where we take Euclidean diameters, and I and J are the two edges of T

adjacent to v. We call such an edge e a boundary edge of T0.

Then T ′ = T ∪ τ−1(T0) is a uniformly analytic forest. The constants for T ′ depend

only on the bounded geometry and uniform analyticity constants for T and T0. If

a component of W \ T0 satisfies a positive τ -length lower bound, the same bound is

satisfied by the image of this component under τ−1.

Proof. The Koebe distortion theorem easily implies that conditions (1)-(4) in the

definition of bounded geometry are transferred from T0 to τ−1(T0) for all pairs of

internal edges in T0. Similarly, the images of all internal edges are clearly uniformly

analytic. Moreover, because of our assumption on the hyperbolic diameters, each

internal edge e of T0 is separated from ∂W by a path family in W with modulus

bounded uniformly away from zero. By conformal invariance of modulus, this also

holds for τ−1(e) and ∂Ω and hence (4) holds whenever one edge corresponds to an

internal edge of T0 and the other is an edge of T . A similar argument works for an

internal edge of T0 and a non-adjacent boundary edge of T0.

Each boundary edge e of T0 has an endpoint x corresponding to an analytic ver-

tex v of T and by Schwarz reflection the map τ−1 extends analytically a uniform

neighborhood of S = τ(I ∪ J) where I, J are the edges of T adjacent to v. Since

diam(S) & diam(I ∪ J), this implies τ−1(e) is uniformly analytic. Moreover, there

is an ǫ · diam(e) neighborhood of e where τ−1 extends to be conformal and whose

image hits I and J , but no other edges of T . This (and the Koebe distortion theo-

rem) implies the separation property (4) holds for τ−1(e). The final statement holds

simply because having a positive lower bound for τ -lengths is conformally invariant

by definition. �
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5. Proof of Theorem 1.2: part 1, bounded geometry

It is stated in [3] that Theorem 3.1 reduces constructing functions in S2,0 to “draw-

ing a picture” of the correct tree. One then has to verify that the tree has bounded

geometry and the complementary components each satisfy a positive τ -length lower

bound. This is exactly what we will do to prove Theorem 1.2. In this section we

connect the various components of Γ = ∂Ω(ρ) to form a bounded geometry tree T1.

If ∂Ω(ρ) has N < ∞ components, then the tree T1 will have 2N complementary

components; N of these are the original components of Ω(ρ) and the other N are

subdomains of W = C \Ω. When N is finite, it is easy to make the connections if we

are willing to allow the bounded geometry constant to grow. However, we shall give

a more intricate construction that can also deal with infinitely many components and

gives uniformly bounded geometry.

The new components might not satisfy a τ -length lower bound condition, but we

shall fix this in the next section by a simple trick that subdivides each of these

new component into infinitely many components, each with a positive τ -length lower

bound. Later, in Section 9, we will show how to replace each component by a single

subdomain that has the desired τ -length lower bound. See Figure 4.

Ω
Ω

Ω

T1

T2

Figure 4. The idea of the proof of Theorem 1.2 is to reduce it
to Theorem 3.1 by joining the components of Γ = ∂Ω(ρ) to form a
bounded geometry tree T1 and then add extra edges to the “new”
components make a tree T2 so that the τ -length lower bound holds.

We should note that the construction of T1 and T2 given in this paper was chosen for

its generality, but it might not be the most elegant or efficient choice for a particular

Ω that arises in some application. Very likely, the geometry of the model domain

will suggest a natural way of connecting the different components of ∂Ω(ρ), while

satisfying the bounded geometry and τ -length conditions. Theorems 1.2 and 1.3

simply ensure that there is always at least one way to accomplish this.
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Now we start the construction of T1. Let Γ = ∂Ω(ρ). This is a union of unbounded,

analytic Jordan curves and each curve comes with a set of marked points (or vertices)

defined by Im(τ(z)) ∈ πiZ (recall that this is called a conformal partition of ∂Ω(ρ)).

Γ is a uniformly analytic forest and every vertex is analytic with a uniform constant.

Let W = C \ Ω(ρ). This is a proper simply connected domain in the plane, so by

the Riemann mapping theorem there is a conformal map Ψ : W → D. Each curve

Γj = ∂Ωj(ρ) maps to an open arc Ij ⊂ T under Ψ. We let E = T\∪jIj; this compact

set corresponds to ∞ under Ψ−1, hence it has zero Lebesgue length (even stronger, it

has zero logarithmic capacity, but we won’t need this). The partition of Γj = ∂Ωj(ρ)

with endpoints τ−1
j (iπZ) corresponds via Ψ to a partition of Ij. Because ∂Ω(ρ) is a

bounded geometry forest (with constant depending only on ρ), adjacent intervals in

the partition of Ij have comparable lengths with a fixed constant, depending only on

ρ. In particular, we can choose a point vj ∈ Ij so that the distances from vj to each

endpoint of Ij are comparable to each other (just take an endpoint of a partition

interval that contains the actual center of Ij). We call vj the “approximate center”

of Ij. The main objective of this section is to prove:

Lemma 5.1. Suppose notation is as above, i.e., T0 is the tree consisting of Γ = ∂Ω(ρ)

with vertices given by the conformal partition on each component of ∂Ω(ρ). There is

a bounded geometry tree T1 that contains T0, so that:

(1) All new edges are in W = C \ Ω(ρ).

(2) The vertices of T1 on ∂Ω(ρ) are exactly the vertices of T0 (no new vertices are

added on ∂Ω(ρ)).

(3) If Ω(ρ) has N <∞ components then C\T1 has 2N connected components, N

of which are the connected components of Ω(ρ) and N are subdomains of W .

Using Lemma 4.1, the proof of Lemma 5.1 reduces to the following construction

on the disk.

Lemma 5.2. Suppose E ⊂ T is closed and has length zero, T \E = ∪jIj and vj ∈ Ij

are the approximate centers, as above. Then there is a tree T in D so that:

(1) The tree T has bounded geometry. In fact, T is uniformly analytic and every

edge is either a line segment or a circular arc. The maximum vertex degree

is 3.



MODELS FOR THE SPEISER CLASS 23

(2) For each vj there is a boundary edge of T that has vj as a common endpoint.

The length of this edge is comparable to the lengths of the two partition arcs

of Ij that have vj as an endpoint. This edge makes an angle with T that is

bounded uniformly away from zero.

(3) Every other arc of T has uniformly bounded hyperbolic diameter.

(4) The closure of every component of D \ T meets E in exactly one point. In

particular, if E is a finite set with N elements, then D\T has N components.

Proof. Consider a Whitney decomposition of the disk, as illustrated in Figure 6. The

innermost part of the decomposition is a central disk of radius 1/4. Outside of the

central disk, the annulus A1 = {1
4
< |z| < 1

2
} is divided into eight equal sectors, the

annulus A2 = {1
2
< |z| < 3

4
} into sixteen sectors, and so on, as shown in Figure 5.

These sectors are called Whitney boxes.

Figure 5. The Whitney decomposition of the disk.

Each Whitney box has two radial sides and two circular arc sides concentric with

the origin. The circular arc closer to the origin is called the top of the box and the

arc further from the origin is called the bottom. Each bottom arc is divided into
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two pieces by the tops of the Whitney boxes below it (“below” means between the

given box and the unit circle). We call these the left and right sides of the bottom

arc (left is the one further clockwise). The sides and bottoms of Whitney boxes we

will call the Whitney edges, their endpoints we call Whitney vertices. The union

of these edges and vertices forms an infinite graph in D which we call the Whitney

graph. The radial projection of a closed Whitney box B onto the unit circle, T, is a

closed arc that we denote B∗ (this is sometimes called the “shadow” of B, thinking

of a light source at the origin). The union of a closed Whitney box B and all the

closed Whitney boxes B′ so that (B′)∗ ⊂ B∗ is called the Carleson square with base

I = B∗.

Each point on the unit circle can be connected to the central disk by a path

in the Whitney graph that moves towards the origin whenever possible and moves

counterclockwise otherwise. See Figure 6.

Figure 6. The paths from the boundary to the central disk described
in the text. Any boundary point can be joined to the central disk by
a path moving along edges of Whitney boxes: move radially towards
the origin whenever possible, and move counterclockwise (right in the
picture) otherwise.

Note that such a path never contains the “left-half” of the bottom of any Whitney

box (otherwise the path would have moved up the left radial side of the box). For

each arc Ij ⊂ T we connect the approximate center vj of Ij to the central disk by such

a path. The union of all such paths, together with the boundary of the central disk, is
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a closed set and divides the disk into countably many simply connected subdomains

{Uj}. By removing one of the eight arcs that bounds the central disk, we join the

central disk to one of the domains Uj. This makes every subdomain Uj an infinite

union of Whitney boxes; a finite union would contain a box closest to the unit circle

and the bottom of this box would be on a path, which is impossible since the left

side of the bottom can’t be on any path.

Thus every subdomain Uj has a boundary that hits T, and Jj = ∂Uj ∩ T must be

a closed interval; if Jj is not connected, then there is a component of D \ Uj that is

separated from the central disk by Uj, but this is impossible by construction (points

on the boundary of this component are on a path that continues all the way to the

central disk).

The closed interval Jj must hit E = T \ ∪jIj, otherwise two paths were generated

in the same component Ij of T \ E, contrary to the construction. Also Jj must hit

E in a single point, xj, otherwise Uj separates some component Ik of T \E from the

central disk, contradicting the fact that the approximate center of Ik is connected to

the central disk.

We would like to turn the curve ∂Uj \E into a tree by using the partition vertices

on T ∩ ∂Uj and using the Whitney vertices on ∂Uj, but there are infinitely many

Whitney vertices on ∂Uj that accumulate at each approximate center vj. To fix this,

recall that vj is the endpoint of two partition intervals of comparable length. Suppose

r is the length of the shorter of these two and let wj ∈ ∂Uj ∩D be a Whitney vertex

on the path starting at v with distance from T between r and r/2. We call this

the truncation point associated to vj. The path terminating at vj lies in a cone in

D with radial axis, fixed angle and vertex at vj and there are no other paths that

hit the disk D(vj, |vj − wj|), so we can replace the part of this path between these

points by the line segment [vj, wj]. The length of this segment is comparable to the

distance between vj and its neighboring partition points and is also comparable to

the adjacent segment in the path ∂Uj. Moreover, the angle between this segment

and the unit circle is uniformly bounded away from zero, so we obtain a bounded

geometry tree (even uniformly analytic), as desired. See Figure 7. �



26 CHRISTOPHER J. BISHOP

Figure 7. The paths connecting vj to the central disk approach vj
through a non-tangential cone near the boundary. Thus if the path
to vj ∈ Ij is truncated at an appropriate scale and replaced by a line
segment, this segment makes an angle with T that is uniformly bounded
away from zero.

6. Proof of Theorem 1.2: part 2, the τ-length bound

In the previous section we showed how to connect the components of Γ = ∂Ω(ρ)

into a single, connected, bounded geometry (even uniformly analytic) tree T1. In this

section we modify the construction further to give a positive τ -length lower bound

on each complementary component; as noted earlier, it is then easy to modify τ by

multiplying it by a positive constant on each component of Ω(ρ) to make the lower

bound π, as required in Theorem 3.1. We only have to prove a lower bound on the

“new” complementary components that we create; the sides of the components of

Ω(ρ) have τ -length equal to π by definition.

Let T ⊂ D be the tree constructed in the Section 5 and let T ′ be the tree we obtain

by adding a vertex at the midpoint of each edge of T (all the edges are segments or

circular arcs so the midpoint is well defined). Note that all the “new” vertices are

analytic vertices with a uniform constant. These vertices all have degree 2 and later

we will attach single edges to them, giving vertices of degree 3; the resulting trees

will have maximum degree 3.

Let {Uj} = D \T be the complementary components of T . Let xj = ∂Uj ∩E be as

defined in the previous section, and let Φj : Uj → Hr be conformal with Φj(xj) = ∞.

The vertices of T ′ on ∂Uj map to points on ∂Hr; let Pj be the bounded geometry
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partition of ∂Hr induced by these points. The “new” vertices of T ′ induce a bounded

geometry partition Qj whose endpoints are alternating endpoints of Pj.

Lemma 6.1. With notation as above, fix j and consider the union of horizontal rays

in Hr that start at each endpoint for the partition Qj. Along each ray, add vertices

that are equally spaced, with a spacing that is equal to the distance between that ray

and the closer of the two adjacent rays (see Figure 8). This is a uniformly analytic

forest that we denote Gj. Then T2 = T1∪∪jΦ
−1
j (Gj) is a bounded geometry, uniformly

analytic tree that satisfies a positive τ -length lower bound.

Figure 8. Given a partition of ∂Hr where adjacent intervals have
comparable lengths, add a horizontal ray in Hr at each partition point
in ∂Hr and place equally spaced vertices on each ray, where the spacing
equals the smaller width of the two adjacent half-strips. It is easy to
see that this gives a bounded geometry tree that satisfies a positive
τ -length lower bound. Note the vertices of the tree have maximum
degree 3.

Proof. It is obvious that Gj has bounded geometry and is uniformly analytic and

that it satisfies all the other hypotheses of Lemma 4.1, so that T2 = T1 ∪ ∪jΦ
−1
j (Gj)

is indeed a bounded geometry, uniformly analytic tree. To prove that each connected

component of T2 satisfies a τ -length lower bound, we simply note the conformal map

of a half-strip to a half-plane has exponential growth (we can check this via an explicit
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formula involving sinh(z)), so if the partition segments on the boundary of the half-

strip have Euclidean lengths bounded below by a constant times the width of the

strip, then the τ -lengths grow exponentially with a uniform bound. In particular, the

τ -lengths are uniformly bounded away from zero. �

Verifying the τ -length condition for a half-strip above is simple because there is an

explicit formula for the conformal map toHr. One could also use the more geometrical

and more general Lemma 8.1, which will be stated and proved later.

7. Proof of Theorem 1.2: part 3, final details

The construction in the previous section created a forest in Hr with infinitely many

complementary components, each of which satisfies a positive τ -length lower bound.

We now apply this construction to the partitions {Qj} corresponding to the analytic

vertices of the tree T ′ constructed at the beginning of Section 6. Using Lemma 4.1,

we can attach a conformal image of the forest created in Lemma 6.1 to T ′ to give

a bounded geometry tree. A positive τ -length lower bound holds automatically by

the conformal invariance of this condition. As before, we can multiply τ by positive

constants on each component, so that the τ -length lower bound is π. We then apply

Theorem 3.1 and multiply the resulting function by eρ to get:

Theorem 7.1. Suppose Ω is as in Theorem 1.1. Then there is a f ∈ S2,0 and a K-

quasiconformal map φ of the plane so that f ◦ φ = cosh ◦ τ on Ω and φ is conformal

on Ω \ T (r). The constants K, r < ∞ depend on ρ but are otherwise independent of

Ω and τ . The function f has no finite asymptotic values, exactly two critical values,

±eρ, and every critical point has degree ≤ 12.

There are a few slight differences between this and Theorem 1.2, but it is easy to

deduce Theorem 1.2 from Theorem 7.1 as follows.

First, Theorem 7.1 uses cosh instead of exp. However, these functions are almost

the same in Hr away from the boundary. Consider the map z → 1
2
(z + 1

z
); this is

a conformal homeomorphism of {|z| > 1} to U = C \ [−1, 1] and maps the circle

C = {|z| = eρ} to some ellipse E. Define a quasiconformal map ψ that equals the

inverse of this map outside E and extends it diffeomorphically to the interior. Since

cosh = 1
2
(ez + e−z) we get exp(z) = ψ(cosh(z)) when | exp(z)| > eρ. Therefore if we
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use the measurable Riemann mapping theorem to find a quasiconformal ϕ so that

F = ψ ◦ f ◦ ϕ, this function satisfies Theorem 7.1 with cosh replaced by exp.

Second, Theorem 7.1 only claims that ϕ is conformal off T (r) whereas Theorem 1.2

says it is conformal on all of Ω(2ρ). The first step in verifying this stronger condition

is to prove:

Lemma 7.2. With notation as above, there is a A <∞, depending only on ρ and r

so that T (r) ∩ Ω(A · ρ) = ∅.

Proof. The proof is a modulus argument. The modulus of the path family in Hr + ρ

separating a segment of length π on {x = ρ} from the vertical line {x = Aρ} is easily

seen to increase to infinity as A increases to infinity. Thus by conformal invariance

of modulus and Lemma 2.1

dist(I, ∂Ω(Aρ))

min(diam(I), diam(∂Ω(Aρ)))
=

dist(I, ∂Ω(Aρ))

diam(I)
→ ∞

as A→ ∞. This proves the intersection is empty if A is large enough.

�

We can easily choose a quasiconformal map H : Hr → Hr so that H

(1) is the identity on {0 < x < ρ},

(2) is of the form (x, y) → (ax+ b, y) mapping {ρ < x < 2ρ} to {ρ < x < Aρ},

(3) is a horizontal translation from {x > 2ρ} to {x > Aρ}.

Defining G = τ−1
j ◦H ◦ τj on each Ωj and letting G be the identity elsewhere gives

a quasiconformal map of the plane to itself so that ϕ̃ = ϕ ◦G is conformal off Ω(2ρ)

and satisfies all the other conclusions of Theorem 1.2.

Finally, the tree we have explicitly constructed has maximal vertex degree 3. Hence

by the folding theorem (Theorem 3.1), the corresponding entire function will have

critical points of degree at most 12. (As noted at the end of Section 3, this bound

can be improved to 4 by some modifications to the construction in [3].)

8. Two estimates on τ-length

In this section, we give two explicit estimates for τ -lengths that we will use during

the proof of Theorem 1.3 in the next section.
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Given two disjoint intervals K, J on the real line, let M(K, J) be the modulus of

the path family in the upper half-plane, Hu, that separates K from J (these are the

paths in Hu with two endpoints in R \ (K ∪ J), exactly one of which separates K

and J). This is the reciprocal of the modulus of the path family that joins K and J

(paths in Hu that have one endpoint in each of K and J).

The first result is helpful for domains that look like “tubes” built by attaching

quadrilaterals of bounded modulus end-to-end (e.g., as the half-strip is a union of

squares joined end-to-end).

Lemma 8.1. Suppose K = (−∞,−1] and {Jj} is a sequence of disjoint intervals in

[1,∞) such that M = supj M(Jj, K) < ∞. Also assume the {Jj} are in increasing

order (i.e., Jj+1 is to the right of Jj). Then the lengths of Jj grow exponentially in

j; in particular, these lengths are uniformly bounded below by a constant depending

only on M .

Proof. Fix some Jj = [aj, bj ] with 1 < aj < bj. If bj − aj ≤ ǫaj for some 0 < ǫ < 1,

then Jj is separated from K by the annulus

A = {z ∈ Hu : ǫaj < |z − aj| < aj}.

Any path connecting different components of ∂A ∩ R also separates J and K so the

modulus of the first family is a lower bound for the modulus of the second. However,

this modulus is 1
2π

log 1
ǫ
, so ǫ ≥ ǫM = exp(−2πM). Hence bj > (1 + ǫM)aj. By

induction |Jj| = bj − aj ≥ ǫM(1 + ǫM)j−1, as desired. �

The next lemma is helpful when we build a domain by taking a “tube domain”

and attach “rooms” along the sides of the tube.

Lemma 8.2. Suppose K = [s, t], I = [x, y], J = [u, v] are intervals on the real line

so that t ≤ x < u. If M(J,K) ≤M(I,K), then |I| ≤ |J |.

Proof. We prove the contrapositive. Suppose |I| > |J |. After translating (if neces-

sary) we may assume that t = 0. Then dilate by λ = u/x > 1. Note thatK ⊂ λK and

J ⊂ λI (strictly), so using the monotonicity and conformal invariance of modulus,

we deduce M(J,K) > M(λI, λK) =M(I,K). �
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9. Proof of Theorem 1.3

In this section, we improve Lemma 6.1 by showing that instead of creating infinitely

many complementary components, we can accomplish the same result using a single

complementary component.

Lemma 9.1. Suppose Q is a bounded geometry partition of ∂Hr with constant C (i.e.,

adjacent intervals have length ratio at most C). Then there is a bounded geometry,

uniformly analytic forest T ′′ ⊂ Hr which satisfies the hypotheses of Lemma 4.1 and

so that W ′′ = Hr \ T
′′ consists of a single component that satisfies a positive τ -

length lower bound. The constants associated to T ′′ depend only on C. Moreover, the

boundary edges of T meet ∂Hr exactly at the partition points of Q.

Given the lemma, we can complete the proof of Theorem 1.3 just as we finished the

proof of Theorem 1.2 in Section 7. Briefly, we had constructed a tree T ′ that contained

the analytic arcs ∂Ω(ρ) as well as arcs that connected the various components of

∂Ω(ρ). The complementary components of T ′ consist of the N components of Ω(ρ)

(which already satisfy the τ -length condition because all their sides have τ -length π

by definition) and N other components {U ′
j} (which might not satisfy the τ -length

condition; this is what we want to fix). The tree T ′ is uniformly analytic, and

alternate vertices are analytic (T ′ was obtained from an analytic tree T by adding

midpoints of edges). We then map each of the U ′
j conformally to Hr, take Q to be

the image of the new analytic vertices and apply Lemma 9.1 to this partition. The

resulting forest T ′′ is then mapped conformally back to U ′
j and attached to T ′. Using

Lemma 4.1, we see that the resulting tree has bounded geometry and satisfies a lower

τ -length condition. The rest of the proof of Theorem 1.3 then exactly follows the

proof of Theorem 1.2. Thus to prove Theorem 1.3 it suffices to establish Lemma 9.1.

We now start the proof of Lemma 9.1. Fix a partition Q of ∂Hr. Choose a base

interval I0 in the partition. Without loss of generality we may assume I0 = [−i, i]

and label the partition endpoints {zj} = {ixj} ⊂ ∂Hr so that

. . . x−3 < x−2 < x−1 = −1 < x1 = 1 < x2 < x3 . . . .

Note that the elements of Q are labeled by Z, but the endpoints are labeled by

Z
∗ = Z \ {0}. It will be convenient to define k∗ = k + 1 if k > 0 and k∗ = k − 1

if k < 0; for k ∈ Z
∗, k∗ is the integer adjacent to k, but farther from 0. With this
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notation, we can write Ik = (xk, xk∗) without needing to have special cases for k > 0

and k < 0 (although we accept that an interval can be written as either (a, b) or

(b, a)).

Define the central region in Hr as the union of the rectangle [0, 1]× [−1, 1] and the

sector {x + iy ∈ Hr : |y| < x}. This region is illustrated in the left part of Figure 9.

The boundary of the central region consists of the segment I0 ⊂ ∂Hr and two infinite

paths in Hr that we will call the upper and lower boundaries.

Figure 9. This figure encapsulates the proof of Lemma 9.1 by show-
ing the relevant tree. On the left is the central region, in the center is
the central tube and on the right is the tree T ′′. We can easily add ver-
tices to make this a bounded geometry tree, and we will use extremal
length estimates to show W ′′ satisfies a positive τ -length lower bound.

It would be very convenient for us if the partition Q was symmetric with respect

to the origin, i.e., J−k = −Jk. Since this need not be the case, we will build a new

partition Q′ that is symmetric, has bounded geometry and is “finer” than Q in a

certain sense. More precisely:

Lemma 9.2. Given a bounded geometry partition Q of ∂Hr normalized as above,

and a real number 1 < M <∞, there is a bounded geometry partition Q′ = {I ′j}Z of

∂Hr so that

(1) the interval I ′0 = I0 is an element of Q′,
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(2) the partition is symmetric, that is, I ′−j = −I ′j,

(3) the length of I ′j is a non-increasing function of |j|,

(4) the length of every Ij is an integer power of 2,

(5) if any interval I ′ ∈ Q′ \ {I0} intersects an interval I ∈ Q, then |I ′| < |I|/M ,

(6) the bounded geometry constant of Q′ is bounded above depending only on M

and the bounded geometry constant C of Q.

Proof. Cover I1 by a collection D1 of closed dyadic intervals that all hit I1 and that

all have lengths strictly less than |I1|/4M and greater or equal to |I1|/8M (since

there is exactly one power of two in this range, all the chosen intervals have the same

length, call it ℓ1). In general, suppose we have already covered I1 ∪ · · · ∪ Ij−1 by a

collection Dj−1 of closed dyadic intervals such that

(1) the interiors are disjoint,

(2) every J ∈ Dj−1 hits some Ik, 1 ≤ k < j,

(3) the lengths are non-increasing,

(4) if J ∈ Dj−1 hits Ik, 1 ≤ k < j then |J | < |Ik|/M .

(5) adjacent dyadic intervals have comparable lengths.

Let ℓj−1 be the length of the last (rightmost) dyadic interval in Dj−1. Cover Ij by a

collection Cj of dyadic intervals all with the same length ℓj, where ℓj is the integer

power of 2 satisfying |Ij|/8M ≤ ℓj < |Ij|/4M .

First suppose ℓj ≤ ℓj−1. Remove the last interval in Dj−1 and replace it by its

dyadic subintervals of length ℓj that don’t hit Ij. Also add the dyadic intervals in Cj

to Dj−1 to get the collection Dj. Clearly (1)-(4) all hold. Moreover,

ℓj−1 ≥ ℓj ≥ |Ij|/8M ≥ |Ij−1|/8MC ≥ ℓj−1/2C,

where C is the bounded geometry constant of Q. Thus (5) also holds.

Next, suppose ℓj > ℓj−1. Then subdivide each dyadic interval in the cover Cj of Ij

into dyadic subintervals of length ℓj−1 and redefine ℓj = ℓj−1. Add these intervals to

Dj−1 to give Dj (except possibly the first interval, if it is already in the collection).

Then (1)-(5) are all obvious.

Next, do the analogous construction for j < 0 and reflect the resulting dyadic cover

of (−∞,−1] across zero to get a dyadic covering of [1,∞). By taking the shortest
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interval covering each point we get a dyadic covering of [1,∞) which satisfies all the

desired conditions. �

Fix M ≥ 8C (recall C is the bounded geometry constant of Q) and apply Lemma

9.2 to get a symmetric partition Q′ = {Ij}j∈Z∗ . We will use the partition Q′ to fill the

central region with a meandering tube. Let {aj} ⊂ [1,∞) be the positive endpoints

of Q′ (Ij = (iaj, iaj+1)). Let ηj = aj+1 − aj = |Ij|. Now add the vertical segments

Vj =

{

x+ iy : x = aj, −aj + ηj
1 + (−1)j

2
≤ y ≤ aj − ηj

1 + (−1)j+1

2

}

inside the central region; more geometrically, we are adding segments on the ver-

tical lines {x = an} that lie inside the central region so that one endpoint lies on

the boundary of the central region and the other is distance ηj below or above the

boundary. Alternate segments alternately touch the “top” and “bottom” sides of

the central region. This defines a simply connected subregion of the central region

that we call the central tube. The boundary of the tube consists of I ′0 and two con-

nected components that we call the upper and lower components. The central tube

is illustrated in the center of Figure 9.

We make the boundary of the central tube into a tree by adding vertices on the

vertical segments at their endpoints and at points spaced ηj apart on Vj . On the

upper and lower boundaries of the central region we add a vertex at all the points

{aj ± iaj}j≥1. It is easy to see that this makes the boundary of the central tube into

a bounded geometry tree (since ηj ≃ ηj+1).

As before, let {zj} = {ixj} be the endpoints of the partition Q = {Ij}. For each

k ∈ Z
∗, choose a yk = an(k) so that |xk − yk| < |Ik|/M . This is possible by condition

(5) in Lemma 9.2. Define the segment Hk = [ixk, wk] where wk = |yk| + iyk. This

segment connects ixk to a vertex on the boundary of the central tube and is close to

horizontal (the absolute value of its slope is ≤ 1/M ; by abusing notation, we will refer

to these segments as “horizontal”. Doing this for every k divides the complement of

the central region into quadrilaterals that look like trapezoids, and which we will call

trapezoids by an another abuse of notation.

We can also make the choice above so n(k) is even if k < 0 and is odd if k > 0. This

means that the right-hand vertex wk of the segment Hk is a degree 2 vertex of the

central tube, and hence forms a degree 3 vertex when the segment Hk is added. This
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is important because we want the final tree to have maximum degree 3 (otherwise we

would end up with the upper bound 16 instead of 12 in part (2) of Theorem 1.2).

zk

w
k

z
H

Jk

H

w = w *= H *
= z *

k

k−1 k
k−1

k−1 k
k

Figure 10. We build approximate trapezoids by joining partition
points on ∂Hr by almost horizontal lines to partition vertices on the
boundary of the central region. A small segment is then removed from
the boundary of the central region so that the interior of the trapezoid
is joined to the central tube. In this picture, k < 0, so k∗ = k − 1.

For k ∈ Z
∗, the kth trapezoid has left side Ik ⊂ ∂Hr, two “horizontal” sides Hk

and Hk∗ , and a right-hand side of slope ±1 along the boundary of the central region.

See Figure 10. Vertices are added to the “horizontal” sides Hk that break Hk into

segments that start at the left with length comparable to the length of Ik and end

on the right with lengths comparable to (but larger than) ηn = an+1 − an where

n = n(k). Thus the sub-segment of Hk that meets the boundary of the central tube

has length comparable to the edges of the central tube at the meeting point. Hence

we have a bounded geometry forest in Hr. However, this forest cuts the plane into

infinitely many components (the trapezoids and the central tube). We want to form

a single component by removing some segments.

For each k ∈ Z
∗, choose n = n(k) so wk∗ = an± ian then remove the open segment

(an−1 ± ian−1, wk∗) from the boundary of the central region; this is the segment on

the boundary of the central tube that is also on the boundary of the kth trapezoid

and that has wk∗ as one endpoint. See Figure 10. Removing this segment connects

the kth trapezoid to the central tube. When we have removed all such segments, we
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have a bounded geometry forest T ′′ with a single complementary component W ′′ in

Hr. See the right side of Figure 9.

All that remains is to prove that W ′′ satisfies a positive τ -length lower bound.

First consider sides ofW ′′ that are also sides of the central tube. If such a side lies on

the upper boundary, it can clearly be separated from the lower boundary by a path

family with uniformly bounded modulus. Thus Lemma 8.1 implies that the τ -lengths

of such sides grow exponentially and hence are bounded away from zero. A similar

argument applies to sides on the lower boundary of the central tube.

Next we have to consider sides of W ′′ that are sides of the kth trapezoid. We want

to use Lemma 8.2 with I = I0, J a side of kth trapezoid and K a side of the central

tube, chosen as shown in Figure 11. To prove M(J,K) ≤ M(I,K) we will first give

an upper bound for M(J,K) and then give a lower bound for M(I,K) that is larger

than this bound.

Replacing J by a sub-interval only increases M(J,K), and every side of the kth

trapezoid has length at least ηn∗ where n∗ = n(k∗) is defined by the relation yk∗ = an∗ .

So we assume that J is any interval of length ηn∗ on the side of the kth trapezoid.

Any such J is one side of a generalized quadrilateral Q ⊂ W ′′ whose opposite side is

K and so that the two remaining sides are at least distance ηn∗ apart. See Figure 11.

Moreover, we can choose Q so its area is at most (|Ik| + yk∗)ηn∗ . Therefore the

modulus of the path family separating J from K in the quadrilateral is at most

(|Ik|+ yk∗)/ηn∗ (just take the constant metric ρ = 1/ηn∗ in the definition of modulus;

any admissible metric gives an upper bound for the modulus.) Any path separating

J and K in W ′′ contains a sub-path that separates them in Q, so by the extension

principle

M(J,K) ≤ (|Ik|+ yk∗)/ηn∗ .

Now we give a lower bound for M(I,K). Note that there is ηn∗ × (2yk∗ − 2ηn∗)

rectangle that separates K from I0; it is contained in the vertical section of the

central tube just above the opening to the kth trapezoid and the lower portion of

the rectangle is shown as a shaded region in the bottom picture of Figure 11 (the

rectangle extends upwards almost to the upper boundary of the central region). The

horizontal segments that cross this rectangle separate K from I0, so by the extension

principle again, we see that the modulus of these horizontal segments is a lower bound
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K

J

K

Figure 11. The modulus of the shaded tube in the top picture gives
an upper bound for M(J,K). The interval J is on the side of the
trapezoid, and K is on the boundary of the central tube. The modulus
of the shaded rectangle in the bottom picture gives a lower bound for
M(I0, K).

for M(I,K), hence (since the modulus of a rectangle is the ratio of its sides),

M(I,K) ≥
2yk∗

ηn∗

− 2.(9.1)

Now we have to compare our lower bound for M(I,K) to our upper bound for

M(J,K). By the definition of the bounded geometry constant C for Q, if |k| = 1

then Ik ∈ Q is distance 1 from the origin and |Ik| ≤ C|I0| ≤ 2C, so 1 ≥ |Ik|/2C.

If |k| > 1, then Ik ∈ Q is separated from the origin by another partition interval of

length at least |Ik|/C. So in either case

yk∗ ≥ xk∗ ≥ |Ik|+ |Ik|/2C,
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so that |Ik| ≤ (1− 1
4C

)yk∗ (here we use that (1 + ǫ)−1 < 1− ǫ/2 if 0 < ǫ < 1). Hence

M(J,K) ≤
|Ik|+ yk∗

ηn∗

≤ (2−
1

4C
)
yk∗

ηn∗

≤
2yk∗

ηn∗

−
yk∗

4Cηn∗

≤
2yk∗

ηn∗

−
|Ik|

4Cηn∗

≤
2yk∗

ηn∗

−
M

4C
.

Since we assumed M ≥ 8C, and using (9.1), we have

M(J,K) ≤
2yk∗

ηn∗

− 2 ≤M(I,K).

Thus by Lemma 8.2, the τ -length of J is greater than that of I = I0 and hence is

bounded uniformly from below. As before, it is easy to check that the constructed

tree has maximum vertex degree 3. This completes the proof of Lemma 9.1 and

hence the proof of Theorem 1.3 (the number of tracts in the approximation is at

most double the number of tracts in the model).

10. Geometric restrictions on Speiser models

So far, this paper has dealt with methods for building Speiser class functions. The

remainder of the paper is devoted to placing limits on what can be accomplished

in this direction. In this section, we show that the choice of τ on different tracts

of a Speiser class function must satisfy certain constraints; no such restriction need

hold for the Eremenko-Lyubich class by the results of [4]. This is a clear difference

between the two classes.

Suppose f ∈ S and S(f) ⊂ D. Since S(f) is finite, there is an ǫ > 0 is so that

dist(S(f), ∂D) > 4ǫ

and

min{|a− b| : a, b ∈ S(f), a 6= b} > 4ǫ.

For a ∈ S(f) let Da = D(a, ǫ). and let 2Da = D(a, 2ǫ). The open disks Da are

evidently pairwise disjoint and all lie inside D.

For each a ∈ S(f), the set W (a, ǫ) = f−1(Da) only has simply connected compo-

nents, and on each such component U the map f : U → Dj acts either as

(1) a 1-to-1 map onto Dj,
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(2) a finite-to-1 branched cover of Dj with a single critical value at a or

(3) an ∞-to-1 cover of Da \ {a}.

In the first two cases U is bounded, and in the third case it is unbounded and

contains a path to ∞ along which f has asymptotic value a. Moreover, the pre-

images f−1(a+ ǫ) partition ∂W (a, ǫ) into arcs. Let X = D \
⋃

a∈S(f)D(a, ǫ).

Recall that given r > 0 and an arc I, we define a neighborhood of I by

I(r) = {z : dist(z, I) < r · diam(I)}.

Theorem 10.1. There is an r <∞, depending only on ǫ, so that for each partition

arc I of ∂W (a, ǫ) there is a edge J of ∂Ω with I ⊂ J(r) and J ⊂ I(r). Moreover,

diam(I) ≃ diam(J) ≃ dist(I, J) and the lengths of I and J are comparable to their

diameters.

Proof. Fix a ∈ S(f). Then ∂Da can be covered by a uniformly bounded number

of disks whose doubles don’t hit S(f) and so f−1 is conformal from each such disk

to any of its pre-images under f . If I is a partition arc of ∂W (a, ǫ), this fact and

Koebe’s distortion theorem imply that I has bounded geometry and its diameter is

comparable to its length with constants that are uniform (the constants only depend

on the number of disks covering ∂Da, which is uniformly bounded).

Similarly, T = ∂D is covered by O(ǫ−1) disks of radius ǫ whose doubles don’t

intersect S(f), so the same argument shows that a partition arc J of ∂Ω has bounded

geometry, but now with constants that depend on ǫ.

Finally, ∂Da and T can be joined by a curve γ that is never closer than ǫ to any

point of S(f) (use a straight line segment and replace its intersection with any Da

by the shorter arc of ∂Da connecting the same two points; see Figure 12). This arc

can also be covered by O(ǫ−1) distinct ǫ-disks whose doubles miss S(f).

Therefore all the lifts of γ via f have bounded geometry with constants depending

only on ǫ. Thus if we take I as above and a lift of γ with one endpoint on I, then

the other endpoint of the lifted curve γ′ is on a partition arc J of ∂Ω. By Koebe’s

theorem |f ′| has comparable values at all points of I ∪ γ′ ∪ J with constant that

depends only on ǫ. Since ∂Da, γ and T all have comparable lengths (within a factor

of O(ǫ−1)), so do I, γ′ and J . This proves the lemma. See Figure 13. �
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Figure 12. Each D(a, ǫ) can be connected to {|z| = 1} by a path γ
of length ≤ π that stays at least distance ǫ from every singular point.
Such a path can be covered by O(ǫ−1) disks, each which has a double
that misses the singular set. Therefore the derivative of any branch of
f−1 on γ has comparable sizes at any two points of γ (with a constant
depending only on ǫ).

Corollary 10.2. With notation as above, there is a r <∞, depending only on ǫ, so

that f−1(X) ⊂ TΩ(r).

Proof. Note that ∂W (a, ǫ) ⊂ T (r) and this implies f−1(X) ⊂ T (r), as claimed. �

Theorem 10.1 immediately implies:

Corollary 10.3. Suppose f is in the Speiser class and S(f) ⊂ D. For every ǫ > 0

there is a r <∞ so that each connected component of C\ (Ω∪TΓ(r)) (where Γ = ∂Ω)

maps under f into some disk Da for some a ∈ S(f). If the connected component is

unbounded, then a must be an asymptotic value of f .

If the critical points of f have uniformly bounded degree D, then the components

of W (a, ǫ) containing critical points have boundaries with at most D partition arcs,

each with diameter comparable to the whole component (the constant depending

only on D). Since one of these arcs in contained in some J(r) the whole component

will be contained in J(Cr) for some C depending only of D. Thus
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Figure 13. As noted earlier, each D(a, ǫ) can be connected to {|z| =
1} by a path γ that stays at least distance ǫ away from the singular
set. A lift of this path via f is a path that connects partition arcs of
∂Ω and ∂W (a, ǫ). As explained in the text, the lengths and diameters
of the lifted curve and the arcs its connects are all comparable with a
constant depending only on ǫ.

Corollary 10.4. If f ∈ S, S(f) ⊂ D and f has no finite asymptotic values and

every critical point has uniformly bounded degree D, then there is a r > 0 so that

C = Ω ∪ T (r) (as before, Ω = {|f | > 1}, and r depends only on D and ǫ, where ǫ is

the minimal separation between different points of S(f) and between S(f) and T).

For the half-strip S = {x + iy : x > 0, |y| < 1} the partition elements decay

exponentially fast and it is obvious that Ω ∪ TΩ(r) is not the whole plane for any

finite r. Thus this model can’t be approximated in the sense of Theorem 1.2 without

using extra tracts. In the remainder of the paper we will show that something even

stronger is true: the approximation of a half-strip by a Speiser model domain with a

single tract is not possible even if we allow:

(1) finite asymptotic values,

(2) high degree critical points, and

(3) ϕ to be non-conformal everywhere in the plane.

Very briefly, the problem with the half-strip is that the τ -lengths for it and its

complement behave so differently, that the comparability implied by Theorem 10.1

cannot hold. See Figure 14.



42 CHRISTOPHER J. BISHOP

Figure 14. Suppose T is the boundary of a half-strip with unit
spacing of the vertices, as shown above. The conformal map of the
half-strip (left) to a half-plane is sinh(z), and it expands exponentially,
so the unit segments shown each contain exponentially many conformal
partition elements for the half-strip. However, the conformal map of
the exterior domain (right) to Hr behaves like z

1/2 near ∞, so the unit
segments are much smaller than conformal partitions elements should
be. This “imbalance” of τ -sizes is what prevents the half-strip (or any
quasiconformal image of it) from being a Speiser model domain. The
following sections will make this precise.

11. A polynomial lower bound for thick tracts

Suppose Ω is a simply connected planar domain bounded by a Jordan curve on

the sphere that passes through ∞. Suppose τ : Ω → Hr is conformal, maps ∞

to ∞ and J is the partition of ∂Ω that corresponds via τ to the partition of ∂Hr

with endpoints iπZ (recall that this is called a conformal partition of ∂Ω). In this

section we want to prove that if a tract Ω is “large” in a certain sense, then the size

of elements in J cannot tend to zero too quickly. By “large” we will mean that Ω

contains an unbounded quasidisk. For example, a sector Wθ = {z : | arg(z)| < θ},

0 < θ < π is an example of an unbounded quasidisk, so if Ω contains a sector, its

partition elements cannot have diameters that decrease exponentially quickly.

Lemma 11.1. Suppose Ω is bounded by a Jordan curve through ∞ and {J } is a

conformal partition of ∂Ω. Suppose Ω contains an unbounded quasidisk W . Then

there is a R0 < ∞ so that any partition arc J that hits a circle {|z| = R} with

R > R0 satisfies diam(J) ≥ CR−σ for some C > 0, σ <∞, independent of J .

Proof. Since Ω contains an unbounded quasidisk, Lemma 2.3 says there is a curve

γ ⊂ Ω that connects some point z0 ∈ Ω to ∞ and has the property that there is a

C1 <∞ so that dist(z, ∂Ω) ≥ C1|z|, for all z ∈ Γ. See Figure 15.

Choose R0 large enough so that |z0| < R0 and so that {|z| < R0} contains some

partition element I ′ = τ−1(I) ∈ ∂Ω ∩ J . Fix R ≫ 4R0 and choose a partition
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Figure 15. The family of all separating curves for two unit intervals
distance n apart on ∂Hr has modulus≃ log n. Thus in Ω any separating
family must have modulus & log n. Applying this to two families as in
the text says that image arcs are separated by distance R . nα and
the second arc has diameter ǫ & n−β, for some finite, positive α and β.

element J so that J ′ = τ−1(J) ⊂ ∂Ω hits {|z| = R}. If J ′ has diameter greater

than 1, there is nothing to do, so we may assume ǫ = diam(J ′) ≤ 1 and hence

J ′ ⊂ {z : R− 1 ≤ |z| ≤ R + 1}. See Figure 15.

Suppose I and J (which are equal length intervals on ∂Hr) are separated by n

other partition elements. By Lemma 2.2, M(I, J) ≃ log n, (recall that M(I, J) is the

modulus of the path family that separates I and J in Hr).

We consider two other path families in Ω. First, let Γ1 be the family of circular

arcs in Ω∩ {z : R0 < |z| < R/2} concentric with 0 that connect the two components

of ∂Ω \ I ′. See Figure 15. Let zJ ′ be any point of J ′ and let Γ2 be the path family

consisting of circular arcs in {z : diam(J ′) < |z − zJ ′ | < 1} that are concentric with

zJ ′ and connect different components of ∂Ω \ J ′. See Figure 15.

Each path in Γ1 and Γ2 separates I ′ from J ′ in Ω, so by conformal invariance and

the parallel rule for modulus, we have

log n ≃M(Γ0) ≥M(Γ1) +M(Γ2),

and thus both terms on the right are bounded by C2 log n for some C2 <∞.
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Because γ crosses each element of Γ1 and each crossing point z is at least distance

C1|z| from ∂Ω, we deduce that there is a quadrilateral region

Q = {w : | arg(w)− arg(z)| ≤ A, 1 ≤ |w/z| ≤ B}

contained in Ω for some A > 0, B > 1 depending only on the constant C1. The

path family in Q connecting the two radial sides of Q has fixed modulusMQ and this

modulus is a lower bound for the modulus of the path family in Ω∩{|z| < w < B|z|}

connecting different components of ∂Ω\I ′. Thus, by the parallel rule, the modulus of

Γ1 is bounded below by MQ · ⌊logB(R/R0)⌋. In other words, log n &M(Γ1) & logR,

for R large. Hence, when R is large, we have R ≤ nα for some α that only depends

on the constant C1.

On the other hand, the usual estimate of the modulus of an annulus says that

log
1

diam(J ′)
. log n,

so diam(J ′) & n−β, for some β > 0. Thus

diam(J ′) & (R1/α)−β & R−β/α = R−σ,

as desired. �

12. An exponential upper bound for thin tracts

We now want to do the opposite of the previous section: show that if Ω is “thin”,

then the diameters of partition elements decay faster than any polynomial.

Lemma 12.1. Suppose Ω is the image of the half-strip S = {x+ iy : x > 0, |y| < 1
2
}

under a K-quasiconformal map φ of the plane fixing 0 and 1 and J is a conformal

partition of ∂Ω. Then all the partition elements satisfy

diam(J) ≤ C1 exp(−C2dist(J, 0)
α),

for some finite, positive constants C1, C2, α depending on K.

Proof. Using the measurable Riemann mapping theorem, we can write φ as a com-

position of two K-quasiconformal maps φ = g2 ◦ g1, where both maps also fix both 0

and 1, g1 is conformal outside S and g2 is conformal on W = g1(S).

Consider the square Sn inside S between the vertical lines {x = n} and {x = n+1}.

Then Wn = g1(Sn) is a quasidisk and its image in Hr under the conformal map
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τ : Hr → W is generalized quadrilateral Qn with two sides on ∂Hr and modulus

bounded above and below, depending only on K. See Figure 16.

WnQn= ( )

WSS0
g (S  )011g

G1

Sn

g (S  )1 n

τ

QC

QC

conformal conformalτ

nW =

Figure 16. The modulus separating S0 and Sn in the half-strip is
comparable to n, so by quasi-invariance the same is true for Q0 and
Qn in Hr. This implies the Euclidean diameter of Qn grows exponen-
tially, hence ∂Qn ∩ ∂Hr contains exponentially many partition points.
The map from Qn to Wn is conformal, so the same is true of Wn and
partition arcs for W = g1(S).

Since the extremal length between S0 and Sn in S is ≃ n, the same is true for the

extremal distance between Q0 and Qn in Hrin Hr (with a constant depending on the

maximal dilatation g1). This implies that the diameters of Qn must grow exponen-

tially, as do the component intervals of ∂Qn ∩ ∂Hr (this is the same argument as in

the proof of Lemma 8.1). Thus ∂Qn hits ≥ cecn partition intervals on ∂Hr for some

fixed c > 0 (depending only on K). Hence Wn hits the same number of partition arcs

on ∂W . Because Wn is the image of Un under a bi-Hölder map (since it is a qua-

sidisk), each of these partition arcs has diameter bounded by Cdiam(Wn) exp(−an)

for another constant a depending only on K.

Since g1 has dilatation supported in the half-strip S and
∫

S

dxdy

1 + x2 + y2
<∞,
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Theorem 2.5 implies that |g1(z)/z| has a limit as z → ∞. Thus if Rn = dist(Wn, 0)

we have Rn ≃ n and diam(Wn) . n. Thus all the partition elements hitting Wn have

diameters less than cne−an where a, c are positive constants that depend only on K.

Since g2 is conformal on W , the partition for Ω is just the image of the partition

for W under g2, and since g2 is bi-Hölder (with exponent depending only on K), the

estimate in the lemma follows. �

The proof can be applied to other tracts that look like thin tubes, e.g.,

Ω = {x+ iy : x > 0, |y| ≤ η(x)},

if η(x), η′(x) → 0 as x→ ∞. However, the proof does not work for all subdomains of

the half-strip, since adding “rooms” to the sides of a half-strip can create partition

arcs whose diameters do not tend to zero (in fact, we used a similar construction in

the proof of Lemma 9.1.)

13. The half-strip is not the QC-image of a Speiser model domain

Before starting the proof of Theorem 1.4, we record the following result that is

immediate from Lemma 2.4.

Corollary 13.1. Suppose Ω is a model domain. If φ is a K-quasiconformal map of

the plane that is conformal on Ω, then

Tφ(Ω)(t) ⊂ φ(TΩ(r)) ⊂ Tφ(Ω)(s),

where t, s depend only on r and K.

We can now prove Theorem 1.4: the half-strip S = {x+ iy : x > 0, |y| < 1} cannot

be mapped to any Speiser class model domain by any quasiconformal homeomorphism

of the plane.

Proof. Suppose there were a K-quasiconformal map φ of the plane taking S to the

tract Ω = {z : |f(z)| > R} of some f ∈ S. Choose ǫ as in Theorem 10.1 and let r be

as given by that theorem. Let s be as given by Corollary 13.1.

As in the proof of Lemma 12.1, write φ = g2 ◦ g1 where g1 is conformal off S, g1 is

conformal on W = g1(S). Using Theorem 2.5 again implies that that we can choose

g1 so that

W ∪ TW (s) ⊂ V = {z : |z| < R} ∪ {z : | arg(z)| < π/4},
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if R is large enough (depending on s). Note that V c is a quasidisk and hence V ′ =

g2(V
c) is a quasidisk as well. By Lemma 13.1, this domain is contained in the

complement of Ω ∪ TΩ(t). Therefore V ′ is contained inside some component U of

W (a, ǫ) for a ∈ S(f).

Lemma 11.1 applies to U and Lemma 12.1 applies to Ω, giving estimates that

contradict the conclusion of Theorem 10.1 (partition elements for ∂U are contained

in r-neighborhoods of partition elements for ∂Ω). This proves that Ω could not have

been the tract of any f ∈ S. �

Although the half-strip cannot be approximated by Speiser class model domains

with a single tract, Figure 17 shows how it can be approximated by functions in

S2,0 with two, three or infinitely many tracts. To apply Theorem 3.1, we must add

vertices so that the bounded geometry and τ -length conditions are satisfied. Bounded

geometry is trivial in these pictures using vertices from the obvious lattice and Lemma

8.1 easily gives a strictly positive τ -length lower bound for each tract (as usual, we

can then multiply τ on each component by a positive constant to attain a τ -length

lower bound of π).

Figure 17. Although the half-strip cannot be a Speiser class model
domain (or even quasiconformally mapped to a Speiser class model
domain), it can be approximated by a tract of such a model. These
pictures show some ways this can occur using two, three or infinitely
many tracts.

Lemma 8.1 also implies that the conformal partition of each of the drawn tracts

has elements whose sizes decay exponentially quickly. This implies that T (r) (the set

where the quasiconformal correction map ϕ in Theorem 3.1 has its dilatation sup-

ported) has finite Lebesgue area. If we replace τ by a large positive integer multiple
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of itself, say N · τ , each edge of the conformal partition is divided into N segments.

This implies that the area of T (r) decreases to zero as N ր ∞. However, the maxi-

mal dilatation of ϕ remains bounded, independent of N . A standard argument then

shows that the corresponding map ϕ tends uniformly on compact sets (or uniformly

on the Riemann sphere) to the identity map as N increases. A more careful argument

shows that we can normalize the correction maps so that they tend to the identity

uniformly with respect to the Euclidean metric on the whole plane (e.g., see Theorem

1.1 of [2]; our examples satisfy the (ǫ, ϕ)-thin hypothesis of that result). Thus the

tracts of the resulting Speiser functions can approximate the tracts in Figure 17 as

closely as we wish in the Hausdorff metric on the plane.

In general, it seems that the shapes of individual tracts of Speiser model domains

and Eremenko-Lyubich model domains do not differ significantly. However, Speiser

models only allow disjoint tracts to be combined in certain ways depending on the

choice of τj in each tract, whereas Eremenko-Lyubich models allow disjoint tracts

to be combined arbitrarily, and τj can be chosen on each tract independently of the

choices in other tracts.

Roughly speaking, each tract of a Speiser class function can “see” other nearby

tracts in the sense that it can be connected to such tracts by path families that avoid

the singular set and come with nice geometric estimates (see the proof of Theorem

10.1). However, the singularities of an Eremenko-Lyubich function can effectively

“block the view” between different tracts. It would be reasonable to expect that

if the singular set of an Eremenko-Lyubich functions was infinite but “sparse” in

an appropriate sense, then nearby tracts would be forced to satisfy compatibility

conditions similar to Speiser class functions. What can be said about entire functions

where the singular set is restricted to lie in a given closed set E, or satisfies some

bound on its area, dimension or capacity, or satisfies some other natural geometric

restriction?
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