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We give new proofs of a theorem of A. Browder and J. Wermer and a theorem of 
A. Davie which characterize the plane sets K for which A, is a Dirichlet algebra. 
The use of functional analysis in the original proofs is replaced by a construction 
involving bounded solutions of the d equation. In particular, this gives an explicit 
construction of nonconstant functions in these spaces. c 1989 Academic Press, Inc. 

1. INTRODUCTION 

If R is an open subset of the Riemann sphere, c, we let H”(Q) denote 
the space of bounded holomorphic functions on 52 and let A(Q) denote the 
subspace of functions in H”(Q) which extend continuously to 8, the 
closure of Q. If Kc C is compact we let A, = A(C\K). In this paper we are 
concerned with constructing nonconstant functions in A,. We will be 
interested in the special case when K = r is a closed Jordan curve, so we 
introduce some notation for this case. Suppose r is a closed Jordan curve 
on the Riemann sphere and let Q, and Q, denote the two components of 
Q = C\K Choose a point z, EQ, and let w,(E) = o(zi, E, ~2,) denote the 
harmonic measure on r with respect to zi . Since. 52 I is simply connected, 
the Riemann mapping theorem says there is a conformal map @, from the 
unit disk D = { Jzj < l} to Q, with @i(O) = zi. Q, is a Jordan domain, so 
by Caratheodory’s theorem @i extends to a homeomorphism of 
T = { (zl = 1 } to r. It is well known that oi is the image of normalized 
Lebesgue measure on T under this correspondence. We choose z2 E Q, and 
define w2 and QZ similarly. 

Of course, AK need not contain any nonconstant functions. For example, 
if K is a straight line, then Morera’s theorem implies that any continuous 
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function holomorphic off K is actually entire, and thus is constant by 
Liouville’s theorem. It is an observation of Riemann that the same is true 
for any smooth curve f, and Painleve showed A,-= C whenever r is 
rectifiable. 

On the other hand, if K has interior then clearly A(K) is nontrivial. For a 
less obvious example, suppose Kc D(0, 1) is a compact, totally disconnec- 
ted subset of C with positive area. Then we can easily check that 

defines a nonconstant element of A,. This construction was given in a 1909 
paper of Denjoy [12] and is based on an example of Pomp&u. It was a 
surprising result because previously it had been thought that any con- 
tinuous function holomorphic off a totally disconnected set must be entire. 
Moreover, this construction used the (then) recent work of Cantor on the 
existence of perfect, totally disconnected sets and Lebesgue’s work on 
integration (note that xK is not Riemann integrable). In a commentary on 
Denjoy’s paper, Painleve says [25], 

II convient de signaler le role joue, dam ce resultat, par l’extension due a M. 
Lebesgue, de I’integrale dtfinie. Grace a cette operation, que nombre de geometres 
jugeaient artilicielle et trop abstraite, une question naturelle, une question fon- 
damentale qui restait indtcise a l’entree de la theorie des fonctions uniformes, est 
aujourd’hui tranchie, et tranchee precisement dans le sens qui semblait le moins 
vraisemblable a la plupart des analystes.... L’integration de M. Lebesgue pourra 
contribuer la encore a la formation d’examples decisifs. 

Another interesting observation about A, is due to John Wermer, and 
essentially says that any nonconstant function in AK is necessarily badly 
behaved on K. More precisely, if K has no interior then for any f~ A,, 
f(C) cf(K), so that if f is nonconstant f(K) must cover a disk. This 
is a simple consequence of the argument principle; for a proof see 
15, Lemma 3.541. 

It would be nice to be able to characterize the sets K for which A, is 
nontrivial, but this problem seems to be very difficult. It is possible, 
however, to characterize the sets for which A, is “large.” To see what we 
might mean by “large,” note that A, c C(K), but since elements of A, are 
holomorphic off K the imaginary parts are determined (up to a constant) 
by the real parts. Moreover, Wermer’s observation above shows that not 
every continuous real valued function on K can be the real part of an 
element of A,. Thus the most we can hope for is that such functions can be 
approximated by the real parts of functions in A,. This motivates the 
following definition. 

We say that the function algebra A, on K is a DirichIet algebra on K if 
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for every continuous, real valued function g on K and every E > 0 there is 
an f~ .4 K such that 

II g - Re (f) II K < E, 

where the norm is the “sup” norm on K. In this case we say K is a Dirichlet 
set. 

In the special case of K = I- a curve, A. Browder and J. Wermer proved 
in 1963 the following: 

THEOREM 1.1 (Browder and Wermer [6]). A r is u Dirichlet algebra on 
r iffco, Iw2. 

Here “oi I q” means the measures are mutually singular, i.e., there is a 
subset E c r such that o,(E) = o,(T\E) = 0. This result was later 
generalized by Davie to characterize all Dirichlet sets. One can check that 
if K is Dirichlet then it must be connected. In particular, each of the com- 
plementary components, Qj, of K is simply connected. Thus we can choose 
a conformal mapping @, from D to Qj. It is well known that these maps 
extend non-tangentially at almost every point of T and we let {aj} also 
denote these extensions. Then following Glicksberg in [19] we say Qj is 
nicefy connected if there is a set of full measure E,c T such that Qj is 
injective on E, (this is independent of the particular choice of Riemann 
mapping). The following is Theorem 4.3.1 in [9]. 

THEOREM 1.2 (Davie). A, is a Dirichlet algebra iff each complementary 
component Q, of K is nicely connected and harmonic measures for different 
components are mutually singular. 

In [ 1, 33 geometric characterizations of these conditions are given. To 
state them we need a few definitions. If K t C is compact and x E K we say 
x satisfies a double cone condition with respect to K if there is a B0 E [0,27c), 
0 < E < 7~12, and 6 > 0 such that 

i.e., if there are two symmetric cones with vertex x which do not hit K. We 
say x E K is a tangent point of K if there is a 00~ [0, rc/2) so that for any 
E > 0 there exists a 6 > 0 with 

x+e’“:O< Irl ~6, l0-8,,1 <q--e nK=@. 
I 

Finally, a set E has zero linear measure if we can cover it by disks whose 
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radii sum up to be as small as we wish. One can show that the two 
definitions are equivalent up to sets of zero linear measure. 

LEMMA 1.3. If Q, and Q, are disjoint and simply connected, with har- 
monic measures co, and o.r2, then o, I w2 iff the set of points in C\(Q, v .Qz) 
which satisfy a double cone condition (with one cone in each of Q, and Q,) 
has zero linear measure. 

LEMMA 1.4. If 52 is simply connected, then 52 is nicely connected iff the 
set of points in C\Q satisfying a double cone condition (with respect to C\Q) 
has zero linear measure. 

Thus we obtain: 

COROLLARY 1.5. K is a Dirichlet set ijjf it is connected and the set of 
tangent points of K has zero linear measure. (Equivalently, iff the set of 
points satisfying a double cone condition has zero linear measure.) 

A, being a Dirichlet algebra is also related to other types of 
approximation. Let Q=C\K. We say A, is pointwise boundedly dense 
(p.b.d.) in H”(B) if there is a C>O such that for any ftzH"(Q) there is a 
sequence { fn} c A, such that 11 f, 11 < C I/f 11 and {f, > converges pointwise 
to f on 52. A, is called strongly pointwise boundedly dense in H”(Q) if we 
can take C = 1. Then the following is known: 

THEOREM 1.6. If K is connected then the following are equivalent: 

(1) A, is a Dirichlet algebra on K. 

(2) A, is pointwise boundedly dense in H”(Q). 

(3) A, is strongly pointwise boundely dense in H”(Q). 

The implication (1) S- (2) is due to Hoffman (see [ 13,28]), (2) * (3) to 
Davie in [lo], and (3) * (1) to Gamelin and Garnett in [ 131. 

In this paper we shall give new proofs of the three theorems, replacing 
the use of the Hahn-Banach theorem in the original proofs by explicit con- 
structions involving a a problem. Our proofs are not simpler than the 
original ones, but they are more geometrical and they illustrate the connec- 
tion between these results and more recent developments on H” and 
BMO. We will first consider the special (and easier) case K= I a closed 
Jordan curve. We will then sketch the necessary changes for the general 
case. After that we will show how the construction also recovers some 
related results. 
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2. PROOF OF NECESSITY 

We start by showing that the mutual singularity of the harmonic 
measures is a necessary condition for A, to be either a Dirichlet algebra or 
pointwise boundedly dense in H”(Q). 

Suppose o, and w2 are not mutually singular. Then the results of [l, 31 
say there is a neighborhood of a point on r in which r looks like a 
Lipschitz graph. More precisely, by Lemma 1.9.1 of [ 1 ] we may assume 
(after resealing) that we are in the situation pictured in Fig. 1: a subarc of 
f is trapped between two Lipschitz graphs, r2 and rX, of length 2R % 1 
and agreeing except for sets of length less than E (R and E to be fixed later). 
Choose points zI and z2 at distance 1 from r on either side, and let r1 
and r, be circular arcs of radius R connecting the ends of TZ and r3, 
respectively. 

Now suppose f~ A,. We will estimate If(zl) -f(z2)1. By the Cauchy 
integral formula, 

27q(zl)=J f&+1 fodw 
r, Zl--w l-2 21-w 

and by our assumptions, 

Ii f(w)dw -- 
I f= 6 l\fll E. 

i-2 z1-w l-3 21-w 

By the Cauchy integral formula again, 

FIG. 1. The curveS f,. 
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Now subtract the corresponding inequality for zz and obtain 

if E is small enough and R is large enough (depending on lif/l). But this 
means we cannot pointwise approximate the holomorphic function x0, by 
any bounded sequence in A r. Thus A r is not pointwise boundedly dense in 
H”(Q). 

To show A, cannot be a Dirichlet algebra on Z we continue to consider 
Fig. 1, but now we estimate l,f’(z,)l. Using the Cauchy integral formula for 
derivatives and the preceding argument we get 

so that If’(z,)l is small if E is small and R is large (depending on jlfli). But 
if Ar were a Dirichlet algebra, we could take a continuous function g which 
was 0 on the “left” half of Fig. 1 and 1 on the “right” half, and approximate 
it to within & by Re(f), f~ A,. Set F= ef. Then simple estimates and the 
mean value theorem imply there is a point zl satisfying the estimates in the 
argument above and such that 

1 
IF(z, )I 3 IV Wf)(=l )I 2 100 

Since FE A ,- and /I FII < e* this is a contradiction (for appropriate choices of 
E and R). Thus A, cannot be a Dirichlet algebra on ZY 

3. THREE 8 LEMMAS 

Before describing the construction in detail, we will review a few facts 
about the 8 problem that we will need later. For an arc Zc T we let Q(Z) 
denote the “cube” over I, 
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Then we say a positive measure p on D is a Carleson measure if 

and Ilpllc is the Carleson norm of p. Such measures were introduced by 
Carleson in his solution of the corona problem on D [S]. They are related 
to the a problem as follows. If p is a Carleson measure we can find a 
function F which solves 

(in the sense of distributions) and satisfies 

IlFll L”(T)~CIlPIlC 

for some universal C> 0 (see [15, Chap. VIII] or [23]). Unfortunately, 
this estimate only holds on T, not on all of D. For example, if p is a point 
mass, then any solution must have a pole and so is unbounded on D. 
However, with addition assumptions we can get estimates on all of D. For 
example, if y is a collection of arcs in D and ,u is arclength measure on y 
then we have: 

LEMMA 3.1. There is a 6 > 0 so that if p is a Carleson measure and cp is a 
smooth function on D which satisfies 

supp(Vcp) c {z E D: dist(z, y) < 6( 1 - Izl )} 

IVcp(z)l <&d-y1 - lzl)-’ 

then for any bounded, continuous function b on D, there exists a FE L”(D) 
such that 6F= b&g and ]jFlj o d C&[/b/[ o, where C depends only on the 
Carleson norm of p. 

This is essentially Lemma 3.3 of [IS], but we include a proof for com- 
pleteness. The basic idea is implicit in Carleson’s paper [8] and was first 
used explicitly by Peter Jones in [22]. Suppose {z,,} is a sequence of points 
on y which satisfy 

Iz,--z,l+ - Iz,I), nfm. 

Then it is known [ 15, p. 3411 that such a sequence is interpolating for 
H”(D) with constant depending only on jl~jlc (i.e., for any sequence of 
complex numbers {a,> of modulus less than 1, there is an FEW’(D), 
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IIFIl X d C= C( ii~llc.) such that F(z,) = u,). Thus by [ 15, Theorem VII.2.11 
there exist holomorphic functions {hn} such that 

h,(z,) = 1 

By Schwarz’s lemma there is a 6 = 6(C, ) > 0 such that 

1 
lUw)I > - 2 

if Iz,, - 01 < 6( 1 - [z,l). Let 

zED:dist(z,y)<i(l-lzl) 

and choose a finite collection of sequences {zi} for j= 1, 2, . . . . N such that 

Izi,-zJ,I 2-t 1 1o ( - lz’,l) n#m 

and so that for every z E 9, there exists z’, with 

Iz - z’, 1 d 6( 1 - lzi,l). 

For lixedj, let {&i} be the functions associated to (zJ,}. Next write 3 as a 
disjoint union of sets 

L3;c {z: lz’,-zl <6(1- ]z’,l)}. 

Now define 

k(z) b(w) h(w) 
z-w 

dx dy. 

Then we can check that i?F = b&p formally, so we only have to check the 
convergence of the series. If we write F= C Hj,, then 
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Thus 

This completes the proof of Lemma 3.1. 
We will now use this lemma to solve two special a problems. The first 

roughly corresponds to the fact that given a closed set E c T of measure 
zero, we can find a nonconstant holomorphic function which vanishes 
exactly on E. Given an interval I on T we let 

T= {rt: 1 >r>dist(l, I”), FEZ} 

denote the solid “tent” above I. 

LEMMA 3.2. Suppose U c T is open and let U = uj I, be its decom- 
position into disjoint intervals. Then for any p > 0, 6 > 0 there is an E > 0 such 
that if I UI <E then there is a cp E P(D) such that: 

(1) q=l on Tjfor allj. 

(2) cp=Oon {IzI<l--/?}. 

(3) For any bounded, continuous function b on D, the equation 
8B = bdq has a solution with IIB(I ,, < 6l(bll D. 

The proof is similar to that of [ 17, Lemma 2.21 where Garnett and 
Jones construct a BMO function which is large on U and vanishes away 
from U. The reader may also wish to compare it to Section 3 of [21]. 
Consider the Hardy-Littlewood maximal function of the characteristic 
function of U, 

Clearly m is equal to 1 on U and is lower semi-continuous. Fix an integer 
N< Ilog,(s)I and for 1 < n < N suppose {I;} is the interval decomposition 
of the open set {m(<)>2-“}. Note that 

and if f; c I;l. + ’ then 

IZj’I <i dist(l;, (I;+ ‘)L’). 
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These imply that arclength on the contour 7 consisting of all the tents 

v;’ = { r[: r = dist(5, (I;)’ ), l E I;} 

is a Carleson measure with norm bounded independent of E and N. We 
detine cp by 

where T; is the solid tent over c. Observe that cp satisfies condition (1) of 
the lemma, and if E is small enough then all the intervals (I;} have length 
less than /?/2, so cp also satisfies (2). Finally, since & looks like l/N times 
arclength measure on y, we can smooth out cp (as in [ 15, p. 3573) so that it 
satisfies the hypotheses of Lemma 3.1. This proves the result. 

The next fact we wish to recall involves solving a 8 problem, not on the 
unit disk, but on an arbitrary simply connected domain R. Fix an q > 0 
and consider the grid of squares of the form 

for integers k and j. Let V be the collection of such squares satisfying 

QnQZ(25, dist( Q, aa) Q 31. 

Set 

r,=UaQna. 
M 

FIG. 2. .Qq and r,, 
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LEMMA 3.3. Suppose 52 is simply connected and r,, is as above. Also 
suppose cp E Cm(Q) satisfies 

supp(Vcp) c {z E Q: dist(z, r,) 6 6 dist(z, %2)} 

IVcp(z)l < ~(6 dist(z, &2))) ‘. 

Then [f 6 is small enough there is a universal C> 0 such that for any 
bounded, continuous function b on .Q there is a solution to a3 = b8cp which 
satisfies \lBila d CE I( bJI R. (Zn particular, C does not depend on Q or q.) 

The proof is exactly the same as that of Lemma 3.1 once we know that 
any collection of points { zn} on r,, n Q which satisfies 

Iz,-zz,I >kdist(z,,, &S), n#m 

must be an interpolating sequence for H”(Q) with uniformly bounded con- 
stant. This is essentially proven by Garnett, Gehring, and Jones in [16]. 
Actually, they only consider the case when the {z,}‘s all lie on a straight 
line, but the desired result is an easy consequence. Divide the squares in %’ 
into 64 subcollections Ce,, 1 6 j < 64 so that 

Q,, Q~E% Q,#Q2==WQI,Q2P7v 

and divide f,, into 128 subcontours {r,> each corresponding to taking one 
side from each square in a given %‘k. Corollary 4.3 of [16] says that the 
points which lie on a single line segment form an interpolating sequence. 
The proof that each sequence {z”} n rj is interpolating is similar, except 
that we need to apply Lemma 3.4 of [ 161 with dQ replaced by 
8Q n ( Iw - wj I < 3 dist(wj, 8Q)). This version is an easy consequence of 
the lemma as stated. Thus (zn} n rj is interpolating for each j and {zn} is 
hyperbolically separated (by [ 16, Lemma 3.11) so {zn} is also inter- 
polating [ 15, Exercise VII.21. This proves Lemma 3.3. 

We should also mention that this result is essentially equivalent to the 
theorem of Hayman and Wu which states that if @: D -+ s2 is conformal, 
then arclength on @ ~ ‘(R n Sz) is a Carleson measure with norm bounded 
independently of Sz and Q, (see [20] or [16]). 

4. THE BROWDER-WERMER THEOREM 

We now turn to the proof of sufficiency. So assume o1 I wz and 
(without loss of generality) that r is bounded. First we will show that A, is 
strongly pointwise boundedly dense in H”(Q) and then that A, is a 
Dirichlet algebra on l-. 
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First we introduce some notation concerning the continuity of a function 
f defined on C. We set 

J(J; 6, X) = diameter(f(D(.u, 6))) 

=supjIf(z)-f(rr’)I:z, VVED(X,@j 

J(f) = SUP u xl. 
x E c 

Clearly J(f, x) is upper semicontinuous and f is continuous at x iff 
J(f, x) = 0. 

Now takej”E H”(Q), ilfllo = 1. It is enough to show fcan be uniformly 
approximated on compact sets of D by hoiomorphic functions on 8 which 
extend continuously to 0, so fix a compact set R in Sz and an q > 0. We 
will construct a sequence {F,} in H”(Q) which satisfies 

IIS-Fnll~d (l-2-“) v (4.1) 

I/F,)),< 1 -2-“q< 1 (4.2) 

IIK-F,+,ll+‘n) (4.3) 

44,+,+‘n). (4.4) 

Such a sequence obviously converges to the desired function F. 
We start by setting F, = (1 - q/2)$ In general, given Fn we define F,, + , 

in two steps. First we will modify it to obtain a function g, such that 

This g, is not continuous, but it does have a smaller “jump” than F so it is 
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“closer” to being continuous. Also g, will not be holomorphic, so we need 
to find an h, such that 

ah, = -8g, on L? 

llh, IIR 6 minG- ‘z-2yl, $0 Wn’,)). 

Then F, + , = g, + h, E H”(0) and satisfies (4.1)-(4.4), as required. 
To ease notation we shall drop the “n” and simply write F= F,, g =g,, 

and h = h,. Our first step in defining g is to construct a continuous function 
H, on a neighborhood of r which approximates F in the following sense: 

IHo - F(z)1 <; J(F). (4.5) 

To do this, we consider F as a pair of functions F,, F2 defined on Q, and 
Q,, respectively. We may assume F, EA(SZ~) (otherwise pull back to the 
unit disk and dilate slightly; this approximates F, uniformly on K, 
decreases the sup norm, and increases J(F) only a little). Similarly for Fz. 
On r let 

H 
0 

= F, + Fz 
2 

and extend Ho to be continuous on a neighborhood of r. Now suppose 
E = E, is small (to be fixed later). Since Ho is uniformly continuous on a 
neighborhood of r we can choose 6 = 6, so that 

6 <h dist(I?, r) 

and 

Iz-WI<6 and dist(z, r) < 6 3 IHo - Ho(w)1 <E. 

For this 6 consider the collection of squares 97 = ‘+?a defined in Section 3 
and the associated d, and r,. Define an approximation to Ho which is 
constant on each square of G?? (e.g., use the value of Ho at the center of the 
square), fix 6 = 6, >O, and then “smooth out” this function along r,, to 
obtain a function HE P(Q,) satisfying 
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/lH-FII i;J(F)+&;J(F) 

s~pp(VH) c (2 E Q: dist(z, f,,) 6 6, dist(z, ZQ)} 

IVH(z)l d .s(Sz dist(z, a&?))~ ‘. 

In particular, H satisfies the hypotheses of Lemma 3.3 on both components 
of Q!. 

The function g will be written as a convex combination of F and H; i.e., 

g=(l-cp)F+cpff, 

where 0 d cp d 1. Consider Riemann mappings Qi: D -+ l2, for j = 1, 2. By 
compactness we can choose a p > 0 so that 

@/‘(Q\%d~ {I4 < 1 -a1 

for i = 1, 2. Fix E = E*. Using Fatou’s theorem on non-tangential limits of 
bounded holomorphic functions and our hypothesis we can find compact 
sets E, c T which satisfy 

(4.6) Qi and Fo Gi have non-tangential limits at each point of E,, 

(4.7) Qj is injective on E,. 

(4.8) @,(E,) and Q2(EZ) are disjoint, compact subsets of E. 

(4.9) IT\E,I < E. 

We now apply Lemma 3.2 to each U, = T\E, with p as above and 

2-“.-2q-,&J(F) 
> 

to get functions q, defined on D. We define cp on each Qj by cp = q,o Qj. 
With this cp, g clearly satisfies the first three conditions it’s suppose to, 

so we need only estimate J(g). Let x E E and 6 > 0 (to be fixed later) and 
suppose z, WE D(x, 6)nQ. If q(z)= 1, then 

I&) -g(w)1 = IWz) - (I- 4~)) F(w) - v(w) H(w)1 

d IWz) - Hw)l + Cl- cp(w)) IF(w) - ff(w)l 

GE, +;J(F) 

<; J(F) 
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if s, is small enough. Similarly if q(w) = 1. Thus we may assume 
q(z), q(w) < 1. By construction, supp( 1 - cp) lies in the union of two dis- 
joint, compact sets, each corresponding to one of the components 0, , sZz. 
So if 6 is small enough, z and w  must lie in the same component, say Qr. 
By our construction F is continuous on the support of (1 - cp) so 
(F(z) - F(w)1 is small if 6 is small. Thus 

k(z) -g(w)1 d W(z) - H(w)1 + Iff(w) - f’(w)l + IF(w) - F(z)1 

G&I +;J(F)+46) 

if E, and 6 are small enough. Hence 

as required. 
We now take care of the fact that g is not holomorphic. By our construc- 

tion and Lemmas 3.2 and 3.3 each term of 

-&=F&p+Hdcp+qt?H 

corresponds to a 8 problem on each sZj that we know how to solve with 
(small) uniform estimates. Thus we can find an h on Q such that 

1 
2P”-2~,-J(F) 

100 

as desired. Thus we have proven that A(Q) = Ar is strongly pointwise 
boundedly dense in H”(Q). 

Next we wish to show that A, is a Dirichlet algebra on r. Fix q > 0 and 
suppose g is a real valued continuous function on I’ and let u be its har- 
monic extension to Sz. Since each component of Q is simply connected, u 
has a well defined harmonic conjugate U* on Q. We would like to apply the 
construction above to f= u + iu *, but u* may be unbounded, so first we 
must approximate it by a bounded holomorphic function; i.e., we need to 
find a FE H”(Q) such that 

II Re(f) - RG’)lI R G 9, 

580/82/l-9 
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However, this is easy by pulling back to the unit disk and dilating slightly. 
We now apply the construction to F to obtain a sequence IF,,} which in 

addition to (4.1 k(4.4) also satisfies 

J( Re( F- F,,)) 6 ( 1 - 2 “) q. (4.10) 

This can be done by taking 6 = 6, in the definition of H so small that 

n- I 
J(Re(F-F,,), 106,x)< I-2 

( 
“+G 

> 
q 

for all X. From this we get 

IIRe(H)-Re(Fn)Jl,< 1 -2P”+q)n. 
i 

Taking sr and E* small enough we get 

which gives, since Ho is continuous, 

J(Re(F)-Re(Fn))6(1 -2-“.-‘)q 

as required. This completes the proof that A, is a Dirichlet algebra on K 

5. DAVIE'S THEOREM 

In this section we will briefly describe the changes which need to be 
made in the preceding proof to give Davie’s theorem. As before, we may 
assume K is bounded. The proof of necessity is essentially the same. To 
prove sufficiency we will construct a sequence (F,} which satisfies con- 
ditions (4.1)-(4.4), except that the constant 3/4 is replaced by 95/100. The 
proof goes exactly as before until we get to the definition of Ho. We can no 
longer just take the average of Fs boundary values or even assume F has 
continuous boundary values on each Q,. However, we can construct an H,, 
which satisfies 

IHo - F(z)1 6: J(F). (5.1) 
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To do this, first choose a 6 = 6, > 0 so small that 

6 < $ dist(K, K) 

sup J(F, 106, x) <; J(F). 
* E c 

The key observation is that if E is a planar set and z, w  E E satisfy 
Iz - WI = diam(E), then 

- 

EcD f$, ( $ diam(E) 

=D(y,(&-)diam(E)) 

since fiJ2=.86602... < 87/100 < 1. To define H,, first consider the points 
of the form z = n~5 + im6 for n and m integers and dist(z, &Z2) < 106. For 
such a z choose a number H,(z) so that 

This will be possible because of the observation above applied to 
E= E(D(z, 36)) which satisfies (d/2) diam(E) < (SS/lOO) J(F). Next, if z 
is any point in the square formed by four adjacent points {zr , . . . . z4} of the 
above type, then 

FCD(z, d))cF (j W,, 34 
i= 1 > 

i= I 

for any w  in the convex hull of {F(z,), . . . . F(z,)). Therefore we can extend 
H, continuously to a neighborhood of ~352 so that it satisfies (5.1) and 
IIH, II G llm 

Now suppose E = sr is small (to be fixed later). Since H, is uniformly 
continuous on a neighborhood of aR we can choose 6 =& so that 
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/z - )rj < 6 and dist(z, ?Q) < 6 imply that IH,(z) - HO(w)/ <E. Let % = %$, 
9, and I-, be as before. Now define H approximating H, satisfying the 
same conditions as before except now 

l)H-FII <$J(F)+E+(F). 

Thus H will satisfy the hypotheses of Lemma 3.3 for each component Sr, 
of n. 

Now write 

s=(l-cP)F+rpK 

where we define cp by defining it on each component s;l,. First of all, note 
that all but finitely many of the Qj lie inside Q,,,, because otherwise 
infinitely many would contain a disk of radius 6/4, contradicting the 
boundedness of K. On these components we set cp = 1. For the remaining 
components, say Q,, . . . . Q,, we fix Riemann mappings Qj: D + Q,. By 
compactness we can choose a /I > 0 so that 

for j= l,..., N. Now let a2 > 0 (to be fixed later) and choose compact sets 
E, c T which satisfy conditions (4.6) through (4.9). We now apply Lemma 
3.2 to each T\E, with /I as above and 6 < min(2-‘-*q, (l/100) J(F)), to get 
functions q,, We complete the proof in exactly the same way, so we have 
now shown A, is strongly pointwise boundedly dense in H”(Q). 

To prove A, is Dirichlet fix q > 0 and g E C(K). Again we extend g har- 
monically and take harmonic conjugates to obtain f= u + iu*. However, it 
is not so clear that we can approximate u by the real part of something in 
H”(Q). What we shall need is: 

LEMMA 5.1. Suppose Q is simply connected and u is harmonic on 9, with 
a continuous extension to 0. Then for any q> 0 there is a FE H”(Q) with 

/Iu - RW)ll, d v. 

To prove this, let @: D -+ Q be conformal and set h = u o @. We claim 
that ii E VMO (see [ 15, p. 2501). For if z E D, w = Q(z), r = dist(w, &2), and 
Pz is the Poisson kernel, then the harmonic measure estimates in Beurling’s 
solution of the Carleman-Milloux problem give (see [24]), 
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d C f J(u, 29, w) 2-“12. 
I, = 0 

Since u is continuous, this tends to zero uniformly as r does and so u” is in 
VMO. In particular, it proves that zi can be approximated in the BMO 
norm by contnuous functions, so for any E > 0 we can write 

ii=u+w, 

where u is harmonic and continuous on b and 11 w[I BMo < E (of course, we 
are considering the boundary values of w  on T). By a result of Varopoulos 
[26,27] we can find a G on D with the same boundary values as w  and 
such that IV% I dx dy is a Carleson measure with norm less than CE. Thus 
we can solve the 8 problem 

with llhllLX(Tj6rl/2 if E is small enough (see [15, Theorem VIII.1.11). Now 
choose r so close to 1 that lo(z) - u(rz))l < q/2 for z E D, and note that 

F(z) = u(rz) + iu*(rz) + E(z) + b(z) 

defines a bounded holomorphic function on D. Using the maximum 
principle we see 

Iii(z) - Re(F(z))l <sup (Hz) + w(z) - u(rz) - K(z) - Re(b(z)))) 
T  

6 sup(lu(z) - u(rz)l + Iw(z)- i+(z)1 + lb(z)l) 
T  

as required. (I would like to thank Peter Jones for pointing out this 
argument to me.) 

We now return to the problem of finding a bounded holomorphic 
function F approximating f: Let E > 0 (to be fixed later). Since u is con- 
tinuous on C there is a 6 > 0 such that \z - WI < 6 implies lu(z) - u(w)] < E. 
For this 6 consider Q, and r, as before. If Qj is a component of 52 such 
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that Qj c O,, then we can approximate u by a function g satisfying the 
hypotheses of Lemma 3.2. Thus we can solve 

with 

and so F= g + h is the desired function on Q, (if E is small enough). On the 
finitely many remaining components we apply Lemma 5.1. Thus we get the 
desired F. Proceedings as in Section 4 proves A, is Dirichlet. 

6. HOMEOMORPHISMS OF T 

If K = E is a curve, let Di: D -+ 0; for i = 1,2 denote fixed choices of the 
Riemann maps. By Caratheodory’s theorem these maps extend to be 
homeomorphisms from T to E, so $ = (Q2) ~ ’ 0 @r defines an orientation 
reversing homeomorphism of T to itself. Note that a function f~ A, 
corresponds to a pair of functions f, ,fi E A(D) which satisfy f, =fi 0 $ on 
T. Our assumption that o, I o2 is equivalent to $ being singular; i.e., 
there is a set EcT such that jT\EI = 1$(E)/ =O. One can easily apply the 
iterative procedure described above to a pair of holomorphic functions on 
D as follows. Define H, by approximating the continuous function 
4(f, +fi 0 $) on T by a function on D satisfying the hypothesis of Lemma 
3.3. We will write this as H, - $(f, +f20 $). Similarly define 
H2 -f(&+fp+-‘). Th en choose E, and E, with 

IE,I,IE,I>l--E 

Il/(E,)n&=121 

and define the corresponding ‘p, and (p2 as in Lemma 3.2. For i= 1, 2 set 

g, =.fh, + H;( 1 - cp;) 

and solve for hi as before. Then for i = 1, 2, F, = gi + hi is holomorphic and 

IIF, -Fz~$ll Q llhl II + llhzll + llgl -gzoIc/II 

Thus iterating gives a pair of holomorphic functions with “matching” 
boundary values. This observation works for any singular homeomorphism 
of T, regardless of whether it comes from a curve E or not. Thus we get: 
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COROLLARY 6.1 (Browder and Wermer [6]). rf II/ is a singular 
homeomorphism of T to itself then {f E A(D): f 0 Ic/ E A(D)} is a Dirichlet 
algebra on T. 

Similarly, if {I/ 1, . . . . $,} are all homeomorphisms of T to itself such that 
l//,k = $, 0 $; ’ for j # k are all singular, then we can find sets E,, . . . . E, such 
that 

IEj’ii > 1 -E, Vj 

$,,(Ek) are disjoint for k,j= 1, . . . . 12. 

Using this we can mimic the proof above to show that 

{f:fot+bj~ A(D),~= 1, . . . . H> 

is a Dirichlet algebra on T, another result of Browder and Wermer. 

7. DECOMPOSING CONTINUOUS FUNCTIONS 

In their paper [7] Browder and Wermer show that if II/ is any orien- 
tation reversing homeomorphism of T to itself, then 

is a uniformly dense subspace of C(T). A result of Browder implies 
A(D)+ A,(D) is a closed subspace of C(T) if II/ is singular, hence 
C(T) = A(D) + A,(D) (see [5,Lemma 7.2.2 and p. 2351). In fact, he shows 
this for any singular homeomorphism of T. We can recover this result from 
our construction; i.e., 

COROLLARY 7.1. If II/ is any singular homeomorphism of T to itself and 
feC(T), then we cm find fi,fZEA(D) such that llf,II, llfi I( G llfll and 
f=f, --fzO$. 

Of course, there is a corresponding result stated in terms of curves. We 
will not give a complete proof of this since it is so similar to what we have 
done already. We merely note that if fi, fi E A(D), ‘pl and cp2 are as above 
and HI-(f+f,o$), H2w(fiOt,-‘-fo+p1), then we can set 

g,=cp,f,+(l-cp,)(H,) 

g2 = (1 - (PzJf2 + cp,(H,). 

Then 8gi dx dy, for i = 1, 2, are Carleson measures of the appropriate type 
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and so we can find h, and h, such that F, = g, + h,, for i = 1, 2, are 
holomorphic and satisfy 

IIf‘-(F, -F2qti)II G llh, II + IIM + llf-(sl -gz”$)II 

4 Ilf-(fi-f20+)ll. 

Iterating gives Corollary 7.1. 

8. P.B.D. AND DISTANCE ESTIMATES 

In [ 111 Davie, Gamelin, and Garnett show that A, is pointwise boun- 
dedly dense in H”(Q) iff 

dist(h, AK) = dist(h, H”(Q)) 

for every h E C(c). The inequality “a” is trivial, of course. If K is con- 
nected, and satisfies the conditions of Davie’s theorem our construction 
gives “6.” This is because iffE H”(Q) satisfies dist(h,fl= d, then applying 
the construction to f gives a function FEA, which at a given point is 
essentially a convex combination offs values near that point plus a small 
error. Using the uniform continuity of h we can deduce dist(h, F) < d + E. 
On the other hand, one can use the methods of Section 2 to show equality 
must fail if w1 and w2 are not mutually singular. 

9. A CAPACITY CHARACTERIZATION 

Another “geometric” characterization of Dirichlet algebras is due to 
Gamelin and Garnett. In [ 131 they prove that A, is a Dirichlet algebra on 
K iff for all x E K and 0 < 6 < diam(K), 

Here c( is the continuous analytic capacity, 

~(E)-suP{If’(~)l:fEA., llfll G 11. 

By a Cauchy integral argument, similar to the one in Section 2, one can 
show the inequality fails if K does not satisfy the conditions of Davies 
theorem (and as in [ 131 one may replace l/4 by any positive constant). On 
the other hand, suppose it does, and let E be a connected subset of 
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D(x, 6) n r of diameter at least 6. It is a well known consequence on the 
Riemann mapping and Koebe $ theorems that 

> $ diam(E) 

(e.g., [14, p. 93). Now take f~ H”(C\E) with l\f\l < 1 and If’(co)l > 
h/4-~. By the construction we can approximate f uniformly on a 
neighborhood of {cc } and so we can find FE A, with (( FII Q 1 and 

6 
IF’(a)1 > If’(oo)l>--2~. 

4 

This proves the desired inequality. 

10. REMARKS 

When K = r a closed curve, the results of this paper can also be deduced 
using the proof of the following result (see [2]): 

THEOREM 10.1. Suppose t,b: T + T is a singular homeomorphism and 
E > 0. Then there exists a cp E C(T), 0 < cp < 1, such that 

(1) lI’PIlBMO~~~ 
(2) 1/50~11/IIml,d~. 
(3) l(cp= l}lB 1 --E. 

(4) I{cp~ll/=o}l2 1-c. 

This is reminiscent of a result of Garnett and Jones concerning BMO 
functions which take the values zero and one on small, preassigned subsets 
of T (see [ 17,211). To recover our results, one extends the functions cp and 
q 0 $ to the interior of the unit disk so that their gradients are Carleson 
measures of the appropriate type, takes the corresponding continuous 
function on C, and then uses this function as a partition of unity to “glue” 
together holomorphic functions on either side of r. 

There are several open problems concerning the spaces A,, but I will 
mention only the following: Does AK always have a Schauder basis (when 
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considered as a Banach space with the sup norm)? The answer is probably 
yes, but I don’t know how to prove it. The corresponding question for the 
disk algebra was answered affirmatively by S. V. B6karev in 1974 (see [4]). 
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