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Abstract
We show that any dynamics on any planar set S discrete in some domain D can be
realized by the postcritical dynamics of a function holomorphic in D, up to a small
perturbation. A key step in the proof, and a result of independent interest, is that any
planar domain D can be equilaterally triangulatedwith triangles whose diameters→ 0
(at any prescribed rate) near ∂ D.
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1 Introduction

We begin by briefly introducing some conventions. In what follows, we will use the
spherical metric d to measure distance between two points on̂C (see Definition 3.1). If
D ⊂ ̂C is a domain, we will say a set S ⊂ D is discrete in D if S has no accumulation
points in D. We define the singular values of a holomorphic function f : D → ̂C

to be the set S( f ) of critical values and asympotic values of f . A point w ∈ ̂C is an
asymptotic value of f : D → ̂C if there exists a curve

γ : [0,∞) → D with γ (t)
t→∞−−−→ ∂ D and f ◦ γ (t)

t→∞−−−→ w.

The postsingular set of f is defined by

P( f ) := {

f n(w) : w ∈ S( f ) and n ≥ 0
}

.

In the study of the dynamics of a holomorphic function f : D → ̂C, a fundamental
role is played by the sets S( f ), P( f ), and the behavior of f restricted to P( f ). For
instance, in the most well-studied cases D = C, ̂C, the boundary of any Siegel disc
of f is contained in P( f ), and much more generally, any component in the Fatou set
of f always necessitates a certain behavior for the orbit of a singular value of f (see
Section 4.3 of [3] for D = C, and [14] for D = ̂C). Thus, the following question
arises: which dynamics on which sets S ⊂ D can be realized by the postsingular
dynamics of a holomorphic function f : D → ̂C? Our first result (Theorem A below)
says that as long as S ⊂ D is discrete, any dynamics on S can be realized, up to a
small perturbation. Before stating this result more precisely, we need:

Definition 1.1 Let ε > 0 and X , Y ⊂ ̂C. We say a homeomorphism φ : X → Y is an
ε-homeomorphism if supz∈X d(φ(z), z) < ε. If a conjugacy φ between two dynamical
systems is an ε-homeomorphism, we say φ is an ε-conjugacy.

Theorem A Let D ⊆ ̂C be a domain, S ⊂ D a discrete set with |S| ≥ 3, h : S → S
a map, and ε > 0. Then there exists an ε-homeomorphism φ : ̂C → ̂C and a
holomorphic map f : φ(D) → ̂C with no asymptotic values such that P( f ) ⊂ φ(D)

and f |P( f ) : P( f ) → P( f ) is ε-conjugate to h : S → S.

As will be shown in Sect. 7, the ε-conjugacy between f : P( f ) → P( f ) and
h : S → S is a composition of φ with a bijection of S onto a perturbation of S. When
D = ̂C, Theorem A is very similar to Theorem 1.3 of [7] (in [7] the ε-conjugacy may
be taken = φ). When D = C, Theorem A is very similar to Theorem 1 of [5] (the
difference being that functions in [5] have asymptotic values and there the conjugacy
P( f ) 	→ S may be taken tangent to the identity at ∞). The main technique in [7] is
iteration in Teichmüller space, whereas in [5] it is quasiconformal folding. The present
manuscript provides a new approach that works simultaneously in both the settings
D = ̂C, C, as well as in much more general settings. We remark that our techniques
do not answer whether for particular S and h : S → S one can take P( f ) = S and
f |P( f ) = h (see Question 1.2 of [7]). Related questions were also studied in [2, 16].
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Equilateral triangulations and the postcritical dynamics… 1779

We also remark that since the function f of Theorem A has no asymptotic values, the
postsingular set P( f ) coincides with the postcritical set of f .

The proof of Theorem A proceeds by quasiconformally deforming a certain Belyi
function on D: a holomorphic map g : D → ̂C branching only over the three values
±1,∞. Given the existence of g, the main tools in the proof of Theorem A are the
Measurable Riemann Mapping Theorem and an improvement of a fixpoint technique
first introduced in [5] (see also [10, 15]). The existence of a Belyi function on D, on
the other hand, will follow from the existence of a particular equilateral triangulation
of the domain D: a topological triangulation of D with the property that for any two
adjacent triangles T , T ′, there is an anti-conformal reflectionmap T → T ′ which fixes
pointwise the common edge (see Definitions 4.1, 4.2). Indeed, given an equilateral
triangulation T of D, after subdividing the equilateral triangulation if necessary (see
Remark 5.2), a conformalmap of a triangle T ∈ T toH (with the vertices of the triangle
mapping to±1,∞)may be extended to aBelyi function on D by the Schwarz reflection
principle. The connection between equilateral triangulations and Belyi functions was
first described in [19]. The existence of the desired equilateral triangulation of D will
follow from the following Theorem, where we recall that the degree of a vertex v in
a triangulation T is defined as the number of edges in T having v as a vertex:

Theorem B Let D ⊂ ̂C be a domain. Suppose η : [0,∞) → [0,∞) is continuous,
strictly increasing, and η(0) = 0. Then there exists an equilateral triangulation T of
D so that for every z ∈ D and every triangle T ∈ T containing z we have

diameter(T ) ≤ η(d(z, ∂ D)). (1.1)

Moreover, the degree of any vertex v is bounded, independently of v, D and η.

The existence of an equilateral triangulation of D is already implied by the recent
result of [6]: that any non-compact Riemann surface can be equilaterally triangulated.
In order to prove Theorem A, however, we will need to prove that the triangulation
can also be taken to satisfy the condition (1.1). We remark that diameter in (1.1) refers
to spherical diameter.

Theorem B is a key step in the proof of Theorem A, but it is also of independent
interest. As already partially alluded to, by [19] a Riemann surface X has an equi-
lateral triangulation if and only if it has a Belyi function g : X → ̂C, in which case
g−1([−1, 1]) is a so-called dessin d’enfant on X . There is an extensive literature on
dessins d’enfants (see [12] for an overview), and of recent interest is the question of
which geometries on a given Riemann surface a dessin may achieve. For instance,
[4] shows that unicellular dessins d’enfants are dense in all planar continua. Condi-
tion (1.1) is equivalent to a certain geometry for the corresponding dessin, and it is
likely the techniques used in proving (1.1) will be of use in the question of attainable
geometries for a dessin d’enfant on a given Riemann surface.

We now briefly outline the paper. In Sect. 2, we will sketch the proofs of Theorems
A, B. In Sects. 3–7, we prove Theorem A by first assuming Theorem B, and in Sects.
8–10 we prove Theorem B. Sections 8–10 may be read independently of Sects. 3–7.
We will give a more detailed outline of the paper after sketching the main proofs in
Sect. 2.
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1780 C. J. Bishop et al.

2 Sketch of the proofs

In this section, we sketch the proofs of Theorems A, B. We begin with Theorem A,
where the main ideas are already present in the case D = ̂C, and we discuss this case
first.

Consider a sequence of equilateral triangulations Tn of ̂C satisfying

sup
T ∈Tn

diameter(T )
n→∞−−−→ 0. (2.1)

The existence of Tn is trivial: see for instance Fig. 1. As described above, any triangle
T ∈ Tn and any vertex-preserving conformal map T 	→ H(−1, 1,∞) (vertex-
preserving means the three vertices of T map to ±1, ∞ under the conformal map)
defines a holomorphic map g : ̂C → ̂C.

The critical points of g are precisely the vertices in the triangulation Tn , and the
critical values of g are ±1,∞. For any vertex v ∈ Tn , let T{v} denote the union of
triangles in Tn which have v as a vertex. We can change the definition of g|T{v} to a

map g̃|T{v} by post-composing g|T{v} with a quasiconformal map of ̂C which perturbs

the critical value g(v) ∈ {±1,∞} to a parameter g̃(v) ∈ ̂C, in such a way that
g̃|∂T{v} = g|∂T{v} . Doing so over a sparse subset of vertices in Tn , we call this new

quasiregular map g̃ : ̂C → ̂C.
Given a discrete (finite) S ⊂ ̂C and a map h : S → S, we choose a vertex

vs ∈ Tn nearby each s ∈ S, and consider the family of mappings g̃ determined by
a choice of (g̃(vs))s∈S . Each such choice (g̃(vs))s∈S determines a holomorphic map
f := g̃ ◦ φ−1, where φ is a quasiconformal mapping obtained from the Measurable
Riemann Mapping theorem. In order to obtain the conjugacy between f : P( f ) →
P( f ) and h : S → S, the main idea (see also Fig. 3) is to justify that we can choose
(g̃(vs))s∈S so that

g̃(vs) = φ(vh(s)), for all s ∈ S. (2.2)

Indeed, suppose we have the relation (2.2), and assume for simplicity that h is onto.
Then we would have

P( f ) = g̃ ((vs)s∈S) = φ
(

(vh(s))s∈S
) = φ ((vs)s∈S) , (2.3)

Fig. 1 Illustrated is a sequence of triangulations Tn of ̂C. T0 is the tetrahedral subdivision of ̂C, and Tn is
obtained from Tn−1 by connecting the centers of each edge in each triangle in Tn−1
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and the desired conjugacy between f : P( f ) → P( f ) and h : S → S would be
defined by φ(vs) 	→ s, since:

f (φ(vs)) = g̃ ◦ φ−1 ◦ φ(vs) = g̃(vs) = φ(vh(s)). (2.4)

That we can choose each g̃(vs) so that (2.2) holds is non-trivial. The dilatation of g̃,
and hence the mapping φ, depends on the parameter g̃(vs) in a non-explicit manner
(by solution of the Beltrami equation). Nevertheless, we can show the desired choice
of g̃(vs) exists by application of a fixpoint theorem, where the variable is the set of
parameters g̃(vs) and the output is the set of points φ(vh(s)). Moreover, if n is large, the
triangulation Tn is fine by (2.1) and the dilatation of φ small, so that φ(vs) ≈ vs ≈ s,
and hence the conjugacy is close to the identity. Much of the technical work in Sects.
3–7 is in setting up the parameters n, g̃(vs) so that the hypotheses of an appropriate
fixpoint theorem hold.

The crucial property of the domain D = ̂C that was used in the above sketch was
the existence of the equilateral triangulations Tn of D. While this property is trivial
in the cases D = ̂C, D = C and it is well known in many other cases, it is non-
trivial in the general setting. This is the content of Theorem B. The main idea of the
proof of Theorem B is as follows. Assume ∞ ∈ D, and let K := ∂ D. We consider
sets �k which are contours surrounding K (see Fig. 10). The desired triangulation T
is produced by an inductive procedure. Roughly speaking, at the kth step we define
the triangulation Tk to equal the previous triangulation Tk−1 outside �k and equal a
Euclidean equilateral triangulation inside �k . However, these two triangulations need
to be merged in a very thin neighborhood of �k (with a non-equilateral triangulation)
and a quasiconformal correction is then applied to make the merged triangulation
equilateral. The dilatation of the correction map is supported in a thin neighborhood
of �k , and is chosen so thin that so the correction map is close to the identity. The
desired triangulation T is then the limit of the triangulations Tk as k → ∞.

We now give a detailed outline of the rest of the paper. In Sect. 3, we describe
how we will change the map g|T{v} to the map g̃|T{v} , introducing the parameters
g̃(vs). In Sect. 4, we deduce from Theorem B the only result (Theorem 4.6) about
equilateral triangulations we will need in order to prove Theorem A. In Sect. 5, we
introduce the family of mappings amongst which wewill find our desired fixpoint, and
prove some estimates about this family. In Sects. 6 and 7, we conclude the proof of
Theorem A (modulo the proof of Theorem B) by applying a fixpoint theorem. In Sect.
8, we introduce the regions in which we will merge equilateral triangulations, and we
triangulate them in Sect. 9. In Sect. 10, we construct the contours �k surrounding K
and prove Theorem B.

3 Moving a critical value

In this short section, we set up the frameworkwewill need in order to be able to perturb
the critical values of the function g described in the Introduction. First we recall the
definition of the spherical metric (see Section I.1.1 of [11]):
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1782 C. J. Bishop et al.

Definition 3.1 Two finite points z1, z2 ∈ C have spherical distance

d(z1, z2) := arctan

∣

∣

∣

∣

z1 − z2
1 + z1z2

∣

∣

∣

∣

where 0 ≤ d(z1, z2) ≤ π/2, (3.1)

and d(z1,∞) = arctan |1/z1|.
We will use the basic theory of quasiconformal mappings throughout this paper, for
which we refer the reader to the standard references [1, 11].

Notation 3.2 If φ is a quasiconformal mapping, wewill denote its Beltrami coefficient
φz/φz by μ(φ).

Definition 3.3 Forw ∈ {±1,∞}, let Iw be the subarc of R̂ := R∪{∞}with endpoints
in {±1,∞}\{w}which does not pass throughw (so for instance, I−1 = (1,∞)). Given
w ∈ {±1,∞} and ζ ∈ ̂C satisfying d(ζ, Iw) ≥ π/12, we will define a quasiconformal
map φ

ζ
w : ̂C → ̂C as follows. Let

(1) φ
ζ
w : B(w, π/24) → B(ζ, π/24) be the restriction to B(w, π/24) of an isometry

of Ĉ mapping w to ζ ,
(2) φ

ζ
w(z) = z for z ∈ Iw,

(3) φ
ζ
w(z) is a smooth interpolation between (1) and (2) on Ĉ \ (Iw ∪ B(w, π/24)),

and
(4) μ(φ

ζ
w) varies smoothly with respect to ζ .

The mapping φ
ζ
w of Definition 3.3 exists, and we make note of the following:

Remark 3.4 The constant π/12 in Definition 3.3 is chosen because π/6 = 2π/12,
and

⋃

w∈{±1,∞}

{

ζ ∈ ̂C : d(ζ, Iw) ≥ π/6
} = ̂C. (3.2)

This fact will be important in the proof of Theorem A.

Proposition 3.5 There exists 0 < k0 < 1 such that for any ζ ∈ ̂C, there is w ∈
{±1,∞} such that ||μ(φ

ζ
w)||L∞(̂C) < k0.

Proof Fix w ∈ {±1,∞}. There exists ζ ∈ ̂C satisfying d(ζ, Iw) ≥ π/12. Fix such
a ζ . We have that φζ

w is a quasiconformal mapping, and moreover μ(φ
ζ
w) varies con-

tinuously with respect to ζ by (4) of Definition 3.3. Thus, as ||μ(φ
ζ
w)||L∞(̂C) < 1 for

each ζ satisfying d(ζ, Iw) ≥ π/12, we have that

sup
ζ∈{ζ : d(ζ,Iw)≥π/12}

||μ(φζ
w)||L∞(̂C) < 1.

The result now follows from (3.2). ��
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4 Equilateral triangulations

In this section, we will deduce from Theorem B the only result (Theorem 4.6) we will
need about equilateral triangulations in order to prove Theorem A. First we fix our
definitions and some notation:

Definition 4.1 Let D ⊂ ̂C be a domain. A triangulation of D is a countable and
locally finite collection of closed topological triangles in D that cover D, such that
two triangles intersect only in a full edge or at a vertex.

Definition 4.2 Let D ⊂ ̂C be a domain, and T a triangulation of D. We say T is an
equilateral triangulation if for any two triangles T , T ′ in T which share an edge e,
there is an anti-conformal map of T onto T ′ which fixes pointwise the edge e and
sends the vertex opposite e in T to the vertex opposite e in T ′.

Remark 4.3 Definition 4.2 readily generalizes to a definition of equilateral triangula-
tions forRiemann surfaces. If aRiemann surface S is built by gluing together Euclidean
equilateral triangles, then the corresponding triangulation of S satisfies Definition 4.2.
The converse is also true. In other words, if a triangulation of a Riemann surface
S satisfies Definition 4.2, then S can be constructed by gluing together Euclidean
equilateral triangles (finitely many triangles if S is compact, countably many if S is
non-compact). This justifies the terminology “equilateral triangulation” of Definition
4.2. See [19] or [6] for details.

Definition 4.4 Let T be a triangulation of a domain D. We say that two vertices v,
w ∈ T are adjacent if they are connected by an edge in T . Otherwise we say v, w

are non-adjacent. Similarly, two triangles in T are said to be adjacent if they share a
common edge, otherwise they are said to be non-adjacent (in particular two triangles
which intersect only at a vertex are non-adjacent).

Notation 4.5 Given a subset V of vertices in a triangulation T , we will denote by TV
the union of those triangles in T with at least one vertex in V . In what follows, area
will refer to spherical area, and diameter to spherical diameter.

Theorem 4.6 Let D ⊂ ̂C be a domain and S a discrete set in D. Then there exists
a sequence of equilateral triangulations {Tn}∞n=1 of D and a collection of pairwise
non-adjacent triangles {T n

s }s∈S ⊂ Tn for each n satisfying:

(1) s ∈ T n
s for all s ∈ S and n ∈ N,

(2) For any choice of vertices vn
s ∈ T n

s we have:

∑

s∈S

area
(

T{vn
s }

) n→∞−−−→ 0, and (4.1)

(3)

sup
s∈S

diameter(T n
s )

n→∞−−−→ 0. (4.2)
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1784 C. J. Bishop et al.

Proof of Theorem 4.6 assuming Theorem B Label the elements of S as {sk}|S|
k=1 so that

d(s1, ∂ D) ≥ d(s2, ∂ D) ≥ d(s3, ∂ D) ≥ ... (4.3)

We will build a sequence of continuous, strictly increasing functions (ηn)∞n=1 :
[0,∞) → [0,∞) satisfying ηn(0) = 0 to which we will apply Theorem B. We start
with η1. Let ck := d(sk, ∂ D), where we note that ck → 0 if S is infinite. Since S is
discrete in D, we have that

Ik := {l ∈ N : cl = ck} (4.4)

is finite for every k. Hence we may define η1 to be positive and strictly increasing in
a small neighborhood of each ck so that

η1(ck) <
d(s, S \ {s})

2
for all s ∈ Ik, and (4.5)

η1(ck + η1(ck)) <
1

2k
. (4.6)

Finish the definition of η1 by setting η1(0) = 0 and interpolating on the rest of [0,∞).
We let

ηn := η1/n. (4.7)

Theorem B applied to (ηn)
∞
n=1 yields a sequence of equilateral triangulations

{Tn}∞n=1 of D. We define the collection {T n
s }s∈S ⊂ Tn by setting T n

s to be any tri-
angle in Tn containing s. By (1.1), (4.5) and (4.7), we have that if s, s′ ∈ S with
s �= s′, then T n

s , T n
s′ are non-adjacent for any n. Let vn

s be any choice of vertex in T n
s

for each s ∈ S and n ∈ N. Since vn
s ∈ T n

s , we have by Theorem B that

d(vn
s , ∂ D) < d(vn

s , s) + d(s, ∂ D) ≤ ηn(ck) + ck .

Thus, again by Theorem B, we have that if T is a triangle with the vertex vn
s , then

diameter(T ) ≤ ηn(ck + ηn(ck)).

Recalling that themaximal degree of a vertex in any of the triangulations Tn is bounded
by a universal constant (call it d) by Theorem B, it follows from (4.6) and (4.7) that:

∑

s∈S

area
(

T{vn
s }

) ≤ d ·
|S|
∑

k=1

[ηn(ck + ηn(ck))]
2

≤ d

n2 ·
|S|
∑

k=1

[η1(ck + η1(ck))]
2 n→∞−−−→ 0. (4.8)
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Thus Property (2) in the conclusion of the Theorem is proven. Property (1) holds by
definition of T n

s , and Property (3) follows from Property (1), Theorem B, and the
observation that

sup
k∈N

ηn(ck)
n→∞−−−→ 0.

��

5 A base family of mappings

Having proven Theorem 4.6, we now have the holomorphic function g : D → ̂C

described in the Introduction (see Definition 5.3 below). In this section, we introduce
a family of quasiregular perturbations of g by moving critical values of g using the
results of Sect. 3. The application we have in mind is roughly to prove Theorem A
by finding a fixpoint in this family, and so we will need to establish certain technical
estimates about this family which roughly correspond to verifying the hypotheses of
an appropriate fixpoint theorem.

Remark 5.1 Throughout Sect. 5, we will fix a domain D ⊂ ̂C, a discrete set S ⊂ D,
and equilateral triangulations Tn of D as given in Theorem 4.6.

Remark 5.2 A triangulation is called 3-colourable if its vertices may be coloured with
three distinct colours in such a way that adjacent vertices have different colours.
Any triangulation can be subdivided into a 3-colourable triangulation by barycentric
subdivision (see Fig. 2). Since barycentric subdivision preserves the properties of
Theorem 4.6, wemay assume that the triangulations Tn are 3-colourable, and that each
vertex has an even degree. This allows us to define the following (see also Remark 2.8
of [6]):

Definition 5.3 We will define a sequence of holomorphic maps gn : D → ̂C as
follows. For any n, fix a triangle T ∈ Tn , and let gn : T → H(−1, 1,∞) be a
conformal map such that the vertices of T map to ±1,∞. The definition of gn on D
is then obtained by application of the Schwarz reflection principle.

Proposition 5.4 The critical points of gn are precisely the vertices of the triangles in
Tn. The only critical values of gn are ±1,∞.

Fig. 2 Illustrated is the process
of barycentric subdivision. This
figure is borrowed from [6]
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1786 C. J. Bishop et al.

Proof The maps gn are locally univalent except at the vertices of triangles in Tn . At
a vertex v in Tn , the map gn is locally m : 1 where m is such that 2m edges of the
triangulation Tn meet at v. The last statement follows since each vertex is sent to one
of ±1, ∞ by gn . ��
Proposition 5.5 Let n > 0, let V be a subset of pairwise non-adjacent vertices in Tn,
and suppose we have a mapping h̃ : V → ̂C. If d(h̃(v), Ign(v)) ≥ π/12 for each v ∈ V ,
then for k0 as in Proposition 3.5, there exists a quasiregular mapping g̃n : D → ̂C

such that:

(1) g̃n(v) = h̃(v) for all v ∈ V ,
(2) g̃n ≡ gn on (∪Tn) \ TV and hence μ(g̃n) is supported on TV , and
(3) ||μ(g̃n)||L∞(D) < k0.

Proof We will abbreviate g = gn , and assume as in the statement of the Proposition

that d(h̃(v), Ig(v)) ≥ π/12 for each v ∈ V . Thus, the quasiconformal map φ
h̃(v)
g(v) of

Definition 3.3 satisfies:

φ
h̃(v)
g(v)(g(v)) = h̃(v) (by (1) of Definition 3.3), (5.1)

and
∣

∣

∣

∣

∣

∣μ
(

φ
h̃(v)
g(v)

)∣

∣

∣

∣

∣

∣

L∞(̂C)
< k0 (by Proposition 3.5) (5.2)

for all v ∈ V . For any v ∈ V , we define

g̃n := φ
h̃(v)
g(v) ◦ g in T{v}, (5.3)

and

g̃n := g in (∪Tn) \ TV . (5.4)

Note that (5.3) is well-defined sincewe have assumed no two vertices inV are adjacent.
Moreover, since the boundary of T{v} is mapped to Ig(v), (2) of Definition 3.3 implies
that the Definitions (5.3) and (5.4) coincide along ∂TV . Thus, by removability of
analytic arcs for quasiregular mappings (see for instance Theorem I.8.3 of [11]), (5.3)
and (5.4) define a quasiregular mapping on ̂C. Properties (1)-(3) in the statement of
the Proposition now follow from (5.1)-(5.4). ��
Remark 5.6 Following the hypotheses of Proposition 5.5, wewill call n,V , h̃ permissi-
ble if d(h̃(v), Ign(v)) ≥ π/12 for each v ∈ V . We use the notation h̃ since this mapping
will later be chosen to approximate the mapping h of Theorem A. The mapping g̃n is
completely determined by a choice of permissible n, V , h̃, so that a more precise (but
more cumbersome) notation for g̃n would be g̃n,V,h̃ . Instead, we will usually omit all
of these parameters and simply denote the mapping by g̃, with the dependence on n,
V , and h̃ understood.
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Remark 5.7 We recall the definition of an asymptotic value. A value w ∈ ̂C is an
asymptotic value of a holomorphic function f : D → ̂C if there exists a curve
γ : [0,∞) → D with γ (t) → ∂ D as t → ∞ such that f ◦ γ (t) → w as t → ∞. As
mentioned in the Introduction, the function f of TheoremA has no asymptotic values,
and hence the postcritical set and postsingular set of f coincide. This will follow from
the following Proposition (see also the proof of Theorem 7.2):

Proposition 5.8 Let n, V , h̃ be permissible. Then the only branched values of g̃ are
{±1,∞}∪ h̃(V). Moreover, if γ : [0,∞) → D is a curve with γ (t) → ∂ D as t → ∞,
then g̃ ◦ γ (t) does not converge as t → ∞.

Proof By Proposition 5.4, the only branched values of g are±1,∞, so it follows from
(5.1) and (5.3) that the only branched values of g̃ are {±1,∞} ∪ h̃(V).

Let γ : [0,∞) → D be a curve with γ (t) → ∂ D as t → ∞. Suppose by way of
contradiction that there existsw ∈ ̂C such that g̃◦γ (t) → w as t → ∞. By Definition
4.1 and (2) of Proposition 5.5, γ ([0,∞)) must cross infinitely many edges e of the
triangulation Tn such that g̃(e) ⊂ R̂. Thus we must have w ∈ R̂. On the other hand,
consider any Jordan curve � passing through±1,∞with �∩ R̂ = {±1,∞}. Then we
similarly see γ ([0,∞)) must cross infinitely many edges of the triangulation g̃−1(�),
and so w ∈ � ∩ R̂ = {±1,∞}. But

g̃−1

⎛

⎝

⋃

w∈{±1,∞}
B(w, π/12)

⎞

⎠ (5.5)

is a disconnected subset of D, and so there can not bew ∈ {±1,∞} such that g̃(γ (t)) ∈
B(w, π/12) for all sufficiently large t . ��
Theorem 5.9 Let h : S → S and ε > 0. Then for all sufficiently large n, there exists
a set of pairwise non-adjacent vertices Vn ⊂ Tn such that:

(1) There exists an ε-bijection ψn : S → Vn,
(2) area(

⋃

s∈S T{ψn(s)}) → 0 as n → ∞,
(3) If h̃ : Vn → ̂C is such that supv∈Vn

d(h̃(v), h ◦ ψ−1
n (v)) ≤ π/12, then n, Vn, h̃

are permissible.

Proof Let h : S → S and ε > 0. Recall the triangles {T n
s }s∈S of Theorem 4.6. By

Theorem 4.6, there exists N such that we have T n
s ⊂ B(s, ε) for all n ≥ N and s ∈ S.

We henceforth assume n ≥ N , and prove the conclusions of Theorem 5.9 hold for
such n.

We first define Vn and the bijection ψn : S → Vn . Let s ∈ S. We will define ψn(s)
to be one of the three vertices of the triangle T n

s : in order to determine which vertex,
we first consider h(s). By (3.2), there is w ∈ {±1,∞} such that

d(h(s), Iw) ≥ π/6. (5.6)

We define ψn(s) to be the vertex v of T n
s satisfying gn(v) = w. This defines ψn and

Vn := ψn(S), where we note ψn is a bijection onto Vn since T n
s , T n

s′ are non-adjacent
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for distinct s, s′. That ψn is an ε-bijection follows since T n
s ⊂ B(s, ε). Moreover,

property (2) in the conclusion of Theorem 5.9 now also follows from property (2) of
Theorem 4.6.

We will now prove property (3). Let s ∈ S. Note that by our choice of ψn(s) and
the relation (5.6) we have that

d(h(s), Ign◦ψn(s)) ≥ π/6.

Thus, if ζ is such that d(ζ, h(s)) ≤ π/12, we have

d(ζ, Ign◦ψn(s)) ≥ π/12.

Thus for any h̃ : Vn → ̂C such that

sup
v∈Vn

d(h̃(v), h ◦ ψ−1
n (v)) ≤ π/12,

we have

inf
v∈Vn

d(h̃(v), Ign(v)) ≥ π/12.

Thus as defined in Remark 5.6, we have that n, Vn , h̃ are permissible. ��
Remark 5.10 The vertex set Vn in the conclusion of Theorem 5.9 is determined by
a choice of n, h, ε. When we wish to emphasize this dependence, we will use the
notation V(n, h, ε). We also remark that we will sometimes simply write ψ in place
of ψn when n is understood from the context.

Remark 5.11 Recall that the mapping g̃ is determined by permissible n, V , h̃. In par-
ticular, the parameters n, V , h̃ also determine (by way of the Measurable Riemann
Mapping Theorem) a unique quasiconformal mapping φ : ̂C → ̂C such that

(1) g̃ ◦ φ−1 : φ(D) → ̂C is holomorphic,
(2) φ fixes each of ±1, ∞, and
(3) μ(φ) = 0 on ̂C \ D.

As for g̃, we will omit the dependence of φ on the parameters n, V , h̃ in our notation.

Proposition 5.12 Let h : S → S, and ε > 0. For all sufficiently large n, we have that
if h̃ is such that n, V(n, h, ε), h̃ are permissible, then

sup
z∈̂C

d(φ(z), z) < ε. (5.7)

Proof Let h : S → S, and ε > 0. Let N be sufficiently large so that V(N , h, ε) is
defined, let n ≥ N , and let h̃ be such that n, V(n, h, ε), h̃ are permissible. Then

supp(φz) ⊂
⋃

v∈V(n,h,ε)

T{v} =
⋃

s∈S

Tψn(s) (5.8)
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Thus, by (2) of Theorem 5.9, we have

area(supp(φz))
n→∞−−−→ 0. (5.9)

Lastly, we recall that by (3) of Proposition 5.5, we have ||μ(φ)||L∞(̂C) < k0 < 1,

in other words φ is k0-quasiconformal with k0 independent of n, V(n, h, ε), h̃. The
result now follows from the fact that there exists δ > 0 such that if φ : ̂C → ̂C is any
normalized k0-quasiconformal mapping with area(supp(φz)) < δ, then (5.7) holds
(see for instance Lemma 2.1 of [4]). ��

6 Continuity of a fixpoint map

In Sect. 7, we will prove Theorem A. As already described in the Introduction, the
main strategy is to describe the desired function in the conclusion of the theorem
as the fixpoint of a particular mapping we call ϒ (see Definition 6.1 and Fig. 3).
The estimates proven in Sect. 5 will allow us to verify the appropriate continuity and
contraction properties ofϒ in order to apply a fixpoint theorem. Section 6 is dedicated
to defining ϒ and proving continuity.

Definition 6.1 Let D, S, h, ε be as in Theorem A and let n be sufficiently large so that
V(n, h, ε/2) is defined (see Remark 5.10). We will define a map

ϒ :
∏

t∈h(S)

B(t, π/12) →
∏

t∈h(S)

̂C (6.1)

as follows. Let

(ζt )t∈h(S) ∈
∏

t∈h(S)

B(t, π/12).

Fig. 3 Illustrated is the behavior of a fixpoint of the mapping ϒ . In black are points s, t , u ∈ S. In red are
vertices of triangles containing s, t , u. In blue are the perturbations of these vertices under the correction
mapping φ
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Define a mapping

h̃ : V(n, h, ε/2) → ̂C by h̃ ◦ ψ(s) = ζh(s) for all s ∈ S,

where ψ = ψn is the bijection of Theorem 5.9. By (3) of Theorem 5.9, the triple n,
V(n, h, ε/2), h̃ is permissible, and hence determines the mappings g̃, φ. We define:

ϒ
(

(ζt )t∈h(S)

) := (φ ◦ ψ(t))t∈h(S) . (6.2)

Remark 6.2 We will always consider any product space
∏

i∈I Xi to be endowed with
the standard product topology. Recall that this topology is generated by subsets of the
form

∏

i∈I Ui where each Ui ⊂ Xi is open and Ui = Xi except for finitely many
i . With this topology, Tychonoff’s Theorem says that any product of compact sets is
compact. In particular, the domain of the mapping ϒ is compact.

Theorem 6.3 The mapping ϒ of Definition 6.1 is continuous.

Proof Fix

(ζ 0
t )t∈h(S) = ζ 0 ∈

∏

t∈h(S)

B(t, π/12) and (ξ0t )t∈h(S) := ϒ(ζ 0).

Let V ⊂ ∏

t∈h(S)
̂C be an open set containing ϒ(ζ 0). Since V is open, there is an

ε′ > 0 such that

∏

t∈h(S)

B(ξ0t , ε′) ⊂ V .

Thus, in order to prove the Theorem, it suffices to show that there exists δ > 0 and a
finite subset {t1, ..., tm} ∈ h(S) such that if we define

Ut := B(ζ 0
t , δ) for t ∈ {t1, ..., tm},

Ut := B(t, π/12) for t ∈ h(S) \ {t1, ..., tm}, (6.3)

then U := ∏

t∈h(S) Ut satisfies:

ϒ(U ) ⊂
∏

t∈h(S)

B(ξ0t , ε′). (6.4)

In fact, we will show something stronger than (6.4). For

ζ ∈
∏

t∈h(s)

B(t, π/12),
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let φζ : ̂C → ̂C denote the quasiconformal mapping of Definition 6.1, and let φ0 :=
φζ0 . We will show that there exists δ > 0 so that:

sup
z∈̂C

d(φζ (z), φ0(z)) < ε′ for all ζ ∈ U . (6.5)

Recall the constant k0 < 1 of Proposition 3.5. We will use the following two facts:

(∗) There exists δ′ > 0 such that if φ : ̂C → ̂C is any normalized k0-quasiconformal
mapping with area(supp(φz)) < δ′, then

sup
z∈̂C

d(φ(z), z) < ε′/2. (6.6)

(∗∗) There exists δ′′ > 0 such that ifφ : ̂C → ̂C is any normalized δ′′-quasiconformal
mapping, then (6.6) holds.

We will abbreviate V := V(n, h, ε/2). Note that:

supp(φζ
z ) ⊂

⋃

v∈V
Tv for all ζ ∈

∏

t∈h(s)

B(t, π/12). (6.7)

Since
∑

v∈V
area(Tv) < area(̂C) < ∞, (6.8)

there exist v1, ..., vm ∈ V such that

∑

v∈V\{v1,...,vm }
area(Tv) < δ′/C, (6.9)

where C > 0 is such that any normalized k0-quasiconformal mapping φ satisfies
area(φ(E)) ≤ C · area(E) for all measurable E ⊂ ̂C. In (6.3), we let

{t1, ..., tm} := {h ◦ ψ(v1), ..., h ◦ ψ(vm)}. (6.10)

Denote A := ∪1≤i≤m Tvi , and for ζ ∈ U , let φ
ζ
1 : ̂C → ̂C denote the normalized

integrating map for 1A · μ(φζ ). By (4) of Definition 3.3 and (6.3), there exists δ′′ > 0
so that

||μ(φ
ζ
1 ◦ φ−1

0 )||L∞(A) < δ′′ for ζ ∈ U . (6.11)

Let φ
ζ
2 : ̂C → ̂C be such that φ

ζ
2 is conformal in ̂C \ φ

ζ
1 (D), and φ

ζ
2 ◦ φ

ζ
1 is the

normalized integrating map for μ(φζ ), so that we have φ
ζ
2 ◦ φ

ζ
1 = φζ . Then

supp(μ(φ
ζ
2 )) ⊂ φ

ζ
1

(

⋃

V\{v1,...,vn}
Tv

)

, (6.12)
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and so by (6.9), we have:

area(supp(μ(φ
ζ
2 ))) < C ·

∑

v∈V\{v1,...,vm }
area(Tv) ≤ δ′. (6.13)

Thus by combining (∗) and (∗∗) we have that for ζ ∈ U :

sup
z∈̂C

d(φ
ζ
2 ◦ φ

ζ
1 (z), φ0(z)) = sup

z∈̂C

d(φ
ζ
2 ◦ φ

ζ
1 ◦ φ−1

0 (z), z)

≤ sup
z∈̂C

d(φ
ζ
2 ◦ φ

ζ
1 ◦ φ−1

0 (z), φζ
1 ◦ φ−1

0 (z))

+ sup
z∈̂C

d(φ
ζ
1 ◦ φ−1

0 (z), z) < ε′/2 + ε′/2 = ε′.

This is the relation (6.5) which we needed to show. ��
Remark 6.4 A map very similar to ϒ was considered in [5] (see Lemma 14 there),
however there the proof of continuity was considerably simpler than in the present
context. The added difficulty in the present setting is due to the fact that the map

∏

t∈h(S)

B(t, π/12) 	→ L∞(̂C)

(given by considering the Beltrami coefficient of the quasiregular map generated by
any element in the domain) is not continuous, whereas in [5] the domain of this map
is different: it consists of a product of discs with radii → 0 and hence there the map
into L∞(̂C) is continuous.

We conclude Sect. 6 by recording the statement of the classical Schauder-Tychonoff
fixpoint theorem (see for instance Theorem 5.28 of [17]) which we will apply in the
proof of Theorem A:

Theorem 6.5 Let V be a locally convex topological vector space. For any non-empty
compact convex set X in V , any continuous function f : X → X has a fixpoint.

7 Finding a fixpoint

We now turn to the proof of Theorem A. It will be convenient to first prove a slightly
modified version of the Theorem (see Theorem 7.2 below), where we assume ±1,
∞ ∈ h(S) and consider the map h|h(S) rather than h. We will also first assume the
following condition holds:

Definition 7.1 Let D ⊆ ̂C be a domain, S ⊂ D a discrete set, h : S → S a map, and
ε > 0. We say D, S, h, ε are normalizably triangulable if there exist arbitrarily large
n such that the vertex set V = V(n, h, ε/2) of Theorem 5.9 satisfies
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(1) ±1, ∞ ∈ V , and
(2) ψ(s) = s for s ∈ {±1,∞}.
As we will see, Theorem A will follow easily from the following Theorem:

Theorem 7.2 Let D ⊆ ̂C be a domain, S ⊂ D a discrete set, h : S → S a map with
±1, ∞ ∈ h(S), and ε > 0. Assume D, S, h, ε are normalizably triangulable. Then
there exists an ε-homeomorphism φ : ̂C → ̂C and a holomorphic map f : φ(D) → ̂C

with no asymptotic values such that P( f ) ⊂ φ(D) and f |P( f ) : P( f ) → P( f ) is
ε-conjugate to h|h(S) : h(S) → h(S).

Proof We let D, S, h, ε be as in the statement of Theorem 7.2. Fix n > 0 sufficiently
large so that the conclusions of Theorem 5.9 and Proposition 5.12 hold for h : S → S
and ε/2, and so that the vertex set V := V(n, h, ε/2) is as in Definition 7.1. By (3) of
Theorem 5.9 and Proposition 5.12, if h̃ : V → ̂C is any map such that

sup
v∈V

d(h̃(v), h ◦ ψ−1(v)) ≤ π/12, (7.1)

then n, V , h̃ are permissible and

sup
z∈̂C

d(φ(z), z) < ε/2. (7.2)

Thus, given

(ζt )t∈h(S) ∈
∏

t∈h(S)

B(t, π/12), (7.3)

we define h̃ as in Definition 6.1 by

h̃ ◦ ψ(s) := ζt for all t ∈ h(S) and s ∈ h−1(t), (7.4)

which in turn defines the mappings g̃, φ, where φ satisfies (7.2).
Consider now the mapping ϒ of Definition 6.1. By (7.2) and (1) of Theorem 5.9,

we have for any (ζt )t∈h(S) ∈ ∏

t∈h(S) B(t, π/12) that:

d(φ ◦ ψ(t), t) ≤ d(φ ◦ ψ(t), ψ(t)) + d(ψ(t), t) < ε/2 + ε/2 = ε. (7.5)

Thus in fact ϒ defines a map:

ϒ :
∏

t∈h(S)

B(t, π/12) →
∏

t∈h(S)

B(t, ε). (7.6)

We claim that ϒ has a fixpoint. Indeed, ϒ is continuous by Proposition 6.3, and the
domain ofϒ is compact and convex, so Theorem 6.5 implies the existence of a fixpoint
of ϒ .
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The fixpoint of ϒ yields a choice of g̃, φ such that

h̃ ◦ ψ(s) = φ ◦ ψ(t), for all t ∈ h(S) and s ∈ h−1(t). (7.7)

Define the holomorphic map f := g̃ ◦ φ−1 : φ(D) → ̂C. We will show that f , φ

satisfy the conclusions of the Theorem. We have already proven (see (7.2)) that φ is
an ε-homeomorphism. We claim that {±1,∞} ⊂ h̃(V). Indeed, if t ∈ {±1,∞} and
s ∈ h−1(t) (here we are using the assumption that ±1,∞ ∈ h(S)), then by (7.7) and
(2) of Definition 7.1 we have h̃ ◦ ψ(s) = φ ◦ ψ(t) = φ(t) = t . Thus by Proposition
5.8, we conclude that f has no asymptotic values and

P( f ) = {±1,∞} ∪ h̃(V) = h̃(V). (7.8)

Also, by (7.7), we have:

h̃(V) = h̃ ◦ ψ(S) = φ ◦ ψ(h(S)), (7.9)

and since ψ(h(S)) ⊂ D (since ψ maps to vertices in a triangulation of D), we
have P( f ) = h̃(V) ⊂ φ(D). It remains to show that f |P( f ) : P( f ) → P( f ) and
h|h(S) : h(S) → h(S) are ε-conjugate. Indeed, we claim that φ ◦ψ : h(S) → P( f ) is
the desired conjugacy. By (7.8) and (7.9) we have that φ ◦ ψ : h(S) → P( f ) is onto
and hence a bijection. By (7.5), we have that φ ◦ ψ : h(S) → P( f ) is an ε-bijection.
Lastly, for all t ∈ h(S):

f ◦ φ ◦ ψ(t) = g̃ ◦ ψ(t) = h̃ ◦ ψ(t) = φ ◦ ψ ◦ h(t), (7.10)

where the first = is since f := g̃ ◦ φ−1, the second = is (1) of Proposition 5.5, and
the last = is by (7.7). ��
Now we remove the hypothesis of Definition 7.1 from Theorem 7.2

Theorem 7.3 Let D ⊆ ̂C be a domain, S ⊂ D a discrete set, h : S → S a map with
±1, ∞ ∈ h(S), and ε > 0. Then there exists an ε-homeomorphism φ : ̂C → ̂C and a
holomorphic map f : φ(D) → ̂C with no asymptotic values such that P( f ) ⊂ φ(D)

and f |P( f ) : P( f ) → P( f ) is ε-conjugate to h|h(S) : h(S) → h(S).

Proof We let D, S, h, ε be as in the statement of Theorem 7.3. Let ε′ > 0, and
recall the bijection ψ = ψn,h,ε′ : V(n, h, ε′) → S of Theorem 5.9. Define a Möbius
transformation M = Mn by

M ◦ ψn,h,ε′(s) = s for s ∈ {±1,∞}. (7.11)

Then, by fixing ε′ sufficiently small, we have that M is an ε/2-homeomorphism for
all sufficiently large n. We define

S′ := M(S \ {±1,∞}) ∪ {±1,∞}. (7.12)
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We define h′ : S′ → S′ by a simple adjustment of the definition of h:

h′(s) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M ◦ h ◦ M−1(s) if s, h(s) /∈ {±1,∞}
h(s) if s, h(s) ∈ {±1,∞}
M ◦ h(s) if s ∈ {±1,∞}, h(s) /∈ {±1,∞}
h ◦ M−1(s) if s /∈ {±1,∞}, h(s) ∈ {±1,∞}

(7.13)

For n > 0, let Tn denote the triangulation of D of Theorem 5.9. Note that M(Tn) is
a triangulation of M(D), and moreover by (7.11) the vertex set M(V(n, h, ε/2)) ⊂
M(Tn) contains ±1,∞. Thus Theorem 7.2 applies to M(D), S′, h′, ε/2 to yield an
ε/2-homeomorphism φ̃ : ̂C → ̂C and a holomorphic map f : φ̃ ◦ M(D) → ̂C

with no asymptotic values such that P( f ) ⊂ φ̃ ◦ M(D) and f : P( f ) → P( f ) is
ε/2-conjugate to h′|h′(S′) : h′(S′) → h′(S′). We claim that φ := φ̃ ◦ M and f satisfy
the conclusions of Theorem 7.3.

Indeed, since M is an ε/2-homeomorphism, it follows that φ = φ̃ ◦ M is an
ε-homeomorphism. We have already justified that P( f ) ⊂ φ̃ ◦ M(D). Lastly, by
Definition (7.13), h′|h′(S′) : h′(S′) → h′(S′) is ε/2-conjugate to h|h(S) : h(S) →
h(S), and so f |P( f ) : P( f ) → P( f ) is ε-conjugate to h|h(S) : h(S) → h(S). ��
Next we remove the assumption that ±1, ∞ ∈ h(S).

Theorem 7.4 Let D ⊆ ̂C be a domain, S ⊂ D a discrete set with |h(S)| ≥ 3,
h : S → S a map, and ε > 0. Then there exists an ε-homeomorphism φ : ̂C → ̂C and
a holomorphic map f : φ(D) → ̂Cwith no asymptotic values such that P( f ) ⊂ φ(D)

and f |P( f ) : P( f ) → P( f ) is ε-conjugate to h|h(S) : h(S) → h(S).

Proof We let D, S, h, ε be as in the statement of Theorem 7.4. Let M be a Möbius
transformation sending any three points of h(S) to ±1, ∞. Then applying Theorem
7.3 to M(D), M(S), M ◦ h ◦ M−1, ε(M) yields mappings we will denote by

φ̃ : ̂C → ̂C and f̃ : φ̃ ◦ M(D) → ̂C. (7.14)

It is straightforward to then check that the functions φ := M−1 ◦ φ̃ ◦ M and f :=
M−1 ◦ f̃ ◦ M satisfy the conclusions of Theorem 7.4 for aptly chosen ε(M). ��
In the case that h is onto, Theorem 7.4 is exactly Theorem A, and so all that remains
is to consider the case that h is not onto:

Proof of TheoremA We let D, S, h, ε be as in the statement of TheoremA.We augment
the set S to a set S′ ⊃ S so that S′ is still discrete in D, and such that we can
define a mapping h′ : S′ → S′ such that h′(S′) = S and h′|S = h. Then since
h′|h′(S′) : h(S′) → h(S′) is the same function as h : S → S, applying Theorem 7.4 to
D, S′, h′, ε yields the desired functions in the conclusion of Theorem A. ��

8 Conformal grid annuli

In Sects. 8–10, we turn our attention to the proof of Theorem B. As mentioned in
the Introduction, Sects. 8–10 may be read independently of Sects. 3–7. We begin by
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studying the annuli in which we will interpolate between two different triangulations,
as described in Sect. 2. First we will need several definitions.

Remark 8.1 In Sects. 1–7, we used the spherical metric whenever measuring distance
or diameter in the plane. In Sects. 8–10 we will more often use Euclidean distance
and Euclidean diameter, and we will denote these by dist, diam, (respectively) to
distinguish them from their spherical counterparts which we have been denoting by d,
diameter. In fact, the distinction between the two metrics will not be crucial since the
proof of Theorem B only uses the Euclidean metric in a compact subset of D where it
is Lipschitz-equivalent to the spherical metric.

Definition 8.2 An equilateral grid polygon is a simple closed polygon that lies on
the edges of a Euclidean equilateral triangulation of the plane. An equilateral grid
annulus is a topological annulus in R2 so that the two boundary components are both
equilateral grid polygons (on the same grid).

Definition 8.3 Let A be an equilateral grid polygon or annulus lying on the edges of a
triangulation T with vertices V . The vertices of A are defined as V ∩ ∂ A. If a triangle
T ∈ T has non-empty intersection with ∂ A, we call T a boundary triangle of A. If A
is an annulus, the thickness of A is defined as the minimum number of grid triangles
needed to connect the two components of ∂ A.

Notation 8.4 For any topological annulus A in the plane, we let ∂o A and ∂i A denote
the outer and inner connected components of ∂ A, in other words, ∂o A separates A
from ∞.

Recall that any planar topological annulus with non-degenerate boundary compo-
nents can be conformally mapped to a round annulus of the form B = {1 < |z| <

1 + δ}, and this map is unique up to rotation and inversion. We will be concerned
primarily with the case where δ is small.

We wish to consider conformal images of equilateral grid annuli, but also a slightly
more general class of annuli where each boundary component has a one-sided neigh-
borhood that is a conformal image of a equilateral grid annulus. More precisely, we
define the following:

Definition 8.5 Let A be a topological annulus so that both components of ∂ A are
Jordan curves. We shall call A a conformal grid annulus if there exists a finite set
V ⊂ ∂ A (called the vertices of A), two conformal maps fo, fi on A with the property
that fo(A), fi (A) are topological annuli, and equilateral grid annuli Ao, Ai so that for
k = o, i :

(1) Ak ⊂ fk(A),
(2) ∂k( fk(A)) = ∂k Ak ,
(3) fk(V ∩ ∂k A) equals the vertices on ∂k Ak .

If fo = fi and Ao = Ai , conditions (1)-(3) in Definition 8.5 just say that A is the
conformal image of a single equilateral grid annulus Ao and the vertices of A are the
images of the vertices of Ao.
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Definition 8.6 The vertices of a conformal grid annulus A naturally partition ∂ A into
segments which we call the sub-arcs of ∂ A. We say two sub-arcs are adjacent if they
share a common endpoint.

Definition 8.7 Given a conformal grid annulus A, we define

inrad(A) = sup
z∈A

dist(z, ∂ A),

to be the in-radius of A, and

gap(A) = sup{diam(γ ) : γ is a sub-arc of ∂ A}

to be the maximum (Euclidean) diameter of the sub-arcs of ∂ A.

Later we will find triangulations of A whose elements have diameters controlled
by these quantities.

Let notation be as in Definition 8.5. If T is an outer boundary triangle of Ao, we will
call the topological triangle f −1

o (T ) a boundary triangle of A. Similarly for Ai . In our
main application, the inner boundary of A will be an equilateral grid polygon and the
fi will be the identity map. The associated boundary triangles of A are then Euclidean
equilateral. The outer boundary of A will be the image of an equilateral grid polygon
under a map f −1

o that extends conformally past ∂o A. Thus the boundary triangles of A
along its outer boundary will be small, smooth perturbations of equilateral triangles.

Below we shall use several standard properties of conformal modulus. This is a
well known conformal invariant whose basic properties are discussed in many sources
such as [1] or [9]. We briefly recall the basic definitions. Suppose � is a path family (a
collection of locally rectifiable curves) in a planar domain � and ρ is a non-negative
Borel function on �. We say ρ is admissible for � (and write ρ ∈ A(�)) if

�(�) = �ρ(�) = inf
γ∈�

∫

γ

ρds ≥ 1,

and define the modulus of � as

Mod(�) = inf
ρ

∫

ρ2dxdy,

where the infimum is over all admissible ρ for�.We shall frequently use the following
property of conformalmodulus knownas the extension rule: if�,�′ are path families so
that every element γ ′ ∈ �′ equals or contains an element γ ∈ � then M(�) ≤ M(�′)
(since if ρ is admissible for�, it is also admissible for�′ so the infimum for� is over a
smaller set of metrics). We shall use the following basic facts later: the modulus of the
path family connecting the two boundary components of {1 < |z| < R} is 2π/ log R,
and so the extension rule implies that any path family where every curve crosses such
an annulus has modulus ≤ 2π/ log R.
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I

J

K

Fig. 4 Here we assume that the outer boundary of A maps to the outer boundary of a equilateral grid annulus
A′ (shaded). The inner boundary of f (A) (dashed) need not coincide with the inner boundary of A′. Given
three segments I ′, J ′ and K ′ on the outer boundary of A′ we let U be the union of all grid triangles in A′
that touch one of these segments (darker shading). Since I ′ and K ′ don’t touch each other and there are only
finitely many possible shapes for U , the modulus of the path family connecting them in A′ is uniformly
bounded

Lemma 8.8 Suppose A is a conformal grid annulus and that there are at least four
vertices on each component of ∂ A. Suppose f : A → B = {z : 1 < |z| < 1 + δ} is a
conformal map of A onto a round annulus. This sends the sub-arcs on ∂ A to sub-arcs
on ∂ B. Then there is an M < ∞, independent of A, so that any two adjacent sub-arcs
on ∂ B have lengths comparable to within a factor M, and every sub-arc in B has
length ≤ Mδ.

Proof Suppose J is a sub-arc of ∂ A and I , K are the two adjacent sub-arcs. Let � be
the path family in A that connects I to K . If I , J , K are in the outer boundary of A
we let f = fo and A′ = Ao and otherwise we set f = fi and A′ = Ai . In either
case we let I ′, J ′, K ′ be the corresponding line segments on the boundary of A′ and
�′ the path family connecting I ′ to K ′ in A′. Let U be the union of all the boundary
triangles of A′ that touch the boundary arc γ ′ = I ′ ∪ J ′ ∪ K ′. Note that there are
only finitely many shapes γ ′ can have, and only finitely many shapes for U (up to
Euclidean similarity).

The path family �′ need not be the image of � if f (A) �= A′. However, since f
is conformal and A′ ⊂ f (A) we have, by the extension rule that M(�) ≤ M(�′).
Again, M(�′) is one of a finite number of positive possibilities, so M(�) is bounded
uniformly from above.

We claim that M(�) is also bounded uniformly from below. Let σ be the union of
the three line segments I ′, J ′, K ′ and let � = C \ σ . By the conformal invariance of
modulus together with the extension rule, M(�) is bounded below by the modulus of
the path family connecting I ′ to K ′ in �, because f (A) ⊂ �. Again, this modulus is
one of a finite number of positive possibilities, so M(�) is bounded uniformly from
below.

The modulus of the path family in A connecting J to the component of ∂ A not
containing J is bounded above by the analogous path family for J ′ in A′. This is
bounded above by the modulus of the path family connecting J ′ to ∂U \ γ ′. There are
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only a finite number of possible configurations of U and γ ′, and each gives a finite
modulus, so the maximum of these values is also bounded above, independent of A.

Thus for each arc J on one component of ∂ B, the path family �̃ connecting J to
the other component of ∂ B is bounded uniformly above. We claim that this implies
length(J ) is O(δ) as δ → 0. Indeed, the metric ρ defined by setting ρ(z) = 1/δ for
z ∈ B satisfying

arg(z) ∈
(

min
ζ∈J

arg(ζ ) − δ,max
ζ∈J

arg(ζ ) + δ

)

and ρ(z) = 0 otherwise is admissible for �̃, and hence a calculation of
∫

ρ2dxdy
together with the definition of modulus shows that length(J )/δ = O(Mod(�̃)).

Similarly, the path family �′′ in B connecting arcs I , K that are both adjacent
to an arc J has modulus bounded uniformly above and below. Recall that we have
proven diam(J ) = O(δ). Thus, if we suppose by way of contradiction that diam(J ) �=
O(diam(I )) as δ → 0, we would deduce that M(�′′) degenerates, a contradiction.
We conclude that diam(J ) = O(diam(I )) as δ → 0. Since the roles of I and J may
be exchanged we deduce that the two arcs have comparable lengths. ��
Lemma 8.9 For every ε > 0, there is an N ∈ N so that if A is a conformal grid annulus
with Ao, Ai each having thickness at least N , then in the conclusion of Lemma 8.8
each subarc on ∂ B has length at most ε · δ.

Proof In this case, the path family connecting J ′ to the opposite boundary component
must connect points in J ′ to points outside a disk of radius � N · diam(J ′) centered
on J ′. The extension rule and the modulus calculation for annuli then imply this path
family has modulus tending to zero as N increases to infinity. This implies the arc has
small length compared to the width of B. ��

For a rectifiable arc γ , we let �(γ ) denote the (Euclidean) length of γ . A homeo-
morphism f : γ → σ between rectifiable curves is said to multiply lengths if for any
subarc γ ′ ⊂ γ we have �( f (γ ′)) = �(γ ′) · �(σ )/�(γ ).

A rectifiable curve γ is called an M-chord-arc if for any two points x, y ∈ γ the
shortest sub-arc of γ connecting x and y has length at most M |x − y|. A map f is
L-biLipschitz if

1

L
≤ | f (x) − f (y)|

|x − y| ≤ L,

for all x, y in its domain, x �= y. Bi-Lipschitz maps between planar domains are
automatically quasiconformal with dilatation at most K = L2. A closed curve is
chord-arc if and only if it is the bi-Lipschitz image of a circle. A length multiplying
map between two M-chord-arc curves is necessarily M-bi-Lipschitz, and moreover,
an L-biLipschitz map between M-chord-arc curves has a K -biLipschitz extension
between the interiors, where K only depends on L and M . See e.g., [18] by Tukia or
[13] by MacManus. In the following proof, we use the notation D(z, r) for the open
(Euclidean) ball of radius r > 0 centered at z ∈ C.
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Lemma 8.10 In Lemma 8.8, if A is a conformal grid annulus and each boundary
triangle T of A is an L-biLipschitz image of a Euclidean equilateral triangle, then
there is a K -quasiconformal map ψ : A → B = {z : 1 < |z| < 1 + δ} so that for f
as in Lemma 8.8, we have:

(1) ψ equals f on A minus the boundary triangles of A,
(2) ψ equals f on the boundary vertices of A,
(3) ψ multiplies arclength on each boundary arc of A.
(4) K depends only on the biLipschitz constant L.

Proof It is enough to consider the boundary corresponding to Ao; the argument for
the inner boundary is the same.

Let f : A → B be the conformal map of the conformal grid annulus A to the round
annulus B given in Lemma 8.8. Consider a boundary triangle T ′ of the equilateral
grid annulus Ao and the corresponding boundary triangle T = f −1

o (T ′) of A. Then
gT = f ◦ f −1

o is a conformal map of T ′ into B. Recall that the boundary of Ao is a
grid polygon, so it has fixed side lengths (which we may assume are all unit length)
and every angle is in {π

6 , π
3 , . . . 5π

6 }. Thus at each vertex v of ∂o Ao, the Schwarz
reflectionprinciple implies there is anα ∈ {3, 3

2 , 1,
3
4 ,

3
5 } so thatmapping gT ((z−v)α))

has a conformal extension to D(v, 1
2 ). This, together with the distortion theorem for

conformal maps (e.g., Theorem I.4.5 of [9]) implies that each edge of f (T ) = gT (T ′)
is an analytic arc with uniform bounds, meeting the other two at angles bounded
uniformly away from zero (at interior verticies all angles are π/6 and at boundary
vertices the angles are π/k where k vertices meet, and at most 5 triangles can meet
a boundary vertex of a equilateral grid polygon). Thus the image topological triangle
f (T ) is a chord-arc curvewith uniform bounds. Define amapψT on the boundary of T
bymakingψT lengthmultiplying on any edge lying on ∂ A and on any edge in common
with another boundary triangle, and let ψT = f on any other edges (necessarily an
edge shared with a non-boundary triangle). This is a bi-Lipschitz map from ∂T to
f (∂T ) between chord-arc curves and hence it has a bi-Lipschitz extension (which is
also a quasiconformal extension) between the interiors with uniform bounds. So if we
replace f in each boundary triangle T by the map ψT , we get a quasiconformal map
ψ : A → B that satisfies all the desired properties. ��
Lemma 8.11 Suppose � is a equilateral grid polygon bounding a region � and γ ⊂ �

is a equilateral grid polygon (on the same grid as �) so that the annulus between γ

and � has thickness N ≥ 10. Let �′ ⊂ � be the region bounded by γ . Suppose f is
conformal on �. Then there is K -quasiconformal map g on �′ so that

(1) g = f off the triangles touching γ ,
(2) g = f on the vertices of γ ,
(3) g is length multiplying on the edges of γ .
(4) K is absolute, and K → 1 as N → ∞.

Proof For each boundary triangle T of γ , f is conformal on a disk centered at the
center of T with radius ≥ 4 · diam(T ). Therefore the image T ′ = f (T ) consists
of analytic arcs meeting at 60◦. Thus for any subset of the three edges of T we can
define a biLipschitz map g : T → T ′ that agrees with f on this subset of edges, also
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agrees with f at all three vertices, and is length multiplying on the remaining edges.
As above, this is a biLipschitz map between chord-arc curves so it has a biLipschitz
(and hence quasiconformal) extension between the interiors, with constants that are
uniformly bounded, say by K . On any non-boundary triangle in �′ we set g = f . For
each boundary triangle we take g as above that is length multiplying on the edges of
T on γ or shared with another boundary triangle, and so that g = f on edges of T
that are shared with a non-boundary triangle.

If the thickness is very large, then f (T ) is close to an equilateral triangle, and it is
clear that the maps defined above can be taken close to isometries, in other words, the
quasiconformal dilatation is close to 1. ��

9 Triangulating annuli

In this section, we triangulate the conformal grid annuli introduced in Sect. 8. We do
this by pulling back a triangulation of a conformally equivalent annulus by a certain
quasiconformal mapping. We begin with a discussion of decomposition of domains
into dyadic squares.

A dyadic interval I ⊂ R is one of the form I = [ j2−n, ( j + 1)2−n] for some
integers j, n. A dyadic square in the plane is a product of dyadic intervals of equal
length, in other words, Q = [ j2−n, ( j +1)2−n]×[k2−n, (k+1)2−n] for some integers
j, k, n. We let �(Q) = 2−n = diam(Q)/

√
2 denote the side length of Q. Two dyadic

squares either have disjoint interiors or one is contained in the other one. Given a
domain D, we can therefore take the set of maximal dyadic squares W = {Q j } so
that 3Q j ⊂ D. Then

�(Q j ) ≤ dist(Q j , ∂ D) ≤ 3
√
2�(Q j ). (9.1)

This is an example of a Whitney decomposition of D. Note that if Q and Q′ are
adjacent squares in the Whitney decomposition above, with �(Q′) < �(Q), then

�(Q′) ≥ 1

3
√
2
dist(Q′, ∂ D) ≥ 1

3
√
2
[dist(Q, ∂ D) − √

2�(Q′)]

which implies �(Q′) ≥ 1
4
√
2
�(Q) > 1

8�(Q). Since the side lengths are dyadic, we

must have �(Q′) ≥ 1
4�(Q). Thus adjacent squares differ in size by at most a factor of

4.

Lemma 9.1 Suppose S = {x + iy : 0 < y < 2} is an infinite strip and the top
and bottom edges are partitioned into segments of (Euclidean) length ≤ 1/8 and
that adjacent edges have lengths comparable to within a factor of M. Then there is
a locally finite triangulation of the strip using only the given boundary vertices and
so that every angle of every triangle is ≥ θ > 0 where θ only depends on M. Thus
the triangulation has “bounded degree” depending only on M, in other words, the
number of triangles meeting at any vertex is uniformly bounded above by 2π/θ . If
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both partitions are L-periodic (under horizontal translations) for some L ≥ 1, then
the triangulation is also L-periodic.

Proof By splitting the strip into two parallel strips and rescaling, it suffices to consider
the case when the top side is divided into unit segments (we triangular the top and
bottom halves separately and join them along a unit partition running down the center
of the strip). The following argument is adapted from the proof of Theorem 3.4 in [6].

If · · · < x−1 < x0 < x1 < . . . are the partition points on the bottom edge define

Dk = min(|xk − xk+1|, |xk − xk−1|),

By assumption, any two adjacent values of Dk are comparable within a factor of
1 ≤ M < ∞, and sup Dk ≤ 1/8. Thus 0 < Dk/(16M) ≤ 1/128 is contained in a
dyadic interval of the form (2− j−1, 2− j ] for some j ≥ 6 (these half-open intervals
form a disjoint cover of (0,∞)). Let yk = 3

4 · 2− j be the center of this interval. Note
that yk and Dk/(16M) are comparable within a factor of 3

2 < 2, so yk < Dk/(8M) ≤
min( 1

64 , Dk/8).
Let zk = xk + iyk , k ∈ Z and consider the infinite polygonal arc σ with these

vertices. Note that σ stays within 1/64 of the bottom edge of the strip and every
segment has slope between−1/8 and 1/8: the heights of the endpoints above xk, xk+1
are each less than

max(yk, yk+1) ≤ 1

8
max(Dk, Dk+1) ≤ 1

8
|xk − xk+1|,

so

|yk+1 − yk |
|xk+1 − xk | ≤ max(yk+1, yk)

|xk+1 − xk | ≤ 1

8
.

Tile the top half of S by unit squares. Below this place a row of squares of side length
1/2. Continue in this way, as illustrated in Fig. 5. We call this our decomposition of S
into dyadic squares. (This corresponds to the restriction of a Whitney decomposition
of a half-plane to the strip.)

For each k, choose a square Qk from our decomposition of the strip S that contains
zk . There is at least one decomposition square containing zk since these squares cover
S, and there are at most two, since by our choice of yk , zk cannot lie on the top or

Fig. 5 The decomposition of S into dyadic squares
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xk

zk
Qk

Q k

Fig. 6 The point on the bottom edge is xk , and above it is the corresponding zk . The point zk is contained

in a square Qk and above this is its “parent” Q↑
k (both lightly shaded). The dashed curve is part of σ . Note

that σ intersects at least three squares to the left and right of Qk (darker shading). This implies the “parent”

square Q↑
k does not intersect σ , nor do the squares to the left or right of the parent (also dark shaded)

bottom edge of any such Qk (yk was chosen to be halfway between these heights).
See Fig. 6. Let Ik denote the vertical projection of Qk onto the bottom edge of S.
Since the segments of σ have slope ≤ 1/8, the height of σ can change by at most
�(Qk)/8 over Ik and since it contains a point zk that is distance �(Qk)/2 from both
the top and bottom edges of Qk , σ cannot intersect these edges of Qk . Similarly, it
cannot intersect the top or bottom edges of the adjacent dyadic squares of the same
size as Qk that share the left and right edges of Qk . In fact, it takes at least horizontal
distance 4�(Qk) for σ to reach the height of the top or bottom of Qk , so σ does not
intersect the top or bottom of the squares that are up to three positions to the left or
right on Qk . This implies that σ does not intersect the “parent” square Q↑

k of Qk (the
square of twice the size lying directly above Qk), nor does it intersect the left or right
neighbors of Q↑

k . See Fig. 6.
Now remove all the squares whose interiors intersect σ or that lie below σ . The set

of remaining squares contains the whole top row of unit squares. Since σ has small
slope, if a square Q is above σ , so is its parent (and by induction, all its ancestors).
Let γ denote the lower boundary of union See the top of Fig. 7. of remaining squares;
this is a locally polygonal curve made up of horizontal and vertical segments. A vertex
of γ is any corner of a decomposition square that lies on γ , and a corner of γ is a
vertex where a horizontal and vertical edge of γ meet. Let W denote the infinite region
bounded above by γ and below by the bottom edge of S (shaded region in top picture
of Fig. 7).

Let γk be the subarc of γ that projects onto [xk, xk+1]. By construction, each xk

lies below the parent of Qk , and the squares to the left and right of the parent are also
above σ , so xk is at least distance 2�(Qk) from the vertical projection of any corner
of γ . Connect xk to a vertex wk of γ whose vertical projection is closest to xk , or to
either one in case of a tie. Note that wk is a vertex on the bottom edge of Q↑

k ; a tie
occurs only if wk is the midpoint of this bottom edge. Adding the segments from xk

to wk divides W into quadrilaterals. See the second figure in Fig. 7.
Over the interval (xk, xk+1), the polygonal curve γ is either a horizontal segment,

a decreasing stair-step or an increasing stair-step. In the first two cases, connect every
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Fig. 7 The top figure shows the region W (shaded) below γ . The second figure divides W into quadrilat-
erals by connecting each xk to a vertex of γ that is closest to being “above” xk . We then triangulate the
quadrilaterals by connecting all vertices of γ to either the lower left or lower right corner, depending on
whether γ is decreasing or increasing between xk and xk+1. The bottom picture shows the squares above
γ triangulated in the obvious way

vertex of γ between wk and wk+1 (including these points) to xk . In the third case,
connect them all to xk+1. In either case, this triangulates W with triangles so that all
three edges have comparable lengths and no angle is close to 180◦, so by the Law of
Sines, all the angles are bounded uniformly away from 0 (the bound depends on M ,
the constant of comparability between adjacent arcs on the boundary of S). ��

The following simple lemma will allow us to build equilateral triangulations from
topological triangulations that are “close to” equilateral in a precise sense.
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10

b

a

Fig. 8 To compute the dilatation of affine maps between triangles, place both triangles with one edge [0, 1]
that is fixed by the map, and opposite vertices a, b. The affine map has the form z → αz + βz. Since 0, 1
are fixed, we can solve for α, β and this gives |μ| = |β/α| = |(b − a)/(b − a)|. This is bounded below 1
iff the angles of the triangle with vertices 0, 1, b are bounded away from zero

Lemma 9.2 Suppose K < ∞ and T is a topological triangulation of a domain �

and for each triangle T ∈ T , there is a K -quasiconformal map fT sending T to a
Euclidean equilateral triangle and that is length multiplying on each boundary edge.
Let μT be the dilatation of fT . If f is a quasiconformal map on � with dilatation μT

on T , then f (T ) is an equilateral triangulation of f (�).

Proof We use the characterization of equilateral triangulations given in Lemma 2.5
of [6]: a triangulation of a Riemann surface is equilateral iff given any two triangles
T , T ′ that share an edge e, there is an anti-holomorphic homeomorphism T → T ′
that fixes e pointwise, and maps the vertex v opposite e in T to the vertex v′ opposite
e in T ′.

For any two triangles T1, T2 in f (T ) that are adjacent along an edge e, define
g = ιk ◦ fTk ◦ f −1 on Tk , k = 1, 2, where ι is an appropriately chosen similarity of the
plane to make the image triangles match up along the segment I that is the image of
e. By the length multiplying property of the maps fT , g is continuous across e. Then
g−1 ◦ R ◦ g, where R is reflection across I , is the anti-holomorphic maps that swaps
T1 and T2 as required. ��

The image triangulation T ′ will be close to T if the dilatation μ is close to zero
in an appropriate sense. For our applications below, this will mean that the dilatation
of |μ| is uniformly bounded below 1 and that the support of μ has small area. As the
area tends to zero, f can be taken to uniformly approximate the identity, and so T ′
approximates T as closely as we wish.

The following is elementary and left to the reader. See Fig. 8 for a hint.

Lemma 9.3 Any Euclidean triangle T can be uniquely mapped to a equilateral triangle
T ′ by an affine map by specifying a distinct vertex of T ′ for each vertex of T . This map
is K -quasiconformal where K depends only on the minimal angle of T .

Lemma 9.4 There is a constant C < ∞ so that the following holds. Suppose A is a
conformal grid annulus, and f : A → B = {1 < |z| < 1+δ} is a conformal mapping,
where δ ≤ 1/100. Suppose also that length( f (I )) < δ/10 for each sub-arc I of A.
Then A has a topological triangulation such that each triangle T in the triangulation
can be mapped to a equilateral triangle by a C-quasiconformal map that multiplies
arclength on each side of T , and the degree of any vertex is bounded by a universal
constant (independent of A).
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Proof Use the logarithm map (and a rescaling) to lift the partition of ∂ B to a partition
of ∂S where S = {x + iy : 0 < y < 2}. The resulting segments all have length ≤ 1/8,
so Lemma 9.1 applies to give a triangulation of S. Moreover, the degree of any vertex
in this triangulation is bounded by a universal constant by Lemma 9.1, since for any
adjacent sub-arcs I , J on A, by Lemma 8.8 we have that the lengths of f (I ), f (J )

are comparable with a uniform constant (independent of A).
By Lemma 9.3, each triangle in our triangulation of the strip can be uniformly

quasiconformally mapped to an equilateral triangle by a map that multiplies arclength
on each edge. Thus for two triangles sharing an edge, and mapping to equilateral
triangles that share the corresponding edges, the maps agree along the common edge.
Pulling this periodic dilatation back to B via exponential map preserves the size of
the dilatation (since the map is conformal). We then pull the triangulation back to
A via the quasiconformal map ψ : A → B given by Lemma 8.10. This gives a
smooth triangulation of A and a dilatationμ on A that is uniformly bounded (since the
dilatation ofψ is) and that transforms the triangulation into an equilateral triangulation
under any quasiconformal map of A that has dilatation μ on A by Lemma 9.2. ��

Wewill alsowant to bound the sizes of the triangles produced in the previous lemma.
We will do this using estimates of harmonic measure and the hyperbolic metric, the
definitions of which we now briefly recall. The hyperbolic metric ρ on D := D(0, 1)
is defined infinitesimally by

ρ(z)|dz| := |dz|
1 − |z|2 . (9.2)

Any domain� satisfying |̂C\�| > 2 is hyperbolic, in other words the universal cover
of � is D, and the covering map φ : D → � defines the hyperbolic metric ρ on � via
the equation:

ρ(w)|dw| := |φ′(z)||dz|
1 − |z|2 , φ(z) = w, (9.3)

(see for instance Exercise IX.3 in [9]).
We will consider harmonic measure only in simply connected domains with locally

connected boundary, where the definition is as follows (see also the monograph [9]).
First, for an interval I ⊂ T, we simply define

ω(0, I ,D) := length(I )/2π. (9.4)

If � is a simply connected domain with locally connected boundary, we define har-
monic measure in � by pulling back under a conformal map φ : D → �. More
precisely, if φ : D → � is a Riemann mapping, and I ⊂ T is an interval, then we
define the harmonic measure of J := φ(I ) with respect to w := φ(0) in � by the
formula:

ω(w, J ,�) := ω(0, I ,D) = length(I )/2π. (9.5)
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Fig. 9 The harmonic measure of
I in the square with base I is at
least 1/4 in all points of the
shaded triangle. Hence it is at
least 1/4 in the strip containing
the square. Thus it is � 1 at any
point within bounded hyperbolic
distance of the shaded triangle

I

T

Q

S
z

Remark 9.5 If � is a simply connected domain then the hyperbolic metric ρ in �

satisfies the well known estimate

1

4 · dist(z, ∂�)
≤ ρ(z) ≤ 1

dist(z, ∂�)
.

See, e.g., equation (I.4.15) of [9]. More generally, we have

ρ(z) � 1

dist(z, ∂�)

for multiply connected domains with uniformly perfect boundaries. A set X is uni-
formly perfect if there is a constant M < ∞ so that for every 0 < r < diam(X)

and every x ∈ X there is a y ∈ X with r/M ≤ |x − y| ≤ r . All round annuli
B = {1 < |z| < 1 + δ} considered here have this property with uniform M .

Lemma 9.6 Suppose S = {x + iy : 0 < y < 1} and I is an arc on the bottom edge
of S with �(I ) ≤ 1/2. Suppose ε > 0 and z = x + iy ∈ S with ε · dist(x, I ) ≤
y ≤ min( 12 , �(I )/ε) . Then the harmonic measure of I in S with respect to z satisfies
ω(z, I , S) ≥ δ(ε) > 0.

Proof Let T be the right isosceles triangle with hypotenuse I . See Fig. 9. Then the
harmonic measure of I in S with respect to a point in T is greater than its harmonic
measure in the square Q with base I , and the latter is easily checked to be ≥ 1/4 in T .
Moreover, our conditions imply z is a bounded hyperbolic distance (in S) from T , with
a bound depending only on ε. Thus by Harnack’s inequality, the harmonic measure of
I with respect z is comparable to 1/4, e.g., is bounded uniformly away from zero in
terms of ε. ��

Corollary 9.7 The triangulation T of A given by Lemma 9.4 has the following prop-
erties. If T ∈ T does not touch ∂ A, then

diam(T ) ≤ C ′ max{dist(z, ∂ A) : z ∈ A} = O(inrad(A)),

for some fixed C ′ < ∞. If T ∈ T has one side I on ∂ A, then

diam(T ) ≤ C ′ diam(I ) = O(gap(A)).

This estimate also holds if T ∈ T has only one vertex on ∂ A and this vertex is the
endpoint of a sub-arc I ⊂ ∂ A.
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Proof By the explicit construction given in the proof of Lemma 9.1, any interior
triangle is contained in a Whitney square for the strip, and so has uniformly bounded
hyperbolic diameter in the strip. Quasiconformal maps are quasi-isometries of the
hyperbolic metric; for a sharp version of this, see Theorem 5.1 of [8]. Therefore the
hyperbolic diameter of the image triangle T in A is also uniformly bounded. Hence
the standard estimate of hyperbolic metric discussed above (see Remark 9.5) shows
that

diam( f (T )) ≤ C ′ dist(T , ∂ A) = O(inrad(A)).

On the other hand, our construction implies that if T ⊂ S is associated to a sub-arc
I ⊂ ∂S, in either of the two ways described in the current lemma, then by Lemma 9.6
we have ω(z, I , S) ≥ ε > 0, in other words, the harmonic measure of I with respect
to any point z ∈ T is uniformly bounded above zero by a constant ε that only depends
on the comparability constant M in the proof of Lemma 9.1. If we conformally map
the strip S to the unit disk with z going to the origin, this means that I maps to an arc
J on the unit circle whose length is bounded uniformly away from zero.

Now consider the path family of arcs in D with both endpoints on J that separate
0 from T \ J . This has modulus that is bounded away from zero, since the length
of J is bounded below. By the conformal invariance of modulus, the corresponding
family in the strip S has modulus bounded away from zero, and by quasi-invariance
so does the image of this family in A. Now suppose by way of contradiction that
dist( f (z), f (I )) �= O(diam( f (I ))). Then the modulus of this family would be small:
this can be seen by comparing it to the modulus of the paths connecting the two bound-
ary components of a round annulus with inner boundary a circle of radius diam( f (I ))
and outer boundary a circle of radius dist( f (z), f (I )). This is a contradiction, and
thus we conclude that dist(z, f (I )) ≤ M · diam( f (I )) for some fixed M < ∞, as
desired. ��

10 Triangulating domains

In Sect. 10, we prove Theorem B following the inductive approach described in the
Introduction. We start our construction of an equilateral triangulation of a planar
domain D with the following lemma for surrounding a compact set withwell separated
contours.

Lemma 10.1 Given a compact set K ⊂ C, there are sets �n so that for all n ∈ N =
{1, 2, 3, . . . } we have

(1) each �n is made up of a finite number of axis-parallel, simple polygons,
(2) each �n separates K from ∞ and separates �n+1 from ∞,
(3) 16−n ≤ dist(z, K ) ≤ 3 · 16−n for every z ∈ �n,
(4) dn = dist(�n, �n+1) ≥ 13 · 16−n−1,
(5) different connected components of �n are at least (Euclidean) distance 2 · 16−n−1

apart.
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Fig. 10 Anexample of aWhitneydecomposition of the complement of a compact set K . Byusing boundaries
of unions of Whitney boxes, we can create polygonal contours that surround K at approximately constant
distance

Proof Let D be the unbounded connected component of C \ K . This is an unbounded
domain with compact boundary contained in K . LetW be the family of dyadic squares
defined at the beginning of Sect. 9. For n = 1, 2, 3, . . . , let Dn be the union of all
(closed) squares in W that intersect {z ∈ D : dist(z, ∂ D) ≤ 16−n}. Each chosen
square has distance ≤ 16−n from ∂ D, so by (9.1), all the chosen squares have side
lengths between 16−n−2 and 16−n . Let �n = ∂ Dn ∩ D = ∂ Dn \ ∂ D. Then �n is a
union of axis-parallel polygonal curves and each segment in � is on the boundary of
a square not in Dn and therefore

16−n ≤ dist(z, ∂ D)

for every z ∈ �n . See Fig. 10.
On the other hand, every segment in � is on the boundary of a square Q inside Dn ,

and hence for every z ∈ �n we have

dist(z, ∂ D) ≤ 16−n + diam(Q) ≤ 16−n + √
2 · 16−n < 3 · 16−n .

Thus (3) holds. To prove (4), note that

dist(�n, �n+1) ≥ 16−n − 3 · 16−n−1 = 13 · 16−n−1.

It remains to prove (5). If a connected component of �n is not a simply polygon,
it is because there is a point x ∈ �n so that exactly two squares Q1, Q2 intersecting
{dist(z, ∂ D) = 16−n} both contain x as corners, but these two squares do not share
edge, in other words, �n looks like a cross at x . We can replace the cross by two
disjoint arcs passing through the centers of Q1, Q2, as shown in Fig. 11. Doing this
(at most finitely often) makes each connected component of �n a simple polygon,
every segment of which has length ≥ 2 · 16−n−1.

Finally, any decomposition square that is adjacent to �n contains a point at distance
≥ 16−n , for otherwise itwould be contained in the interior of Dn and every surrounding
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Fig. 11 We can assume components of �n are simple curves by removing any self-intersections at a point
x as shown. The distance between the new curves is at least half the side length of the smaller square Q
intersecting x ; by our estimates �(Q) ≥ 1

4 16
−n

square would intersect Dn . Hence such a square has side length ≥ 1
4 · 16−n . Since

any two distinct components of �n are separated by a collection of such squares,
the two components are separated by at least 1

4 · 16−n . If the modification in the
last paragraph creates two separate components, then these components are at least
1
8 · 16−n = 2 · 16−n−1 apart. ��

We will build the desired triangulation using an inductive construction. The first
step is given by the following lemma.

Lemma 10.2 For any ε > 0 there is a (finite) equilateral triangulation T0 of the
Riemann sphere so that

(1) every triangle has spherical diameter < ε,
(2) the part of the triangulation contained in the unit disk is the conformal image of

a Euclidean equilateral triangulation of some equilateral grid polygon under a
conformal map f with 1

2 ≤ | f ′| ≤ 2.

Proof The four sides of a equilateral tetrahedron give an equilateral triangulation of
the sphere. By repeated dividing each Euclidean triangle into four smaller equilateral
triangles, we may make every triangle on the sphere as small as we wish. If we
normalize so that one side of the original tetrahedron covers a large disk around the
origin, then the second condition above is also satisfied. See Figs. 12 and 13. ��

Proof of Theorem B Let D, η be as in the statement of Theorem B. We claim that it
suffices to prove the Theorem in the special case that

∞ ∈ D and K := ∂ D ⊂ D(0, 1/16). (10.1)

Indeed, if we are then given an η and a domain D which does not satisfy (10.1), wemay
apply a Möbius transformation M (defined by a spherical isometry moving a point in
D to ∞, followed by a scaling map z 	→ λz) so that M(D) satisfies (10.1). Applying
the special case of the Theorem to M(D) and an appropriately rescaled version of η

then gives a triangulation T of M(D) so that M−1(T ) is the desired triangulation of
D. Henceforth, we assume (10.1).
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Fig. 12 An equilateral tetrahedron with the flat metric on each side can be conformally mapped to the
sphere by the uniformization theorem. Here we plot part of the image in the plane: the thick edges are the
images of the edges of the tetrahedron, and the triangulation is invariant under reflection in these edges.
The center region is a Reuleaux triangle with interior angles of 120◦ (each edge is a circular arc centered
at the opposite vertex). See Fig. 13 for the same triangulation drawn on a sphere

Fig. 13 The equilateral
triangulation from Fig. 12
projected stereographically onto
the sphere

Let {�n}∞n=0 be the polygonal contours surrounding ∂ D obtained by applying
Lemma 10.1 to K = ∂ D. Fix an N ≥ 20 so that N/2 satisfies the conclusions
of Lemma 8.9 with ε = 1/10. Let

Un,ε := {z : dist(z, �n) ≤ N · ε}. (10.2)

We will now fix a sequence (εn)∞n=1 by specifying each εn to be sufficiently small
so as to satisfy the following finite set of conditions. First, let C > 0 be the maximum
of the constant C in Lemma 9.4 and K in Lemma 8.11. As argued in the proof of
Proposition 5.12 (see also Lemma 2.1 of [4]), there exists a constant an > 0 such that
any C-quasiconformal mapping φ : C → C normalized to fix 0, 1 whose dilatation is
supported on a region of (Euclidean) area < an satisfies

d(φ(z), z) < 16−n−2 for all z ∈ D. (10.3)
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We specify εn be small enough so that Un,εn has area < an , and set

Un := Un,εn = {z : dist(z, �n) ≤ N · εn}. (10.4)

Next, we note that any C-quasiconformal map φ : C → C normalized as above
is Hölder continuous with uniform bounds (see for instance Section I.4.2 of [11]). In
particular there exist constants M , α > 0 so that

diameter(φ(E)) ≤ M diameter(E)α for any E ⊂ ̂C (10.5)

for any normalized C-quasiconformal map φ : C → C. Let C ′ < ∞ be as in the
conclusion of Corollary 9.7. By (10.5) and the Lipschitz-equivalence of the spherical
and Euclidean metrics onD, we may specify that εn be small enough so that if E ⊂ D,
then:

diam(E) < NC ′εn �⇒ diameter(φ(E)) < η(16−n−2). (10.6)

Lastly, we specify that εn be sufficiently small so that:

Nεn < 16−n−2, (10.7)

εn < η(16−n−2), and (10.8)

if f : Un → {z : 1 < |z| < 1 + δ} is conformal, then δ < 1/100. (10.9)

We will now recursively define a sequence of triangulations {Tn}∞n=0 of ̂C. First
we introduce the following notation. Given a set E ⊂ C, we denote the union of the
unbounded components of ̂C \ E by ex(E), and by in(E) the union of the bounded
components of̂C\ E . Let T0 be the triangulation obtained by applying Lemma 10.2 to
ε = ε0.We now describe how to define the triangulation Tn , given Tn−1. Our inductive
hypothesis will be:

(∗) Each component of

⋃

{T ∈ Tn−1 : T ⊂ in(Un−1)} (10.10)

is the conformal image of an equilateral grid polygon, and
(∗∗) If T ∈ Tn−1 satisfies T ⊂ in(Un−1), then diameter(T ) < εn−1.

We note that (�), (��) hold true for n = 1 by Lemma 10.2 and since (10.10) lies inside
D by (10.1).

Define Vn to be the triangles in Tn−1 that intersect ex(Un), so that

ex(Un) ⊂
⋃

T ∈Vn

T . (10.11)
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Un
Γ

Fig. 14 The shaded region represents part of Un . The region in(Un) is covered by a Euclidean equilateral
triangulation with side lengths εn+1 (the small triangles). The region ex(Un) is covered by elements of
the triangulation Tn−1 constructed at the previous stage (drawn here as larger equilateral triangles, but
they need not be Euclidean triangles, only conformal images of such). The results of the previous section
are used to triangulate the intervening region with the given boundary vertices, and then a quasiconformal
correction will be applied to obtain an equilateral triangulation of the sphere

Let En be a triangulation of C by Euclidean equilateral triangles of spherical diameter
< δn , where δn is sufficiently small so that

Mδα
n < εn+1. (10.12)

Denote by Wn the union of triangles in En that intersect in(Un), so that

in(Un) ⊂
⋃

T ∈Wn

T . (10.13)

The region “between” Vn and Wn (or, more precisely, ex(Wn) ∩ in(Vn)) consists
of a union of topological annuli, one for each component of �n (see Fig. 14). Let A
denote such an annulus. We claim that A is a conformal grid annulus (see Definition
8.5), where we define the vertices on ∂o A as the vertices of the triangles Vn lying on
∂o A, and similarly the vertices on ∂i A are defined as the vertices of the triangles Wn

which lie on ∂i A. Indeed, let fi be the identity mapping, and let Ai be the union of
triangles in En that are a subset of A (with the inner boundary ∂i Ai coinciding with
∂i A). Since Ai is an equilateral grid annulus, we have shown the first half of Definition
8.5 (namely conditions (1)-(3) for k = i).

To finish verifying that A is a conformal grid annulus, first note that by (10.11)
and (10.13), we have A ⊂ Un . By (10.4) and the inductive hypothesis (��), there
is a topological annulus Ão ⊂ A consisting of a union of triangles in Tn−1 so that
∂o Ão = ∂o A, and

∂i Ão ⊂ in(� ∩ A). (10.14)

By Lemma 10.1(4) and (10.4), (10.7), we have that:

Un ⊂ in(Un−1). (10.15)
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Thus, we conclude from the inductive hypothesis (�) that there is a conformal mapping
fo : A → fo(A) so that fo and Ao := fo( Ão) satisfy conditions (1)-(3) of the
Definition 8.5 of conformal grid annulus for k = o.

We have nowproven that A is a conformal grid annulus. By (10.9), and our choice of
N together with Lemma 8.9, we have that both hypotheses of Lemma 9.4 are satisfied.
Hence, by Lemma 9.4, there is a triangulation T̃n of A (and of every other annular
component of the region between Vn and Wn) such that each triangle T ∈ T̃n can
be mapped to a Euclidean equilateral triangle by a C-quasiconformal map φT that
multiplies arclength on each side of T . This induces a dilatation μT := φT

z /φT
z on

each such triangle T ∈ T̃n . Extend T̃n to a triangulation of ̂C by adding the triangles
in Vn and Wn .

We now define

Tn := φn(T̃n), (10.16)

where φn is a normalized quasiconformal solution to the Beltrami equation

φz = μ · φz (10.17)

for μ defined a.e. in C as follows. Let

μ :=

⎧

⎪

⎨

⎪

⎩

μT if T ⊂ A,

0 if T ∈ Wn,

0 if T ∈ Vn and T ∩ ∂o A = ∅.

It remains to define μ on any triangle T ∈ Vn intersecting ∂o A. Note that T ∈ Tn−1,
and hence by the inductive hypothesis (�), there is a conformal mapping f of T
onto a Euclidean equilateral triangle f (T ). Also by the inductive hypothesis and our
choice of N , the hypotheses of Lemma 8.11 are satisfied and hence there exists a
C-quasiconformal mapping g : T → g(T ) such that:

(1) g(T ) is a Euclidean equilateral triangle,
(2) g is length-multiplying on the edges of T lying on ∂ A, and
(3) g = f on the remaining edges of T .

Set μ = gz/gz on T . This finishes the definition of μ, and hence defines the triangu-
lation (10.16). The definition of μ was so as to ensure that for any adjacent triangles
T , T ′ in Tn , there is an anti-conformal map T → T ′ satisfying Definition 4.2 (see the
proof of Lemma 9.2 for a similar argument), so that Tn is an equilateral triangulation.
Note furthermore that since μ = 0 in Wn , we have φn is conformal in Wn . Hence,
since Wn is an equilateral grid polygon, (�) holds with n replacing n − 1. Moreover,
if T ∈ Tn satisfies T ⊂ in(Un), then T is the image under φn of a triangle of diameter
δn , hence by (10.5) and (10.12) we have (��) also holds with n replacing n − 1. This
concludes our recursive definition of the triangulations (Tn)∞n=0.
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We now define the triangulation T∞ satisfying the conclusion of Theorem B. Let
n ∈ N and T ∈ Tn be a triangle so that φ−1

n (T ) ⊂ ex(Un). Then

φn+k ◦ ... ◦ φn+1(T ) ∈ Tn+k for all k ≥ 0. (10.18)

Since themaps (φn)∞n=1 are uniformlyCauchyby (10.3), the sequence (in k) of triangles
(10.18) converges to a triangle T∞ (with vertices/edges of T∞ defined as the limit of
vertices/edges of (10.18)), andwedefinebyT n∞ the collection of all such limit triangles.
By our definition of Tn , we have T n∞ ⊂ T n+1∞ . Define

T∞ :=
∞
⋃

n=1

T n∞. (10.19)

We claim that T∞ is an equilateral triangulation of D satisfying the conclusions of
Theorem B.

First we show that

⋃

T ∈T∞
T = D. (10.20)

If T ∈ T∞, there exists n ∈ N so that

T = lim
k→∞ φn+k ◦ ... ◦ φn+1(T

′) for some T ′ ∈ Tn satisfying φ−1
n (T ′) ⊂ ex(Un).

(10.21)

In particular, by Lemma 10.1(3) and since Un surrounds �n we have that

d(T ′, ∂ D) > 16−n . (10.22)

That T ⊂ D now follows from (10.3) and (10.21). On the other hand, if z ∈ D, then
by Lemma 10.1 we have that

z ∈
⋃

T ∈Tn

T and d

⎛

⎝z, ∂

⎛

⎝

⋃

T ∈Tn

T

⎞

⎠

⎞

⎠ > 2 · 16−n (10.23)

for sufficiently large n. Thus, by (10.3), we have that

z ∈ φn+k ◦ ... ◦ φn+1

⎛

⎝

⋃

T ∈Tn

T

⎞

⎠ for all k, (10.24)

and hence z ∈ ⋃

T ∈T∞ T . Thus we have proven (10.20).
That T∞ is a triangulation follows from the definition of T∞ as a limit of the

triangulationsTn , and soby (10.20),T∞ is a triangulationof D. In order to show thatT∞
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is an equilateral triangulation,weneed to show that there is an anti-conformal reflection
between any two adjacent triangles T , T ′ ∈ T∞ as in Definition 4.2. This follows since
there are adjacent triangles Tn , T ′

n ∈ Tn limiting on T , T ′ (respectively), and the anti-
conformal reflection mappings Tn → T ′

n limit on the desired anti-conformal reflection
T → T ′.

We now bound the degree of any vertex in T∞. First note that for a vertex v in
Tn , the degree of v is either 6 (this is the degree of any vertex in En or in T0), or
else the degree of v is bounded by the universal constant on the degree of any vertex
arising by the application of Lemma 9.4. In particular, the degree of v in Tn is bounded
independently of n, v, D and η. Hence the degree of any vertex v in T∞ is bounded
independently of v, D and η.

Finally, we prove (1.1). Let z ∈ D. Fix n so that

z ∈ in(�n−1) ∩ ex(�n). (10.25)

By Lemma 10.1(3), we then have that:

dist(z, ∂ D) ≥ 16−n . (10.26)

Hence, in order to prove (1.1), it suffices to show that any triangle T ∈ T∞ containing
z satisfies

diameter(T ) ≤ η(16−n). (10.27)

Denote by A the collection of triangles in Tn+1 that intersect

in(Un−2) ∩ ex(Un+1). (10.28)

By definition of A, one of the following must hold for each triangle T in A:

(1) φ−1
n−2(T ) ∈ En−2,

(2) T ⊂ Un−1,
(3) φ−1

n−1(T ) ∈ En−1,
(4) T ⊂ Un , or
(5) φ−1

n (T ) ∈ En .

Let

Tk := φn+k ◦ ... ◦ φn+1(T ) for T ∈ A. (10.29)

We claim that

diameter(Tk) < η(16−n) for all k ≥ 1 and T ∈ A. (10.30)

Indeed, by (10.12), for T as in cases (1), (3), (5) above we have that diameter(Tk)

is bounded by εn−2, εn−1, εn (respectively). Hence (10.30) follows for T as in cases
(1), (3), (5) by (10.8). For T as in cases (2), (4) we have by Lemma 9.7 that diam(T )
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is bounded by NC ′εn−2, NC ′εn−1 (respectively). Hence, applying (10.6) to φ =
φn+k ◦ ... ◦ φn+1 finishes the proof of (10.30). Moreover, by Lemma 10.1(4), the
definition of Un and (10.3), (10.7), we have that z ∈ ∪T ∈ATk for all k. Hence, by
(10.30), any triangle T in T∞ containing z satisfies (10.27), as needed. ��
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