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NOTATION

We follow standard notation whenever possible. R, € and C
denote the real line, complex plané and Riemann sphere respectively.
D is the unit disk, T its boﬁndary and D(x,r) a disk of radius r
centered at x. & will always denote an open subset of C, T a
Jordan curve on € and K a compact subset of €. Conformal
bijections are generally denoted by ®. As usual, (z,E,R), E C 2%,
denotes the harmonic measure of E on & with respect to 2z € .
We will use f, g, h, u, v, F, G, H, U, V for iarious functions and if
u is harmonic, u* denotes its harmonic conjugate. Also, X, ¥, W,
z,2 will usually be points bf ¢. ¢, 5, &, v, B will be small posi-
tive constants and C, A, B, M, N will be large positive constants.
The letters i, js k, n, m are used as indices, usually integer.
UfME means the sup of f on E. We sometimes drop the subscript if
it is clear from context. XE is the characteristic function of E.
Results are numbered consecutively within sections. For example,
Theorem 1.1.2 refers to the second result of the first section of
Chapter One. When referring to a result in the same chapter we omit

the first number. Formulas and expressions are handled similérly, but

with parentheses; e.g., (2.3.5).
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INTRODUCTION

Suppose [ 1is a closed Jordan cur&e dividing the Riemann

sphere, 'E, into two domains, 91 and Rz. Let @y and @, denote

harmonic measures on I corresponding to these domains. In this
thesis we are mainly concerned with the relation between @ and @,
in terms of the geometry of T', and with some consequences for the
function theory on Rl and 92.
In the first chapter we present joint work with L. Carleson,
J.B. Garnett and P.W. Jones ([15]), which characterizes the curves T
for which @q and w, are mutually absolutely continuous. The
condition is that T can be approximated by rectifiable curﬁes in a
certain way:
<<WA <<

Theorem: iff for every € > 0 there are recti-

1 2 1

fiable curves Ri c Qi, i=1,2, such that o)i(R1 n R2 Nr)>1-c¢,

i=1,2.
We also obtain a characterization of the curves for which ml

and o, are mutually singular. With the appropriate definition of a

2

tangent point we get:

Theorem: ®y 1 wz‘ iff the set of tangent points of T has

zero linear measure.

The first chapter also contains results for the special case
when T' is a quasicircle as well as some examples to illustrate our
results.

The condition that @y 1 @, relates to certain function

algebras on. I'. By AT we denote the continuous functions on €



2
which are holomorphic off T. We say AT is a Dirichlet algebra if <
every continuous, real-valued function on. [ can be uniformly approxi- |
mated on T by the real parts of functions in AT " (this says .AT
is a "large" subalgebra of C(T)). A. Browder and J. Wermer have shown
that AT is a Dirichlet algebra iff él 1 ®,> 80 from Chapter One we

obtain:

Theorem: AT igug‘Dirichlet‘algébra‘iff‘thé'éet'gé;tangént'pOints

-of I has zero linear meéasure.

In Chapter Two we give a new proof of the Browder-Wermer theorem,
replacing the use of the Hahn-Banach theorem in their proof by an
explicit construction involving solv1ng a 3 equation with L

estimates. One interesting consequence of the construction is:

Theorem: If V¥ 1is a singular homeomorphism of T = ,{_] z_] =1} %

to itself and ¢ > 0 is given, then there exists ¢ € C(T¥) such that

i) 0=¢=1
1) |{e =0} =1 -¢
1ii) |{eey =1} 21 -¢
iv) “¢UBMD <e
V) U¢°yHBMD'< €.
We also obtain new proofs of other conditions equivalent to .AT
being Dirichlet due to T. Gamelin and J.B. Garnett.
The definition of AT still makes sense if . I " is replaced by
any compact set K, as does the definition of a Dirichlet algebra.

In Chapter Three we giﬁe a new proof of a theorem of A. Davie which

characterizes the sets K for which AK is a Dirichlet algebra, in

J



terms of the harmonic measures on the components of C\K. The results
of Qhapter One also give a geometric characterization of these sets.
Part of the construction in Chapter Two is to consider a homeo-
morphism ¥ of T to itself and functions f on T such that f
and foy both extend holomorphically to D = {|z| <1}. It is known
that 1f ¥ dis a small C  perturbation of z -z then f and
foy both extend holomorphically iff £ is constant. In particular,
this holds if V¥ ‘is biLipschitz with constant near one. In Chapter

Four we show this constant can not be taken too large.

Theorem: There is a bilipschitz homeomorphism V¥ and a2 non-

constant f € C(r) such that f and fey} extend holomorphically to D.

This is an easy consequence of the following:

Theorem: For each 1 <d <2 there is a quasicircle T and

C>0 such that dim(T) = d and for any interval I cT,
LD
5, (D)

e

1
C = = C.

The construction of this curve is the main goal of Chapter Four.



CHAPTER 1
HARMONIC MEASURES SUPPORTED ON CURVES
1. Statement af Results

Suppose I 1is a closed Jordan curve on the Riemann sphere, E,
and let 91 and 92 denote the two components of & = C\I'. Choose a

point 2, € 91' and let w, = m(§13*.99 denote the harmonic measure

on I' with respect to Since 91 is simply connected, the

z,.
Riemann mapping theorem says there is a conformal map él from the

unit disk D = {|z| <1} to &, with %,(0) = z,. @, 1is a Jordan

domain, so by Carathéodory's theorem @1 extends to a homeomorphism
of T=23a to I. It is well known that ®y is the image of normal-
ized Lebesgue measure on T under this correspondence. We choose

. & -
z, € 92 and define w,y and 2, similarly.

In this chapter we will characterize those curves I' for which

@, and w, are mutually absolutely continuous, i.e., ml(E) =0

iff mZ(E) = 0 for all Borel subsets E CT. We write this as

wl << wz << wl. We will also characterize curves for which ml and

®, are mutually singular. This means there is a Borel subset E cT

such that wl(E) = wz(T\E) = (0 and is written as @y 1 mz. Note that

these properties are independent of our choices of zi- and éi,

i =1,2, since different choices differ only by composition with a

Mdbius transformation from D to itself.



If T 1is rectifiable, a theorem of F. and M. Riesz states that
@y and w, are both equivalent to the arc length measuré on T anq
thus @y <o, <@y (see [43], Lemmas 10.7 and 10.12). On the other
hand, Beurling and Ahlfors constructed a curve for which ml 1 @,
(see [4]). 1In [23], Gamelin and Garnett used their work on function
algebras together with a result of Browder and Wermer (Theorem 2.1.1)
to show @y 1 @, for a whoie class of self-similar curves such as the
von Koch snowflake. Thus we might expect the measures to be mutually
absolutely continuous if T is "almost" rectifiable, and to be singular
if T oscillates too much. This motivates the following results

(relevant definitions are given in the next section):

Theorem 1.1: With notation as above, the following are

eguivalent:

i) o, <<w, <<

1 2 1

ii) for every ¢ > 0 there are closed rectifiable curves

Ri t Ri, i =1,2, such that

wi(R1 n R, NT)>1-c¢

for 1i=1,2

iii) the points of T at which a tangent exists have full

measure with respect to both @y and @, .

Theorem 1.2: With notation as above, ®, 1 @, iff the set of

‘tangent points of T has zero linear measure.

As noted above, the first theorem says the measures are mutually
continuous if T can be approximated by rectifiable curves in a certain
way. The second result says the measures are mutually singular if T

has large oscillations on arbitrarily small scales, as in the curves



considered in [23]. The second result has the advantage of dealing
with a purely metric property of T, whereas we may need é_griori
knowledge of harmonic measure on T to apply Theorem 1l.1. The new
directions of Theorem 1.1 are (i) = (ii) and (i) = (iii). The impli-
cation (ii) = (i) is obvious by the Maximum Prinéiple and the F. and
M. Riesz theorem and we will see later that (iii) = (i) is an easy
consequence of the definition of tangent points, as is thé.forward
implication of Theorem 1.2.

Since all the problems encountered in this chapter are local in
nature, in all results we may replace '"closed curye" by "arc'" and the
conclusions remain unchanged. (Instead of having two measures, ®q
and w,s We would only have one harmonic measure. This measure,
however, splits naturally into @y + @, where the two measures corres-

pond to the two sides of the arc.)

2. Some Definitions and Results

" Before proving Theorems 1.1 and 1.2 we need to review some
definitions and results. We start with the definition of Hausdorff
measure and dimension. |

Let h be a continuous, increasing funcfion from [0,®) to
jtself such that h(0) = 0. Such an h will be called.a measure

function. For a planar set E and 5> 0 set
6
A (E) = inf{Zh(rj)}

where the infimum is taken over all coverings of E by disks {Dj}

satisfying radius(Dj) = rj < 8. Then
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A (E) = lim A’ (E)
h 550 B

is called the Hausdorff measure of E with respect to h. If

a
h(t) =t we shorten the notation to Aa and for h(t) =t we call

Ag = Al linear measure. Thus a set E has zero linear measure if we

 can cover it by disks whose radii sum up to be as small as we wish. We

define the Hausdorff dimension of a set E as

dim(E) = inf{a : A (E) = o}.

For further details see [14].

Next we wish to review Plessner's theorem, which basically says
that the boundary behavior of a holomorphic function on D is either
very good or very bad. More precisely, let St(€) denote the Stolz
domain in D with vertex & on T, i.e., the interior of the convex
hull of {|z]| < 1/2} U {§}. Plessner's theorem says that if F is
holomorphic in D then for almost every € € T one of the followihg

two options hold:

(2.1) lim F(z) = F(E&) exists
z-£ ,z€St (§)
and isnot 0 or =
or
(2.2) FSt(d) N{]z] <r}) =¢ forall 0<r<1.

The proof is quite simple (e.g. [43], Theorem 10.13); if (2.1)
and (2.2) fail on a set E of positiﬁe measure we can compose F “with
a MSbius transformation so it becomes non-tangentially bounded on a
positive measure subset of E. The local version of Fatou's theorem
on non-tangential limits and Privaloﬁ's theorem imply (2.1) holds on

this subset of E, a contradiction.



It will also be convenient to consider geometric conditions
corresponding to (2.1) and (2.2). Suppose &£ is a simply connected
domain. Fix x € 3% and define a continuous branch of arg(z-x) on

R. We say x 1is a twist point of & if both

lim inf arg(z—x) = -~
27X, 2€8

and
lim sup arg(z-x) = +* .
Z7%, €8

On the other hand, we say ® has an inner tangent at x if there is a

unique 6. € [0,27) such that for every 0 < ¢ < 7/2 there is a

0
85 > 0 such that (see Figure 1):

{x+rele : 0<r<5, |6-60| < w/2-e} C Q.

McMillan's twist point theorem states that almost every (with respect
to harmonic measure) boundary point of 2 1is of one of these two types
and that they correspond to the two conditions in Plessner's theorem.

For simplicity, we state his theorem only for Jordan domains.

Theorem 2.1 (McMillan, [40]: Suppose & is bounded by a

closed Jordan curve I', & : D+~ Q is conformal, and F = &',

i) For almost every £ € T, (2.1) holds for F iff & has

an inner tangent at #(£) and (2.2) holds iff &(5) is a

twist point of Q.

ii) If ECT and R has an inner tangent at every point of

E then o(E) =0 iff AI(E) =0 (®w = harmonic measure

for 9.

Actually, to prove Theorems 1.1 and 1.2 all we need is that for

almost every & (2.1) holds iff 2 has an inner tangent at ().



Figure 1: An inner tangent
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We will use the result on twist points only for convenience.

We now return to the situation described in Section 1; T a
closed Jordan curve bounding two domains Rl and 92. For x €T it
is easy to see that x is a twist point for Rl iff it is a twist
point for 92. We let Tw denote this common set of twist points.

Also let I1 and 12 denote the points of T where 91 and 92 have
inner tangents. These sets need not be the same, but T = I1 n 12 is

the set where I has tangents, i.e., the x € T such that there is a

60 € [0,21] so that for any € > 0 there exists 5> 0 with

{x+-re16 :0<|r] < 6,]6-90| <n/2-e} NT =¢
(see Figure 2). Equivalently, x is a tangent point of T iff

lim arg(z-x)2
29X, 2€T

exists. By McMillan's theorem we can write
T=TwU TnU (11\12) U (Ii\ll) UN

where ml(N) = mz(N) = 0. By part (ii) of McMillan's theorem @y and

@, must be mutually absolutely continuous on Tn (this is proved

directly from the definitions in Section 9), and this proves (iii) = (i)
of Theorem 1l.1. Since ml(IZ\Il) = mz(Il\Iz) = 0, @y and mz are
mutually singular on Il\I2 and 12\11. Thus it only remains to' con-=

sider what happens on the twist points. We will prove:

Theorem 2.2: For any Jordan curve T, wl and are

2
mutually singular when restricted to Tw, the twist points of T.




.1

Figure 2: A tangent
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3. Proving Theorems 1.1 and 1.2

In this section we deduce Theorems 1.1 and 1.2 from Theorem 2.2.
We will then proceed to the proof of Theorem 2.2.

Clearly Theorem 2.2 and our earlier remarks give (1) = (iii)
in Theorem 1.1. The same remarks also show ©, 1 mz unless Al(Tn) >0,
so we get Theorem 1.2. Thus it only remains to prove (i) = (i1) in
Theorem 1.1.

So suppose (i) holds. By McMillan's theorem and Theorem 2.2,
F = (@1)' has a finite, non-zero non-tangeﬁtial limit almost every-
where on T. Hence F is bounded in St(§) for almost every £e¢rT.
It follows that for any £ > 0 there isa M> 0 and a compact E C T

such that |F| is bounded by M on

D= U st
ECE

and |E| >1-m (|*] denotes normalized Lebesgue measure on T).
See Figure 3. Note that 3D 1is a rectifiable curve in D, so

R1 = él(as) is a rectifiable curve in §1 which satisfies
w Ry NT) = lE]| > 1 -m.

Similarly, we construct R2 c §2. Since @y and ®, are mutually

absolutely continuous we have

mi(RlﬂRzﬂI‘)>1-€("l) , 1=1,2

where €(M) =0 as m — 0. This completes the proof of Theorem 1.l.



Figure 3: The domain D

.13
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4. An Estimate on Harmonic Measure

To prove Theorem 2.2 we need two simple lemmas. The first is an
estimate on harmonic measure which says that a small piece of I can-
not simultaneously have large harmonic measure with respect to both

sides.

Lemma 4.1: Suppose T, Ri’ zg are as above with the additional

normalization that dist(zi,T)'z 1, i = 1,2. Then there is a constant

C>0 such that for any x €T and 0<r<1

0, N D(x,r)) 0, N D(x,1)) = c.rl.

The lemma follows easily from a variation of the Ahlfors distor-
tion theorem (e.g. see [21], Proposition 7.2). For r <t < 1 1let

ei(t) denote the angle measure of 3D(x,t) N Qi, i =1,2. Then we have
(4.1) w, (T N D(x,r)) < C-exp{-T fi(tei(t))-ldt}

(the Ahlfors distortion theorem is usually stated for subintervals of
', but it is known even if T N D(x,r) is not connected.)
We have 0 = ei(t) <2m, i=1,2 and Gl(t) + Gz(t) < 2w, so

we easily see
-1 -1 _ 2
(0;(8)) ~ + (8,(t)) =3 -
So if we multiply the two versions of (4.1) together, we get:

(4.2) wl(T n D(x,r))-wz(r N D(x,r))

= ceenplen sLe 07 + 0, (07HH

< crexpl-2 /1 S8

C-r2

IA

as required.
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5. Makarov's Theorem

In Section 2 we saw that harmonic measure looks roughly like
linear measure when restricted to tangent points. In this section we
will prove a lemma which says this fails on the twist points.

The main idea is to use Plessner's theorem to study harmonic
measure. This was used by N.G. Makarov in [39] to prove the @ksendal
conjecture for simply connected domains, i.e., if ® is simply con-
nected then there is an E C 3 with full harmonic measure and
dim(E) < 1. 1In fact, Makarov proves much more, essentially character-
izing those measure functions h for which © << Ah. The @ksendal
conjecture has recently been proven for all planar domains by P.W. Jones
and T. Wolff (see [38]).

Thé following lemma contains the version of Makarov's result
we shall need. It is essentially contained in Pommerenke's paper [44],

but we shall include a proof here for completeness.

Lemma 5.1: If & is bounded by a Jordan curve T, there is a

subset T of Tw, the twist points of T, such that w(T) = o(Tw)

and for every k = 1,2,... there is a covering of T by disks {D?}

of radius {r?} such that

1) zri<2¥
j h|
11) m(n‘j‘ nr) = 2“-:‘; :

The first conclusion implies Al(T) = 0, so that ® is not
mutually continuous with linear measure on Tw, as noted above.

To prove the lemma let & : D -+ be the Riemann map and
F=(®'. Let ACT be the set where (2.2) holds for F. 1In

particular we have
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(5.1) lim inf |F(z)| =0
z-&,265t (§)

for all &€ € A. Now fix k and suppose 2z € D satisfies

|F(z)| = 27%-¢

where € 1is a small constant we shall choose later. Now let I = I1(2)
be the interval on T of length 1 - lzl and center z/Izl. The
collection of all such intervals is a Vitali covering of A (by (5.1)),
so we can choose a disjoint subcollection {I?} with

|a\ U I?] =0 .

J
If {z?} denote the corresponding z's, we define

k k
. = ®(z,
wJ (zJ)

r? = dist(w§,r)
DX = p(ws,2r5)
J J J
T = U@UDYNT

n .
k=n j
T=N0NT
n
n

It is a well known result that if & is simply connected and

wé€Q with r = dist(w,2R) then
©(w,32 N D(w,2r),8) > 7

for some M > 0 independent of w and 2. This is just a weak version
of Beurling's solution of then Carleman-Milloux problem which says

@(w,32 N D(wy\+1),R) 2% arcsin(—t&)

for A > 1 (see [41], Section IV.5).
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To apply this to the current situation we set An =3 (T)»

take k = n and observe:

k k
m(zj.An,D) m(wj,Tn,Q)

k
b

I\

k
w(w, D, 2
(wJ )

27 .

By our choice of {I?} we know that for almost every & € A, St(&)
contains infinitely many of the points {z?}. k = n. Combining this
with Fatou's theorem on non-tangential limits (applied to the harmonic

function ®(z,Ap,D)) we get:

lim w(z,An,D) =1
z-&
z€st (§)

for almost every & € A, Thus

©(Tp) = || =z [4] .
Hence

o(T) = o(N Ty) = |A] = o (Tw)
n

as required. Furthermore, by Koebe's 1/4-theorem ([43], Corollary 1.4)

5ok < 4.2)80 (@ZN]-a - 125D
j 3 3 h|
< 427562 ]I?]
< 4.2 % e.2m
<27k

if ¢ s'g; . Also, since

m(z§,¢‘1(D§ N T),p) >N

we have
w(O,@-l(D§ nNr),D) >Ccne(l - ngl)
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by Harnack's inequality, so again by Koebe's theorem

k k
m(Dj Nr)y> c.(1 - lzjl)

v

K .., k-1
c-rj'C@ (zj))

v
N

°r,
J

if € 1is small enough.

6. Proof of Theorem 2.2

It is now easy to prove Theorem 2.2. Apply Lemma 5.1 to Rl and
@y to produce a set '1‘1 satisfying ml(Tl) = wl(Tw) and coverings

k
{Dj} of T1 satisfying (i) and (ii) of Lemma 5.1. Then by Lemma 4.1,

k k.2 k k.-1
TND,)=C(x,) -
0, ND) = C ()" (27ry)
-k k
5 '2 . o ®
C rJ

Hence
. (T.) < inf{e, (U DX N T)
271 Kk 2 j 3

infic-27%.2 £}
k 5 3

inf{C-Z-Zk}
k .

=0.

IA

IA

Thus wl(Tw\Tl) = wZ(Tl) =0 and so ml and ®, are mutually singular

when restricted to Tw. This proves Theorem 2.2.

7. Quasicircles

Next we would like to point out what happens if we assume I has

a certain "smoothness". In particular, recall that T is called a
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quasicircle if T = g(R) where g 1is a quasiconformal mapping of (€
to €. More geometrically, T is a quasicircle iff T satisfies the

"three point condition"

Jz3 -z < C-J22 -z

for some C = C(T') > 0 and any three points on I with =z, on the arc

3

of smaller diameter between zy and (see [2], Theorem IV.5). We

)
shall need only the following property of quasicircles:

Lemma 7.1: If & is bounded by a gquasicircle [ and R is a

rectifiable curve, then there is a closed, rectifiable Jordan curve

Rc® such that RNT =RANT.

To prove the lemma, let g be the quasiconformai map defining
I', which we may assume is conformal from the upper half-plane,
H= {Im(z) > 0}, to R. Let E = g-l(r N R) € R, which we may assume
is compact. Define a closed curve i in H as follows: let

{In}nzl be the bounded intervals in R\E, and IO the hull of E.

Then R consists of E together with the "tents' (see Figure 4)

{ (x+idist(x,E)) : x € I,} n=1

L

T

{(x+12-dist(x,18) px € I ).

Now let R = g(;). Clearly RNT =RNT =g(E), and Al(i NT) < =.
Furthermore, for each n, g(Tn) has length comparable to Jg(a)-g(b)]
where I, = [a,b] (e.g. see Section'One of [34]). Since R was
rectifiable these lengths have finite sum and so R is rectifiable,
as required.

Thus the existence of Ri in Theorem 1.1 automatically implies

the existence of R2. (Indeed, this follows from Ahlfors' paper [1],

because the quasiconformal reflection defined there is Lipschitz.) By

“N%




~

Figufe 4: The curve R
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examining the proof in Section 3 we see that (modulo harmonic null
sets) the existence of an inner tangent at x € ' implies the exist-

ence of an ordinary tangent. We thus obtain:

Corollary 7.2: If T 1is a quasicircle then the following are

eguivalent:u

i) ml << mz << wl

ii) for all e > 0 there is a rectifiable curve R such that

mi(R NT)>1-¢

for i=1,2.
iii) wl(Tw) = wz(Tw) =0
iv) o, << A and @, << Al .

Corollary 7.3: If T is a quasicircle then o, 1 ©, iff

either ml(Tw) =1 or mz(Tw) = 1 (in which case both are equal to

one).

8. Some Examples

It is interesting to note that the results of the last section

fail for arbitrary Jordan curves. For example, in this section we will

_construct a curve such that ml(Tw) =0 and mz(Tw) = 1, which is

impossible for quasicircles by Corollary 7.3. A slight modification of
the construction gives a curve satisfying (ii), (iii) and (iv) of
Corollary 7.2 but with ml 1 @,

The basic building block of the comstruction is a Cantor set

E ¢ [0,1] of positive length obtained as follows. Remove the open

AN%
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interval of length 1/8 and center {1/2} from [0,1]. Then remove
the intervals of length 1/32 from the centers of the two remaining
intervals. At the nth stage we remove 2n—1 open intervals, {Ig},
of length e = 2—2n—1. After removing the nth generation intervals
we are left with 2" closed intervals, {Jg}, of length Bn =

-2n-2

(3'2n+1)'2 , from which we remove the (n+1)St generation inter-

vals. Clearly

n

E=N Jj

n j
is a Cantor set with |E| = 3/4.

We now construct a Jordan curve Fo by adjoining "towers" to E.
For each interval I? = (a,b) in the complement of E we define a

n
"tower" Tj consisting of the three line segments

[a,a + iYn]

[a + iYn,b + iYn]

[b + iv_,b]
-n-2
where Yn =2 . Then
T =U@UTHUE
0 . J
n J
is a Jordan arc comnecting {0} to {1} and such that T NR=E

0
(see Figure 5).

Note that 1/4 = Yn/Bn < 1/3. The right hand inequality implies
that all the towers are contained in the isosceles triangle with base
[0,1] and height 1/6. Similarly, the isosceles triangle with base

J? and height 1/6 Bn= 1/6]J§j contains all the towers with base in

J? (see dotted lines in Figure 5). We will use this later when we
iterate the construction to show that the curve does not intersect

itself.



x_ﬂ 1ﬂrﬁ| o T H Ij..f.".

Figure 5:

First generation towers
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First we wish to make TO into a closed curve. For example, we
can place a copy PO on each side of a unit square, Q, with the
towers pointing out and call this new curve Pl. Let R} an& Ri
denote the inside and outside of Fl respectively and let E1 =3Q N Fl

be the four copies of E.

By the construction of E and the maximum principle one can show
w(z,E 91) > €
s R |
for some € > 0 and all z € Q. We also have
w(z,E 92) =0
o A |

for all z € Qi. One way to see this is to observe that no point of E
is either a twist point or inner tangent point of Ri so by McMillan's
theorem, E is a harmonic null set for Ri. However, this is a silly
proof since it uses a non-trivial theorem to prove an easy fact. A better
proof is to observe that every z € Ri near Pl lies in a rectangle R
as pictured in Figure 6.
Since
3/85111‘;1-12
n-1

<1/2
any such rectangle has bounded eccentricity. So if z € R, the harmonic
measure of the adjacent tents with respect to 2z is bounded below uni-

formly. Thus

m(z,El,Ri) <1-c¢
for all =z ¢ 9%. This is well known to imply
0(z5E,,02) = 0
z’ 1’1

for all =z as required.



—————-d

.ur.l. .|._1._1_L

n-1

Figure 6: The rectangle R
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We have just used the simple fact that if & is a domain and
E c o2 satisfies

OJ(Z,E,S'Z) < 1 - £

for some €& >0 and all z € &, then w(z,E,R) =0 for all =z € .
I do not know a reference for this so I will sketch a proof. Let SE
be the Peron family associated to XE’ i.e., the family of bounded

subharmonic functions v on & such that

lim sup v(z) < XE(i)
2

for all Y € 3aR. Then one can show,

w(z,E,Q) = sup {v(z)}.

SE
So if v € SE’ v<=1l-¢ on R, and so we easily check ng € SE'
n n A
Thus “'supping’ over SE gives mm%
-l—w(z E,R) = sup ~_ < w(z,E,R)
l-¢ 2= l-e ~ ¥
E

which is possible only if w(z,E,R) = 0, as required.

We now return to the construction. We obtain a curve Pz from
Pl by placing small copies of PO on the sides of the towers of Fl.
To be more precise, consider a single tower 0 of Fl and let A
denote an isosceles triangle with base L and height 1/6-an. Since
Tg has width an and height Yo = 2“’1-an we can place 2" 4+ 1 copies
of A along the top and sides of Tg with the triangle pointing
"outward" (into Ri) as in Figure 7. For each such triangle we replace

its base by a scaled copy of Po. Doing this for every tower in Pl

gives T

2° ﬂm§
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It is now clear how to proceed. We apply the construction above Am%

to each tower in Tz to obtain T3 and in general apply it to rn—l

to get Fn. The sequence {Fn} converges to a Jordan curve which we
will show has the desired properties.

We let 91 and 92 denote the "inside" and "outside" of T

respectively. It is easy to show &

2
wz(Tw) = 1, as desired. On the other hand if we set

has no inner tangents, so

Fn = Iln n 1—|n+1

F

UF
n
n

then no point of F is a twist point of 91. However, for 2z Dbelonging

to a tower of Fn,

v

@(Z,Fgﬁl)'_ &(Zanxgl)

: ™

v

independent of 2z and n. Thus
m(z,F,Rl) =1

for all =z ¢ 91, and so wl(Tw) = 0. Thus I is the desired curve.

If we alter the construction by replacing Figure 7 by Figure 8,
i.e., at each stage the new towers point into the old tower instead of
out of it, then we obtain a cgrve T' for which ml(Tw) = mz(Tw) =0
but @, 1 W, Rather than give a detailed proof of this, let us
consider another example with this property.

Perhaps surprisingly, we can take this example to be the graph of

a continuous real valued function on R. For example, consider T the

graph of the Weierstrass nowhere differentiable function
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f(x) = 2 b-nacos b x
n=1

with 0<a<1 and b an integér. Since T' is a graph it has no
twist points and if b is large enough (depending on a) one can show
T has no tangents. Thus ®y 1 @, by Theorem 1.2. More simply, one
can prove directly that @y 1 @, if 0<a< 1 and b =b(a) is
large enough. However, if a =1 then f is in the Zygmund class A,
(e.g. [50], Theorem I.4.9), so its graph is a quasicircle ([35], Section
2). Since T has no twist points, Corollary 7.2 implies @ < W, <<

2 1

even though £ is nowhere differentiable.

9. The Double Cone Condition

We will end this chapter by stating a conjecture, but first we
need to make a geometrical observation which we have already used
implicitly.

If KC C is compact and x € K we say X satisfies a double

cone condition with respect to K if there exists 60 € [0,2m),

0<e<n/2 and &> 0 such that
io
{x+re” : 0 < |r] < 6,]9—60J <m/2-e} NK=0

i.e., there are two symmetric cones with vertex x which do not hit K.
Suppose this conditioh holds for a set E € K of positive linear measure.
Then it must hold for some fixed triple (00,5,6) on a set of positive
measure, F. Rotate the set so 60 = /2 and consider the union of
cones with vertex in F, as in Figure 9. By considering connected

components of this union we see that we have “trapped" part of K




Figure 9: - The double cone condition
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between the graphs of two Lipschitz functions which agree on a set of
positive length. In particular, K has tangents almost everywhere (Al)
on F since these two graphs do. Thus, up to sets of zero linear
measure, the double cone condition holds at x iff K has a tangent

at X.

Thus almost every point of F satisfies the double cone condi-
tion with ¢ as near O as we wish (if & is small enough and for dif-
ferent Go's). So choose ¢ small and fix & and 60 so that the
condition is satisfied for (60,5,6) on a new set F of positive length.
Again rotate and take unions of cones and we get Figure 10: F is
trapped between two Lipschitz graphs which agree on F but now the
Lipschitz constant is very small (depending on ¢€). By localizing around

a point of demsity of F (with respect to Al) we may assume the

graphs agree on a large fraction of their total length. More formally:

Lemma 9.1: The double cone condition holds on a positive linear

measure subset of K iff (after a rigid motion) for all &> 0 we can

find a box Q=1IXx1 and Lipschitz functions fl and f2 on I such

that
1) £l =
1) |{f, = £,}] > (1-¢) -] 1]
1) {(LE (0 (0 = £,60} CKNQc {Guy):f () =y = £}

As an immediate consequence we have:

Corollary 9.2: For a closed Jordan curve r, @y and @, fail

Eg_gg.mutuallz>singular iff the conclusion of Lemma 9.1 holds for T..

This is a bit awkward, but is a formulation we will frequently

use, as in the next section.
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Figure 10: The condition with small &



10. The 52 Conjecture
Suppose I 1is a Jordan curve and that ‘wl << mz << @ when

restricted to some subset E of I'. By the arguments of this chapter

one can show

ml (I‘ﬂD,(x,r) )mz (rnD(x’r))

(10.1) lim 2 >0
-0 T

for almost every x € E (with respect to ml). With Ol(t) and 92(t)‘

as in Section 4 we define

g(x,r) = £(r) = max {‘ﬁ-ei(r)]} .
i=1,2

By calculus we get
-1 -1 2 2¢e(xr),2
el(r) + ez(r) 2o+ TT( p- )
so by inequalities (10.1) and (4.2)

0 < 1S expl-n Lo 7 4 0, THT

-0 r

)
2 .1 2 dt

< C + expi- = [re(t)” =}
Tr2 0 t

and so the integral must converge for almoét every X € E. We would
like to know that the converse holds, i.e., if the integral is finite on
E, the harmonic measures are mutuallf absblutely‘con;inuous on E.
However, this is false. The problem is that invthe definition of Bi(t),
D(x,t) N 91 may consist of many components and in such a case the
Ahlfors distortion theorem gives a poor estimate. One can cénstruct
curves, similar to those in Section 8, for which the integral converges
on a set of positive linear meas?re but with the harmonic me;sures

mutually singular.
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To avoid this difficulty, we define 5i(t) as the angle measure

of the largest connected arc in D(x,t) N Ri’ i=1,2, and

€(r) = max {|ﬂ-6i(r)|}
i=1,2

Then if o and ®, are not singular, the last section tells us we
can find ECT, Al(E) > 0 where the conclusion of Lemma 9.1 holds.
Applying the preceeding argument to the domains bounded by the Lipschitz

graphs we see

2 de
t

IE () <=
for almost every (Al) x in E.

Conjecture 10.1: For a Jordan curve T, ml 1 m2 iff

2 de
t

fé?(t,x)

except for a set of zero linear measure.

This is reminiscent of a result by L. Carleson on the boundary
behavior of quasiconformal mappings ([13]) and also of the theorem of
Stein and Zygmund relating a functions differentiability to the square
integrability of certain second order difference quotients (see [46]),
Section VII.5). One can show @y 1 @, fails iff there is a rectifi-
abie curve R and a positive length subset of R N ag on which the
integral above is finite (and this proves 10.1 if T has no twist

points). Thus part of the problem is to better understand the twist

points in terms of linear measure and rectifiability.

Conjecture 10.2: If R is rectifiable then wl(R N Tw) =

wz(R N Tw) = 0.



CHAPTER II

A CONSTRUCTION OF CONTINUOUS FUNCTIONS

HOLOMORPHIC OFF A CURVE
1. Statement of Results

If Q is an open subset of the Riemann sphere, C, we let
Hw(R) denote the space of bounded holomorphic functions on & and let
A(R) denote the subspace of functions in H“(R) which extend continu-
ously to Q, the closure of Q. If K< € is compact we let AK =
A(C\K). In this chapter we are primarily concerned with AT where T
is a closed Jordan curve. In particular, we consider the problem of
constructing non-constant elements of AT'

0f course, AT need not contain any non-constant functions. For
example, if T 1is a straight line, then Morera's theorem implies any
continuous function holomorphic off T is actually entire, and thus is
constant by Liouville's theorem. It is an observation of Riemann that
the saﬁe is true of any smooth T, and Painlevé showed AT = ¢ when-
ever I' is rectifiable.

On the other hand, there do exist curves T such that AT is
non-trivial. For example, suppose K C D(0,1) is a compact, totally

disconnected subset of € with positiﬁe area. Then
X, (w)

w=z

F(z) = 1/z * XK(z) =[ dxdy

is a convolution of a locally integrable function with a bounded,

35



fﬂ“

36

compactly supported function so it is bounded and continuous. More-

over, if z ¢ K
X (w)

(w-2) 2

F'(z) =/f

dxdy

so F is holomorphic off K. If T 4s any curve containing K then
F € AT and is non-constant because

Xg™)

Re (w-10)
> 0 L]

Re(F'(10)) =/ dxdy

2

This construction is given in a 1909 paper of Denjoy ([19]) and is based
on an example of Pompéiu (see also [20] where Denjoy comstructs a T
and a f € AT with singularities everywhere on I'). The example is
interesting because it had previously been thought that any continuous
function holomorphic off a totally disconnected set must be entire.
Moreover, the construction used the (then) recent work of Cantor on the
existence of perfect, totally disconnected sets and Lebesgue's work on
integration (note that XK is not Riemaﬁn integrable). In a commentary
on Denjoy's paper, Painleve says ([42]):
"1] convient de signaler le rOle joué, dans ce

résultat, par 1l'extension due & M. Lebesgue, de

1'intégrale définie. Grace & cette opération, que .

nombre de géomdtres jugeaient artificielle et trop

abstraite, une question naturelle, une question

fondamentale qui restait indécise 2 1l'entrée de la

théorie des fonctions uniformes, est aujourd'hui

tranchée, et tranchée précisément dans le sens qui

semblait le moins vraisemblable & la plupart des

analystes.... L'intégration de M. Lebesgue pourra

contribuer 13 encore a la formation d'exemples

décisifs."

Another interesting observation about AT is due to John Wermer

([9]), and essentially says that any non-constant function in Ap is

necessarily badly behaved on T'. More precisely, for any f ¢ AT’
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£(¢) c £(T'), so that if f is non-constant f() must cover a disk.

To prove this, suppose f(z) = 0 for some 2z, but f is non-zero

on I'. Then f has only a finite number of zeros and the winding number
of the curve f(') is well defined for both possible orientations of

T. The sum of these two is obviously zero, but by the argument princi-
ple it is also equal to the number of zeros of £, which is positive.
This proves Wermer's result.

It would be nice to be able to characterize the curves I' such
that AT is non-trivial, but this problem seems to be very difficult.
It is possible, however, to characterize the curves for which AT is
"large", assuming of course, we know how to define "large". Clearly
AT c C('), but since elements of AT are holomorphic off T the
imaginary parts are determined (up to a constant) by the real parts.
Moreover, our earlier remark shows that not every continuous, real-
valued function on I' can be the real part of an element of AT’ Thus
the most we can hope for is that such functions can be approximated by
the real parts of functions in AT' This motivates the following
definition.

We say a function algebra A on a set K is a Dirichlet algebra

on K if for every continuous, real-valued function g on K and every

e >0 there is an £ € A such that
llg - Re(D)ll, < &

where the norm is the "sup norm" on K.

Then A. Browder and J. Wermer proved in 1963 that:

Theorem 1.1 (Browder and Wermer, [9]): AT"EE_E.Dirichlet algebra

on T 1iff ml 1 mz.
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Because of Theorem 1.2 we obtain:

Corollary 1.2: Ap is a Dirichlet algebra on I' iff the set of

tangent points of T has zero linear measure.

An interesting, but easy, consequence is that for #ny measure
function h such that h(t) = o(t) as t +~0, we can find a curve
I' satisfying Ah(T) = 0 but such that AT is a Dirichlet algebra (see
Section 6). However, if Ah(r) = 0 for all such measure functioms,
then T has sigma finite length ([3], Theorem 4) so AT is trivial
([25], Corollary 2.4).

AT being a Dirichlet algebra is also related to other types of

approximation. We say AT is pointwise boundedly dense (p.b.d.) in

Hm(R), Q = C\', if there is a C > 0 such that for any f ¢ HQ(R)

there is a sequence {f } < A; such that anH < C-||f]] and {fn}

converges pointwise to f on Q. AT is called strongly pointwise

boundedly dense (s.p.b.d.) in HQ(R) if we can take C = 1. Then the

following is knoﬁn:

Theorem 1.3: The following are equivalent:

i) AT is a Dirichlet algebra on T.

ii) AT is pointwise boundedly dense in Hw(Q).

iii) AT is strongly pointwise boundedly dense in Hw(ﬁ).

The implication (i) = (ii) is due to Hoffman (see [23], [491),
(ii) = (iii) to Davie in [17], and (iii) = (i) to Gamelin and Garnett
in [23]. In the remainder of this chapter we shall give new proofs

of Theorems 1.1 and 1.3.
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2. Proof of Necessity

We start by showing that the mutual singularity of the harmonic
measures is a necessary condition for AT to be either a Dirichlet
algebra or pointwise boundedly dense in Hm(ﬂ).

Suppose @y and w, are not mutually singular. Then by
Corollary 1.9.2, the conclusion of Lemma 1.9.1 holds. After rescaling
we may assume we are in the situation pictured in Figure 11: a subarc
of T 1is trapped between two Lipschitz graphs, TZ and F3. of length
about ‘R‘>> 1 and agreeing except for sets of length less than €.
Choose points 2y and z, at distance one from I on either side,
and let Tl and I‘4 be circular arcs of radius R connecting the ends
of Fz and T3 respectively.

Now suppose f € AT' We will estimate ]f(zl) - f(zz)l. By the

Cauchy integral formula:

f(w)dw
1 A

f(w)dw

2mi - £(z,) = [ =
1 T 2 zy W

+ fr

and by our assumptions

f(w)dw _ f(w)dw, _ .
lfrz ;i:;_ fr3 zl_w ] = || £l €.

So using the Cauchy integral formula again

fWdw) ey .

l2ni £(z) = Jp 4r o

14 21

1f we now subtract the corresponding inequality for z, we obtain

1 1
2n|£(2,)-£(2)) | = 2Hst+|frl+r4(;I:; - zz_w)f(w)dwj
= gl 2e + P
< 1/4

if ¢ 1is small enough and R is large enough. But this means we

“‘%
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Figure 11: The contours Pi
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cannot pointwise approximate the holomorphic function which equals zero
on one side of I and equals one on the other, by any bounded sequence
in AF' Thus Ar is not pointwise boundedly dense in Hm(ﬁ).

To show AT cannot be a Dirichlet algebra on T we still
consider Figure 11, but now estimate ]f'(zl)j. Using the Cauchy

integral formula and the preceding argument, we get:

' f
2l €' Gl = Ve, -(i!f‘)i2| + gl -
1

C
<l + e

so that ]f'(zl)l is small if & is small and R is large (depending
on |[£]}).

But if AT were a Dirichlet algebra, we could take a continuous
function g which was zero on the "left" half of T and one oh the
"right" half (except for a small arc in the middle) and approximate it
to within 1/10 by Re(f), f € AT' Then simple estimates and the

mean value theorem say there is a point 2z, satisfying the estimates in

1

the preceding argument and such that
1
1£'¢z)] = |[VRe(£)(z))] = 157 -

We are not quite done since |f|] may be very large. But since
|Re(£)] = 1 + 1/10

F(z) = exp(f(z))

is in Ap, satisfies ||Fll = 2 and

1F' (2] = ]£'(z)] « Jexp(£(z;))]

1

2700 " !

which is a contradiction. Thus AT cannot be a Dirichlet algebra

on T,
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3. Proof of Sufficiency

We now turn to the sufficiency of the condition "wl 1 mz".
The original proofs were based on the Hahﬁ-Banach theorem. For example,
to prove that AT is a Dirichlet algebra on T, one shows that if p

is a real measure on I' such that
Sfdp =0 VE € AT

then P is the zero measure. Unfortunately, this type of proof provides
ﬁo description of how to approximate a given function. 1In this section
we will give a simple iterative procedure for approximating a function
f ¢ Hw(R) by functions in Hw(R) which are "closer" to AT' In the
next section we will show how this proves Theorems 1.1 and 1.3 and in
Section 5 we will complgte the proof of our main technical lemma.

So suppose f € HN(Q). We can naturally consider f as a pair
- of functions (fl,fz) with fi defined on Qi, i=1,2. Assume, for
the moment, that each fi is actually bounded and holomorphic on a

neighborhood of ﬁi’ so that both functions are defined on a neighbor-

hood A of T. Now suppose ¢ 1is a continuous‘function on € with

0o =1
=1 on QﬂA
¢ =0 on RZ\A.

Then g = @-fl + (l—cp)f2 is well defined, continuous and equals f

away from I'. Unfortunately, 8 is not holomorphic. Recall that if
-1 8

then g is holomorphic iff 5g = 0. However,
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Q
(1]
]

3(0f;) + 3((1-9)£,)

3o + (£1-£))

will not generally be zero. Therefore we fix € > 0 and try to find an

h € C(R) such that
3h = -3g

1
In]l_ = min(s,zﬂfl-fzﬂA).

Then F=h+g is in Hw(Q), approximates f to within ¢ away

from T, and has a jump of at most 2|h| = 1/2Hf1-f across I'. By

2”A
iterating this procedure, we would obtain in the limit a holomorphic
function on @ approximating f and with no jump across T, i.e.,
an element of AT'

So the main problem is to construct ¢ so that we can solve
for h. We will do the construction on the unit disk, so let
éi : D~ Ri, i =1,2, denote fixed choices of the Riemann maps. By
Carathéodory's theorem these maps extend to be homeomorph;sms from T
to T, so V¥ = (@2)-16 @1 defines an orientation reversing homeomor-
phism of T to itself. Note that a function £ € AT corresponds to a
pair of functions fl,f2 € A(D) which satisfy f1

Our assumption that ®y 1 @, is equivalent to V¥ being singular, i.e.,

= f2 ° W on T.

there is set E € T such that |T\E| = |¥(E)] = 0. We will obtain ¢

using the following lemma:

Lemma 3.1: For any singular homeomorphism ¥ of T to itself

‘and any ¢ >0, 6> 0, B > 0 there exist functions ¢i € c(d) N CQ(D)

""and contours Yi cD, i =1,2, such that
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i) 0=9¢ =1
i1) ¢; =1 on {]z] <1 -B}.
iii) ¢, =0 on {]z] <1 -8B}
iv) ¢, =¢,°V on T.

v) arclength on Yy is a Carleson measure with norm bounded

independent of V,e,0 and B.
vi) supp(Ve.) © {z € D : dist(z,v,) < 5(1-|z])}.

vit) |V, )| =6 -6 - a-lz L.

We will prove this in Section 5. The first four conditions say
that the pair (@1,¢2) corresponds to a continuous function ¢ as
described above. The last three conditions imply we can solve the
required 3 problem with the desired estimate. Before proving this
we need to review a few facts.

For an arc I €T we let Q(I) denote the "cube" over I,
Q(I) = {rez: z€1,1-]|I] <r<1}.
Then we say a positive measure p on D is a Carleson measure if

u(?(l))
sup
ICT L

and Mu”c is the Carleson norm of W. Such measures were introduced

m

Iellg <=

by Carleson in his solution of the corona problem on D ([12]). They
are related to the 3 problem roughly as follows: if p is a Carleson

measure we can find a function B which solves
3B = |
(in the sense of distributions) and satisfies

Bl , =¢ - lul
i HL © wlg
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for some universal C> 0 (see [26], Chapter VIII or [37]). Unfor-
tunately, this estimate only holds on T, not on all of D. For
example, if B is a Dirac mass, then any solution must be unbounded on
D. However, with additional assumptions one can get estimates on all
of D. For example, if ¥y 1is a collection of arcs in D and P is

the arclength measure on ¥, then we have:

Lemma 3.2: If y and ¢ satisfy conditions (v)=-(vii) in

Lemma 3.1, & is small enough (depending only on upuc) and b is a

bounded, "continuous function on D, then there exists a F € LQ(D)

such that:
i) 3F = bdyp
11) |Fly s C - lIblly -

where C depends only on HpHC.

This is essentially proven in Chapter VIII of [26] (see also
[29]), so we will only sketch the proof. Suppose {zn} is a sequence
of points on ¥y which satisfy

]zn-zmj-z-%s(l -]z ) » ném

Then it is known ([26], page 341) that such a sequence is interpolating
for H (D) with constant depending only on HpHC. Thus there exist

Pehr Beurling functions {hn} ([26], page 294 or [37]) such that

hn(zn) =1

2zl (2)] = ¢y = cllullp)-
By Schwarz's lemma there is a 8 > 0 such that
In @] > 1/2

if ]zn—wJ_< 6(1—Jznj). Let
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D =1{z €D : dist(z,¥) = %(1'- |z])}

and chooce a finite collection of sequences {zi} j=1,...,N such
that
h| i) . 1 :
|?n - zm| 2 16{1 - |zn|) , n#m

and so that for every z € D, there exists zi so that

|z - zil =8(1 - lzil).

For fixed j, 1let {hi} be the Pehr Beurling functions for {zg}.

Also write D as a disjoint union of sets
. . 3
Di c{z: lzi -z| <8Q1 - |zn|)}.

Now define

|

.3 f hn(z) b(w) S‘P (‘ded
o3 hn(w) oz ¥y
n

F(z)

=1

n,j
Then we can check that 3F = bo¢ formally, so we only have to check
the convergence of the series. If we write F = ZHi, then

Ibll_ e -6~ (1-|wl)

2),3
ﬁ|hn(z)lfvj p— —dxdy

@)

IA

n

IA

c-livll, £ -Ind )] 8.

Thus

colivll, e 2 B2
n,j

cellbll e+ €y - N

|F(2)]

IA

IA

A

< c(lull )bl e -

This completes the proof of Lemma 3.2.
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4. The Construction

A@%

So suppose @ 1 ®, - We will first show that AF is strongly
pointwise boundedly dense in HQ(R) (assuming Lemma 3.1). Clearly it
is enough to show the following: given £ € Hf(&), K € @ compact and .

n > 0 there exists F ¢ AP satisfying
17l = I£lg
IF-£llg =7 .

To obtain F we will construct a sequence of holomorphic functions {Fn}

on & such that

1

(4.1) IF~£llg <3 M

(4.2) IF g < g » Vn

@ IEpa Tyl < 27 0 o

(4.4) jump(r) < 270, ¥a ™

where "jump" is defined as
jump (F) = sup(lim( sup |F(2)-F(w)|)) -
x€T 650 z,w,€D(x,8)NR
Then F = lim Fn exists, is in AT and approximates f to within
on K. "

Without loss of generality, we assume ||| = 1. As before we
consider f as a pair of functions (fl,fz) defined on 91 and 92
respectively. We can approximate f1 on K 91 by a function in
A(Rl) (e.g., pull back to the unit disk and dilate slightly) and this
function can be uniformly approximated on §1 by a function holomorphic

on a neighborhood of §1 (e.g., use Mergelyan's theorem, or map 91

conformally to a slightly largef domain). Thus we may assume fl is

MM%
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holomorphic on a neighborhood of ﬁl and satisfies

I£-£ <1/4 - m

|
1'RNQ,

HHH<1-%<1

(We have extended f1 only for convenience; we will remark in Section 8

on how to avoid this). We take f holomorphic on a neighborhood of

2!

§2, similarly. We now map the problem to the unit disk and with the

functions from Lemma 3.1 write

g, = (£7°8)) - o) + (£,°2,)(1-0,)

g, = (£1°8,) = ¢y + (£,°2,)(1-0,)

If B is small enough these are well defined and satisfy

gl(x) = 82(‘V(X)) s XE€T.

Also 5gi , i =1,2, satisfy Lemma 3.2 so we can find hl and h2 so
that

oh, = -3g i

. 1,2
1 1

b lly = Ce  1=1,2

Now set

(g1+h1) °@Il(2) s 2 € 91
Fi(2) =

-1
(g,*h,)°%,7(2) » 2z €&,

Then F, is holomorphic on & and

U7l = maxCleylg A1l ) + maxClny byl

<1-3+cee
st ¢
<1 -4
16

if e 1is small enough.b Also, if P and & are both small enough
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we get
1
IF -£llg = 7 + max([hyllps1h,l )
1
= % N + C-¢
-1
=3 M .
Finally,
sump(F;) = [Ibylly + Iyl < 2:C-e
Thus F. satisfies (4.1)-(4.4) if we take P and ¢ small enough. In

1
general, given Fn—l we define Fn by applying the above procedure to

Fn-l’ choosing € so small that

-n-4
Ihylly=mn - 27 1=1,2

Then clearly Fn satisfies (4.2) and (4.4) and

IF ~F__4llg = Jump(F ;) + Iyl + lihylly

-n-2. -n-3

n 423 4 2

=2 n

<2%m .

Thus Lemma 3.1 implies AT is strongly pointwise boundedly dense in
H ().

The proof that AT is a Dirichlet algebra on T 1is very similar.
Suppose g 1is a continuous, real-valued function on T and let u
be its harmonic extension to &. Since both components of & ate
simply connected, u has a harmonic conjugate u* on . Now set
.G =u + iu* and suppose M > 0 1is fixed. Since Re(G) is continuous,
we can find functions f1 and fz, holomorphic on open neighborhoods

of §1 and §2, such that

o - Re(fi)uSai <% i=1,2
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. "first generation" intervals, F1
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Applying the preceding construction with this pair (fl,fz) we can
obtain a F1 € Hf(&) with jump(Fl) <n/4. Also, if z € R, say
z = él(w), w € D, then
|Re(F, (2))-u(2)| = T + |Re(f) ()=g; ()] + |y ()]

< T+ |Re(py (D E (W) + (19 (D), ()]

= 3 + |Re(f; (W)=, ()]

="
This merely corresponds to the fact that the convex combination of two

complex numbers with the same real part also has that same real part.

Thus
IRe(E) - ulg =0 -

We now define F2,F3,... as before and obtain a F € AT with
IRe(F) - gllp = 21

which proves AT is a Dirichlet algebra on T.

5. Proof of Lemma 3.1

We now turn to the proof of Lemma 3.1. We will first comstruct
the contours ¥, and Y, as finite unions of "tents" with endpoints on
T. We then define wi to be constant on each component of DW:.L and
with very small jump across each arc in Yyi° It is then easy to

“gmooth out" ¢, so that conditions (iv)-(vii) of Lemma 3.1 are

i
satisfied.

We start by dividing T into two disjoint, finite families of

1 and F;, which satisfy:
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(5.1) Intervals in Fi and F; alternate and cover all of T.

(5.2) 11] <B vierl, ol <E vier;.
1 1
(5.3) s lIl =2 ., 3 @] 5 -
IEFi | 4 IGF;] | 4

We can do this because V¥ singular implies

. I - o
L T -
x€1

for almost every x € T. So if we cover a set of measure larger than 3/4

by disjoint intervals satisfying

|T] =z 4[¥(D]
1| = %

we obtain (5.3) and half of (5.2). We can then guarantee (5.1) and the
other half of (5.2) by trivial alterations, if necessary.
We define a first generétion contour Yi. by drawing "tents"

over each interval in Fi, i.e.,

Yi = Ul{ri s r=1-distE,I1%, £ € T}

I€F1
and similarly,
o U (e r=1- distEWD).E € ¥}
2 2 . :
IeF1
(see Figure 12). Now suppose we have constructed Y? and Yg’ the

. th generation contours, by adding "tents" over the intervals in FE

and Fg. Suppose I € Fi U F;. We subdivide I into two disjoint,
finite families of intervals, Fl = F§+1(I) and F2 = F§+1(I), which

satisfy:



1
IefFl A

Figure 12:

1l
¢é1), I¢ FZ

The contours Yi
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(5.4) Elements of Fl and FZ alternate and if I € F? then the
endpoints of I are in intervals of FZ' If I¢€ Fg, the

endpoints lie in interﬁals of Fl.

(5.5) 3 3] =4I, 2 V@] = 4T
JeF, JeF, '

(5.6) If Te€F- and J¢F, then |J] s 7dist(3,I%) and if

I¢ Fg, JeF, then V(3| = %dist(w(J).w(I)c).

(5.7) I1If I¢ F? and J ¢ F2 contains an endpoint of I then J
is adjacent to some interval T e Fg. We then require that
V@] = %1w(f)j. If I¢ Fg, JeFys ¢ F? then we want
1~
13| = 7I1].
As before, (5.5) follows from the singularity of ¥ and the other

conditions can be obtained by trivial modifications. We now set

F?*l = U, F§+1(I) , i=1,2
TeFNUF
172
and define Y§+1 by adding to Yi the tents

Ty ® (x§ : r =1 - dist(%,1%),& ¢ I}

k+1 . k
for all 1 ¢ Fl and adding to Yy the tents YW(I) for all

I¢€ F§+1. However, we make one slight modification. For each tent
Yy € Yi’ I 1is adjacent to two intervals J;,J, € F§+1. Instead of
placing new tents over each of these intervals, we remove the tent
over I and replace it with a larger tent Yy with base J = J1 Ul
U J2 (see Figure 13). This insures that no two fents in Y§+1 have
a common endpoint on T. Also, condition (5.7) implies that no tent

more than doubles in size, no matter how many times it is "enlarged".

0f course, we do the same for tents in Yg.



Figure 13: The "new" tent
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Now choose N, a large integer, and let Yi = Y?, i=1,2.
We_need to verify that arclength on Y1 and Y, are Carleson measures
with Carleson norms independent of N. Without loss of generality we
consider ¢ = 81, arclength on Yqe

Let {I,} be an enumeration of all intervals which occur as the

h|
base of some tent in Yye Fix I cT and let Q be the associated

Carleson cube. To estimate £(Q) =2 £(Q N Y1 ) we consider three
h| k|

situations.

First, if 3I c Ij’ then Y1 NQ=¢ so these intervals
h|

contribute nothing.

Secondly, by (5.5),

2obty; NQ) =22 ]Ij]
IjCIk i IjCIk
N

-2
2:|L |- Z 4
k' g

IA

IA

3-|L,]-

So if we sum over the (disjoint) collection of maximal Ik's contained

in 3I,
3z ey NQ) = 3-2|L]
IkC3I I.CIk 3
maxXimal J
< 9|1}

Finally, any remaining Ij must contain an endpoint of 3I.
Consider those that contain the left endpoint. We can relabel them so

I1 > I2 Se++ and by condition (5.6),

-

J15,0) =517y 0 31) = 2730 1)

Thus
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'§ z(YIj nQ =6-j1)-2273 < 12)1).
Thus £ is a Carleson measure of norm less than 33.
For i=1,2, let 92 be the component of Dwi containing
zero. Let 91 be the components of Dwi adjacent to 92 (i.e.,
separated by an arc of Yij' In general, 9? consists of the compo-
nents of D\Yi adjacent to 92—1. Thus we can write D = Yy (8] 92 Ueoo

U Qﬁ_l (see Figure 14). Set

N-1 K
9. (z) = 2 (1 -x ,(2)
1 k=0 N7k
1
N-1
9,(z) = 2 @X (2) .
2 w=o N ok

2
Then wl(x) = ¢2(v(x)) for all x € T except the endpoints of Y10 Yo

where these functions have a jump discontinuity of size 1/N << ¢. Also,
we can "smooth out" these functions so that they satisfy (vi) and (vii)
(e.g., see [26], page 357).

Thus we have proved the lemma except for the finite number of
jump discontinuities. In fact, the functions above are quite sufficient
for the proofs of Theorems 1.1 and 1.3 (we just pick up a few more
small error terms), but to prove the lemma as stated, we need to modify
Y1 and YZ near T.

Consider an arc of Y1 ending at a point & of T. Choose
an interval It around &€ so that JIi] is small compared to the
distance to the closest other endpoint of Y- We also want
jY(Ii)J to be small compared to the distance between Y(g) and other
endpoints of Yo We now define a family of intervals {Ii} n=1,2,0005
l=3j= 2n~1, by removing a concentric interval from each nth genera-

tion intervals. We choose them so that
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1
sz1
\\\‘R

//\\A./\
2 2
l .

Figure 14: The contour Yl
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Then arclength on

¥, = Uy¥
1oy 12
n
Y,= Uv
2 ng v

are uniformly bounded Carleson measures. We then replace the "tip"
of Yl near & with ;1 (see Figures 15 and 16) and similarly for
Yor We also redefine ¢, on D\;l. Suppose @, equaled a and b

on the left and right of the replaced arc. Redefine ¢, as

0, (2) = <f;)a +a- f;)b

if z ¢ Ti (the solid tent over Ii, minus the solid tents of all
small intervals). This is pictured in Figure 16 for a=0, b =1. We
redefine ¢, similarly and do this for every endpoint of the original
contours. After smoothing, these functions are continuous on D,

and so satisfy all the conditions of Lemma 3.1.

6. An Example

In the previous section we constructed the “"partition of unity"
function ¢ by pulling the problem bg;k to the unit disk. This makes
the construction a little simpler and also allows us to deal with homeo-
morphisms not arising from curfes, but the relation between ¢ and

the geometry of I becomes less apparent.



F.igure 15: An endpoint of Yy
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Figure 16: The contour ;1
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However, it is sometimes quite easy to comstruct ¢ without
going to the unit disk. For example, consider a curve constructed as
follows. Let PO be the boundéry of a square. We obtain Tl from
PO by replacing each of the four line segments in To by a polygonal

path Yo consisting of 3n, + 2 line segments of length (nl-i-Z)-1

1
arrangedlin the form of a "square wa§e" (see Figure 17). In general,
we obtain Tk from rk—l by replacing each line segment in rk-l, by
a scaled copy of ¥_ , n € N+. Th; sequence {Pk} converges to a
Jordan curve I which has no tangents, so AT is a Dirichlet algebra
on T.

Each T divides Fk into intervals (with endpoints

k-1
rk-l n Pk) and these intervals correspond to the subintervals of T

chosen in the last section. If QE, R? denote the two sides of Fk,
we can define ¢ as follows. Choose integers M and N and define

¢ on 2 by

¢(2z) =

™A

1
=X . (2)
=1 Nl

This is illustrated for N = 2 in Figure 18. After smoothing, ¢ is

the desired function. (Actually, this is not quite true; to solve the
F) problem we want the equivalent of condition (5.5). Thus we should
replace R¥+j above with R§+ZJ).

We should also note that if h is a measure function with

h(t) = o(t) as t =+ 0, we can take Ah(T) = 0 by letting the {nk}

grow quickly énough. This proves the remark following Corollary 1.2.
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7. A BMO Corollary

In [47] and [48] Varopoulos shows that a function £ on T
is in BMO iff it has an extension ¢ to D such that ledxdy] is a

Carleson measure and that

~ ianV¢dxdyHC
¢

Thus the functions in Lemma 3.1 (when restricted to T) have BMO norm

1€l gy

about ¢&. Furthermore, we easily see

[{x : o, (x) = 1} = 1/2

[{x : 0,() = 0}] = 1/2

If we replace "4" by a very large constant (~ 1/e) in (5.3) and

(5.5) we obtain:

Corollary 7.1: Suppose V : T ~>T is a singular homeomorphism

and € > 0. Then there exists a ¢ € C(T), 0 = ¢ = 1, such that

) lellgy = €
11) ool gyg = €
iii) |{e = 1} =21 -¢
iv) |{eey = 0}] =21 - e.
This is reminisant of a result of Garnett and Jones concerning

BMO functions taking the values zero and one on small, preassigned

subsets of T (see [28] and [36]).

8. Homeomorphisms of T

In the construction of Section 4, it was unnecessary to assume

f1 and f2 were holomorphic on a neighborhood of T. It is enough
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to assume fi € A(Qi), i = 1,2. For example, in the definition of 8,
we can replace "f2°¢1" by a function which is conmstant on each component
of supp(1l - ¢1) and approximates the continuous func;ion f2°®l on T.
This will work because we see from Section 5 that each component off
supp(l - ¢) has diameter less than P, and so the uniform continuity
of f2°¢1 provides the necessary estimates.

This observation shows the construction works for any singular

homeomorphism V of T, regardless of whether it comes from a curve

T or not. Thus we get:

Corollary 8.1 (Browder and Wermer, [9]){ If ¥ is a singular

homeomorphism of T to itself then

AW = {f € A(D) : foy € A(D)}

is a Dirichlet algebra on T.

Similarly, if {Yl,...,wn} are all homeomorphisms of T to
itself such that ij = onwié’ j # k are all singular, then we can
divide T into n disjoint families of intervals Fl,...,Fn such
that

-ZJ\I{(I)J>1-5,Vj
F, o
k|

2 D] <e » kF5

F.
3

Using this we can mimic the proof of Lemma 3.1 and the construction of

functions in AT to prove that
{f : fo\_yi € AD), j =1,...,n}

is a Dirichlet algebra on T, another result of Browder and Wermer.
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We should also mention that everything still works if we
replace the closed curve I by a Jordan arc I'. Then & = C\[ has a AW%
single simply connected component and the conformal mapping to D

induces a homeomorphism ¥ of T to itself such that
¢°W = identity,

i.e., ¥ is an involution. We may assume V¥ fixes {1} and {-1}.
We can now mimic the proof of Lemma 3.1 to construct a ¢ on D such

that

=1 on {|z] <1 -8}
P(x) + e(¥(x)) =1 on T\D(:1,B)

and V¢ satisfies the estimates (v)-(vii) of Lemma 3.1. The construc-

tion then proceeds as before.

9. Decomposing Continuous Functions

In their paper [10], Browder and Wermer showed that if ¥ 1is

any orientation reversing homeomorphism of T to itself, themn

A(D) + AW(D) = A(D) + {foy : £ € A(D)}

is a uniformly dense subspace of C(). A result of Browder implies

A(D) + AW(D) is a closed subspace of C(T) if V¥ is singular,

hence C(T) = A(D) + AW(D) (see [8], Lemma 7.2.2 and page 235). In
fact, this holds for aﬁy singular homeomorphism (ibid.). We can

recover this result from our construction, i.e.,

Corollary 9.1: If V¥ i_S'ﬂz'singular'hémébmorg'hism'g_f_ T to
{tself and f € C(T), then we can find fl,f2 € A(D) such that ™
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ey 0ey) < el and £ = £,- 0.

Of course, there is a corresponding result in terms of curves.
We will not give a complete proof of this result since it is so
similar to what we have already done. We merely note that if

£.,f, € A(D) and if ¢1 and ¢,. are as in Lemma 3.1, we can set

1°72 2

gy = 0 ) + (1-0;) (F+£))
g, = (1-0,)f, + ¢, (f,-f).
Then f = g8y ~ g2°¢ and Sgidxdy, i = 1,2, are Carleson measures of

the appropriate type. Thus we can find hl and h2 so that

F, =g +h €AD) 1=1,2

IE - (Fy=F 0]l < Il + Iyl < e.

Iterating this gives Corollary 9.1.

10. Extending Continuous Functions

E. Bishop's genefalization of the Rudin-Carleson theorem states
that if AT is a Dirichlet algebra and if E < T has zero harmonic
measure from both sides then for any g € C(E) there exists £ ¢ AT
such that flE =g (see [6],[11]). Gi§en g, f can be constructed
by the techniques of this chapter. 1f ]gl < h for some positiﬁe

continuous function on & we can take Jf]| < h. This mimics a theorem

A

of Gamelin for A(D).
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11. P.B.D. and Distance Estimates ﬂm%

In [18], Davie, Gamelin and Garnett show that A, is pointwise

boundedly dense in HN(R) iff
dist(h,A.) = dist(h,H (2))

for every h € C(C). The inequality ">" is trivial, of course. If
K=T, a curve, and @ 1 @, our construction gives "s". This is
because if f € H“(R) satisfies dist(h,f) = d, then applying the
construction of f gives a function F ¢ AT which at a giﬁen point is
essentially a convex combination of f's values near that point plus a
small error. Using the uniform continuity of h we can deduce

dist(h,F) = d + €. On the other hand, using the methods of Section 2,

one can show the equality above fails if @y and ®, are not singular.

12.. A Capacity Characterization

Another ''geometric" characterization of Dirichlet algebras is due
to Gamelin and Garnett. 1In [23] they prove that AF is a Dirichlet

algebra on I' iff for all x €T and 0 <6 < diam(T),
a(D(x,8) NT) = 6/4.
Here a 1is the continuous analytic capacity,
a(E) = sup{|f'(=)]| : £ € AL lME]l, = 1},

By a Cauchy integral argument (as in Section 2) one can show the inequa-

lity above falseif @y and ®, are not singular. On the other hand,

suppose o, 1l w and let E be a connected subarc of D(x,6) N T of AWN

1 2’

diameter at least 6. It is a well known consequence of the Riemann
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mapping and Koebe 1/4 theorems that

Y (E)

mw

sup{|£' ()| : £ € H (Q\E),|£]l_ = 1}

v

1/4 diam(E)

v

6/4

(see [25], page 9). Now take f € H (C\E) with £l =1 and

|£'(=)] > 6/4 - e. By the construction we can approximate f uniformly
on a compact neighborhood of {=} and so we can find F € A with

IFl, =<1 and

|[Fr(=)| > |£'(=)| - &> 8/4 - 2¢.

This proves the desired inequality.



CHAPTER III
THE CONSTRUCTION FOR COMPACT, CONNECTED SETS
1. Statement of Results

In the previous chapter we considered the question of when AT
is a Dirichlet algebra on I, T a closed curve. However, the question
makes sense for any compact set K C €. In this chapter we shall

give a new proof of a result of Davie which characterizes Dirichlet sets,

i.e., those sets K for which AK is a Dirichlet algebra on K.

One necessary condition is that K be connected. For suppose
we can write K = Kl U KZ’ a disjoint union of non-empty, compact sets.
If either Kl or K2 has zero logarithmic capacity, we cannot approxi-

mate X, - X by functions in Re(AK) since such sets are removable
KK

for bounded harmonic functions (e.g. [14]). On the other hand, if both
sets have positive logarithmic capacity one can show the harmonic
extension of XK1 does not have a single valued harmonic conjugate,

and neithef will any sufficiently close approximating function (however,
see Section 5). Thus K must be connected. In particular, each of the
complementary components, {Rj}, of K 1is simp1§ connected. Thus we
can fix conformal mappings {§j} from D to each Rj. It is well

known that these maps extend non-tangentially to almost every point of

T and we let {éj} also denote these extensions. Then following

Glicksberg (in [31]) we say Qj is nicely c¢onnected if there is a set
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of full measure Ej €T so that @j is injective on Ej (this is
independent of the particular choice of Riemann mapping). The fol-

lowing is Theorem 4.3.1 in [16].

Theorem 1.1 (Davie): For a compact ¢onnected set K, the fol-

lowing are equivalent:

i) AK is a Dirichlet algebra on K.

1) A, is pointwise boundedly dense in H (T\K).

iii) AK is strongly pointwise boundedly dense in Hw(E K).

iv) Each complementary component Qj of K is nicely

connected and harmonic measures for different components

are mutually singular.

The equivalence of (i), (ii) and (iii) is a generalization of
Theorem 2.1.3 and the references are exactly the same. Next, we should
note that condition (iv) has a geometrical interpretation. The follow-

ing two results are easily deduced from the arguments in Chapter I.

Lemma 1.2: If 91 and 92 are disjoint and simply connected,

with harmonic measures wl and mz, then ml 1 mz iff the set of

points in G\(S'z1 U 92) which satisfy a double cone condition (with a

cone in each 91 and 92) has zero linear measure.

Lemma 1.3: If @ is simply connected, then & is nicely

connected iff the set of points in C€\Q satisfying a double come

condition (with respect to €\RQ) has zero linear measure.

Thus we obtain:

Corollary 1.4: K is a Dirichlet set iff it is connected and

linear measure. ‘(Equiﬁalentlg,'iff'the'Set'g£ tangent points of K
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has zero linear measure).

In the remainder of this chapter we will give a new proof of
Theorem 1l.1. This proof is ﬁery similar to that given in Chapter Two,
but sufficiently different (I hope) to justify giving both. As before,
the main idea is to take an f € Hw(ﬂ), Q = C\K, modify it so it is
"closer" to being continuous and then add a very small error term to

make it holomorphic again.

2. Two 3 Lemmas

Before describing the construction in detail, we will review a
few more facts about the d problem that we shall need later. The
first corresponds roughly to the fact that given a closed set E of
measure zero on T we can find a non-zero holomorphic function on D

vanishing on E.

Lemma 2.1: Suppose 0 CT is open and satisfies |0 < e.

Let 0 =U Ij be its decomposition into disjoint connected arcs, and

J
let

T, = {(rf:l1>r> dist(E,IJ?),E € Ij}

be the solid "tent" above Ij' Then for any B> 0, 6 > 0 there is an

€e>0 and a ¢ € Cm(D) "such that:

i) ¢=0 on {|]z] =1 - B}
ii) ¢ =1 on Tj’ "all j.

iii) For any bounded, continuous function b on D, the

equation

3B = bay

""has a solution with l]BuD < 5-nb||D.
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The proof is essentially due to Garnett and Jones (see [28]).

Consider the Hardy-Littlewood maximal function of XO

n(®) = () €) = gup Jil";—l”
€1

It is clearly equal to one on (O and is lower semi-continuous. Fix
N € N and suppose ]Ig] are the intervals of the open set
{m>fm,15nsN.Chuh

n+l
|

2|5yl = 1201

n__n+l
(
Ij Ik

and if I? c Iz+1 then

+1
13| = 1/2 aist (15, (1))

Then if v is the contour consisting of all the "tents"

™

n _ . v = A4 n,c
Yj {r€ : r dlst(E,(Ij) ),& € Ij

one can show arclength on ¥ is a Carleson measure with norm bounded

independent of N. If ¢ is small enough the longest arc in {I?}
has length less than B/2. We define ¢, constant on each component
of D\y, by
N
¢(z) = Z X (2
n=1 Tj

where T? is the solid tent over I?. Thus ¢ satisfies (i) and
(ii) and by "smoothing" it, we can apply Lemma 2.3.2 to get (iii).
This proves the lemma.

The next fact we wish to recall involves solving a 3 problem,

not on the unit disk, but on an arbitrary simply connected domain Q.

Fix an m > 0 and consider the grid of squares of the form

Q=1{z=xHy : kn=x= (ktl)M,Jn =y = (j+1)n}
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for integers k and j. Let C be the collection of such squares

satisfying
QNe #@d, dist(Q,3R) = 3m.
Set
Q =Uqn
n [ Qns
= n
Fn 8 aQ N &

(see Figure 19). Then we have:

Lemma 2.2: Suppose £ is simply connected and T

is as
T]—__

above. Also, suppose ¢ € Cm(R) satisfies

i) supp(Ve) < {z : dist(z,rﬂ) < § dist(z,daR)}.
ii) |Ve(2)]| = s'é-l-dist(z,aﬁ)-l.

Then if & is small enough, there is a universal C > 0 such that for

any bounded, continuous function b on Q, there is a solution to

—— — C———————— —

9B = boy

" which satisfies |]B||SZ < C-e-|

b”g- (In particular, C does not depend

on £ or m.

The proof is exactly the same as that of Lemma 2.3.2 once we know

that any collection of points, {zj}, on Pn N f which satisfies

]zm-sz > f%dist(zn,aﬁ), n#m

is an interpolating sequence for HQ(R). This is essentially proven
by Garnett, Gehring and Jones in [27]. Actually, they only consider
the case when {zn} c @ N R, but the desired result is an easy conse-
quence. Divide the squares into 64 subcollections Cj, 1<3j=< 64

so that
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Figure 19: T6 and 96
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and divide T into 128 subcontours {Fj}, each corresponding to
taking one side from each square in a given Cj' The proof in [27],
together with easy estimates on harmonic measure, shows that
{zn} n Fj is interpolating for Hw(ﬁ). This is enough to prove the
lemma. ‘

We should also mention that this lemma essentially corresponds
to the theorem of Hayman and Wu which states that if & : D+ Q 1is
conformal, then arclength on é—lcR) is a Carleson measure with norm

bounded independently of & and & (see [33] or [27]).

3. The Construction

We now turn to the proof of Theorem 1.1. If condition (iv)
fails, then exactly the same argument as in Section 2.2 shows (i)-(iii)
also fail. Therefore we need only show the other direction. So assume
(iv) holds. In this section we shall show AK is strongly pointwise
boundedly dense in Hé(&), Q = C\K. We will than prove AK is
Dirichlet on K.

First we introduce some notation concerning the continuity of a

function f defined on €. We set

J(£,8,x) = diameter (f (D(x,5)))
= sup{|£(2)-f(w)] : z,w € D(x,8)}
J(f,x) = 1lim J(£,5,%)
60
J(£) = sup J(f,x).
x

Clearly J(f,x) is upper semi-continuous, and f is continuous at X

iff J(£,x) = 0.
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Now take f € H (R), ”f“R = 1. It is enough to show f can be
uniformly approximated on compact sets, so fix a compact sét K in @

and a mn > 0. We will construct a sequence {Fn} in H“(g) which

satisfies

(3.1) I£-F llg =

(3.2) IF lg =1 - 2"m <1
(3.3) IF_-F_,llg = 95/100-3(F )
(3.4) J(Fn+1) < 95/100 J(Fn).

Such a sequence obviously converges to the desired function F.

We start by setting F1 (1- %)f. In general, given Fn we

will define Fn+1 in two steps. First we modify it to obtain a function

g such that
n

leyllg <1
lg =F_llo < 89/100-3(F)
J(g,) < 90/100-J(F )

Unlike Chapter 2 this g, is not continuous, but merely has smaller
jump. Like Chapter 2, g, is not holomorphic, so we need to find hn

such that

-n-2
Ih lg=2" "

Ih 1/100 J(F_)

nUR =

Then Fn+1 =8, + hn € H () satisfies (3.1)-(3.4), as required.
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To ease notation, we shall drop the "n" and write F =F_,
g =8 and h = hn. Our first step in defining g to to construct
a smooth function H on a neighborhood of 3K which approximates F,

i.e., satisfies

(3.5) ]H(z)-F(z)l < 1-0—0' J(F).

To do this, first choose a & = 61 > 0 so that

1
5 < iﬁdlSt(K ,K)

and so small that

sup J(F,10:6,x) < 55~ 99 J(f)
X

The key observation is that if E is a planar set and 2z,W € E satisfy

|z-w| = diam(E), then
E ﬁ(%(z+w),(V3/2)'diam(E))
c D(%(z+w),(87/100)-diam(E))

cince V3/2 = .86602°++ < 87/100 < 1. To define H first consider
points of the form z = nd + im 6, n,m € Z, and dist(z,9K) < 10°5

and for such a 2z choose H(z) so

F(B(2,36)) < D(H() a5 J(D))-

(This is possible by the above observation applied to E = F(D(z,35))
which satisfies V3/2 diam(E) < 88/100 J(F)).
Next, if 2z is in the square formed by four adjacent points
{zl,...,za} as above, then .
F(D(z,5)) < F( ﬂ D(zi.36))

= ﬂF(D(z ,38))
i=1
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4

e N D(H(z, )9 J(F))
i=1 100

C D(wrins I(F))

for any w in the convex hull of {F(zl),...,F(za)}. Therefore we can

extend H smoothly to a neighborhood of 3K so that it satisfies (3.5)

and [l =< ¥l

Now suppose ¢ = €y > 0 is small (to be fixed later). Since

H is uniformly continuous on a neighborhood of 3K we can choose a

& =86.,> 0 so that ]zl-zzl < 8, dist(zl,aK) < & imply

2

|H(zl)-H(zZ)] < ¢. Consider the grid of équares formed by the lattice

8% + i5Z (as in Section 2) and let C(C = CS be the subcollection of

such squares satisfying

dist(Q,K) < 3-8

and set 96 = g Q, T6 = U 3Q. Define an approximation to H which

«

is constant on each square (e.g., the value of H at the center), fix

3

§.> 0 and then "smooth out" this function to obtain an H¢ CN(R n 96)

satisfying

Il = IFlg,
~ 88 89
IE-Fllg = 155 I® + ¢ = 155 J(F)

supp(Vﬁ) c {z dist(z,ra) < 63dist(z,69)}

jVﬁ(z)J < e-(63dist(z.89))—1 .

In particular, H satisfies the hypotheses of Lemma 2.2 for each

complementary component Rj.

The function g will be written as a conﬁex combination of the

ﬁalues of F and ﬁ, i.e.,
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g = (1<0)F + 9-H

where 0 < ¢ < 1. We define ¢ by constructing its restriction to
each complementary component Rj. First of all, note that all but
finitely many of the Rj lie inside 96/4 (otherwise infinitely many
would contain a disk of radius 6/4, contradicting the boundedness of
K). On these we define ¢ = 1.

For the remaining components, say 91,...,RN, we fix Riemann
mappings éj ¢ D +-Rj, 1 < j =< N. By compactness we can choose a

B> 0 so that:
-1
2@\ R /4) © {|z] <1 -8}

for each j = 1,...,N. Using Fatou's theorem (applied to both éj
and Foéj) and hypothesis (iv) of Theorem 1.1 we can find compact

subsets Ej C T which satisfy

(3.6) éj and Foéj have non-tangential limits at each point of Ej’
(3.7) éj is injective on Ej,
(3.8) éj(Ej), 1<3j=<N, are N disjoint, compact subsets of K,

(3.9) JT\E_J.J <e-=c¢,

for any given ¢

9 We now apply Lemma 2.1 to each 'T\Ej with B as
above and & <m1n(2'n-2-n,ié—0), to get wj . We define ¢ omn

-1
®R. as = @ ,0d .,
3 ¢ (pJ h|

If we write

g = (1-9)F + ¢-H

then g clearly satisfies the first three conditions it's supposed to,

so we need only estimate J(g). Choose x € 9, 6 > 0 and suppose
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z,w € D(x,6) N Q. If ¢(z) =1, then

le(z)-g)| = |H(z) - A~0()F@ - o (w)H(W) |
< |H@z)-HW) | + Q- @@)|FG) - KW
s gt + 705 I(®)
< Top IO
if €y is small enough. Similarly, if ¢(w) = 1. Thus we may assume

o(w),¢(z) < 1. By construction supp(l—=p) lies in the union of N
disjoint, compact sets, each corresponding to one of the components
Ql,...,QN. So if & is small enough, 2z and w must lie in the same
component, say 91. Also by our construction, F is continuous on

supp(1-9) so JF(z)—F(w)J is small if & 4is small. Thus

IA

g(2)-gw)| = |H(z)-H(w)| + |HW)-FW)]| + |F(w)-F(z)]

89

< 51 100 J(F) + €(8)
90

= 700 7P

if €y and © are small enough. Hence

J(g,d »X) < 120—0 J(F)

as required.
We now take care of the fact that g is not holomorphic. By

our construction and Lemmas 2.1 and 2.2, each term of
-3g = 3¢-F =~ 3¢-H - ¢-3H
corresponds to a 3 problem on each Rj that we know how to solve

with uniform estimates. Thus we can find h such that

dh = -3g

Inlg = ain(2 2,55 I(E)
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as desired. Thus we have proven that AK is strongly pointwise

boundedly dense in Hf(&).

4, Pro&ing AK is Dirichlet

Next we wish to show AK is a Dirichlet algebra on K. Suppose
g 1is real-valued and continuous on K and let u be its harmonic
extension to Q. Since each component of & is simply connected, u
has a well defined harmonic conjugate u* on 2. We wish to apply
the construction of Section 2 to f =u + iu*, but u* may be unbounded,

so first we must find a F € HN(R) such that
|IRe(£) - Re(F)HSZ =1
where m is given. What we need is:

Lemma 4.1: Suppose & is simply connected and u is harmonic

gg Q, with continuous extension to Q. Then for any >0 there

isa Fe H (2) with

lu = Re(®)lig <m-
To prove this, let &: D >R be conformal and u = uod. First
note that u € VMO (see [26], page 250). For if z € D, w = &(2),
r = dist(w,dR), then by Beurling's solution of the Carleman-Miloux
problem (see Section 1.5),

|38 B, (©)dE = [ olul)-ulw) |do, ()

3 umfwm%%@WJmLﬂ)
n=0

IA

c- 2 J(u,Zn-r,w)Z—n/Z.

n=0

I\
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Since u is continuous, this tends to zero uniformly as r does and
this proves u € VMO. In particular, it proves that for any ¢ > 0
we can write

~
u=v+w

where v is harmonic and continuous on D and "w"BMO <e (w
restricted to T). By Varopoulos' theorem (see Section 2.6), we can
find an extension w of | so that |vw dxdy] is a Carleson measure

of norm C*e. Thus we can solve the 3 problem
3b =.-ow
with ||| _ <mn/2 if ¢ is small enough. Then if we choose r
L (T)

close enough to one so ]v(z)—v(rz)] <n/2 for z € D,

F(z) = v(rz) + tv(rz) + w(z) + b(z)

% .
(v = conjugate of v) defines a bounded, holomorphic function on D

and

IA

|Re(F(2))-u(2)] = |v(z)-v(r2)] + |w(z)-w(z) - Re(b(2))]

1))

n/2 +n/2

as required. (I would like to thank Peter Jones for pointing out this
argument to me).

We now return to the problem of finding a bounded function F
approximating ‘f. Let &> 0 (to be fixed later). Since u is
continuous on €, there is a &> 0 such that |z-w| <6 implies
Ju(z)-u(w)] < e. For this &, consider &g, Ty as in the.preﬁious

section. If Q. is a component of C\K such that 2,6 Cc then we

h| h| 6’
can approximate u by a function u satisfying the hypotheses of

Lemma 2.2. Thus we can solve
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v = —5;
with
”VUQ. < C°¢e
J

and so F = U 4+ v is the desired function on @, (if e is small
enough). On the finitely many remaining components we apply Lemma 4.1.
Thus we have the desired F.

We now apply the construction to F to obtain a sequence {Fn}

which, in addition to (3.1)-(3.4), satisfies
(4.1) J(Re(F-F)) = (1-27 ).

This can be done by taking & = 61 in the definition of H so small

that
-n 2—n—1
J(Re(F-Fn),lo-é,x) < (1-2  + 3 ) °n

for all =x. From this we get

-n-1
“Re(H)‘Re(Fn)”Q < 12"+ 2 7)™

Taking €y and £, small enough we get

-n-1
”hn”SZ'S 1/3-2

8-, < 1/3.271

which gives (since H is continuous),

J(Re(F)-Re(F ) = 1-2"2"1y

as required. This proves AK is a Dirichlet algebra on K.
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5. Finitely Connected Sets

The conditions described in Sections 2.11 and 2.12 for curves also
characterize the sets K such that AK is pointwise boundedly dense
in HN(E\K). If K 1is connected the construction in this chapter
proves these characterizations. It also works if K has only finitely
many components (with some minor modifications). I do not know how to
use these techniques to proﬁe these characterizations for arbitrary
compact sets_ K.

We should note that if K has finitely many components,
Kl""’KN’ then the proof that AK is Dirichlet on K still works,
except for two problems. First, if some component Kj is a single
point, then it is a removable singularity for bounded holomorphic
functions. Hence the value of a function f € Re(AK) on Kj is
determined by its values on the other components. Second, if Kl""’Kn’
n < N, are the non-degenerate components of K, then any continuous,
real-valued function g on Kl U...U Kn has a continuous, harmonic
extension u, but u need not have a single valued harmonic conjugate.
However, for an‘appropriate choice of {Kl,...,kn} C R, the harmonic
extension of

~ n
g=g8 +.j§1 XjXKj
does have a well defined conjugate. Thus AK fails to be a Dirichlet

algebra but Re(AK) has finite codimension in C(K,R) (equal to N-1,

the number of components minus 1). This is usually stated by saying

AK ‘is'hypo—Dirichlet on K (e.g., see [24]).
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6. Three Open Problems

As a final remark in this chapter we mention three problems.
“Each has a more abstract flaﬁor than the problems we have considered
so far, but perhaps they can be attacked by similar ideas.

Does AK have a Shauder basis (when considered as a Banach
space with the sup norm)? The answer is probably yes, but I don't know
how to prove it. The corresponding question for the disk algebra was
answered affirmatively in 1976 by S.V. Botkarev (see [7]).

Does AK have a finitely generated dense subalgebra? A related
question is whether there exists a curve T' in € such that AT
contains a finitely generated subalgebra whose maximal ideal space is
€. This is related to a conjecture about function algebras on curves
in ", and is discussed more carefully in [32].

Does there exist a proper, closed subalgebra of the disk algebra,
A(D), which is a Dirichlet algebra on T and whose maximal ideal
space is D (i.e., the same as A(D)'s)? The algebras AW defined in

Section 2.8 are proper, closed Dirichlet subalgebras of A(D), but

their maximal ideal spaces are homeomorphic to €. (I would like to

thank John Wermer for mentioning this problem to me.)



CHAPTER IV
A COUNTEREXAMPLE IN CONFORMAL WELDING

1. Statement of Results

As before, if T 1is a closed Jordan curve we let Rl and 92
denote the two complementary components, and for given 2y € 91’
z, € 92 we let @q and @, denote the harmonic measures with respect

to these points. The goal of this chapter is to prove:

Theorem 1.1: For any 1 =<d <2 there is a quasicircle T, a

C> 0 and points zy € 91, z, € R such that dim(T') = d and for any

2 2
Borel ECT,
w, (E)
R
@, (E)

1.1) C

The inequalities imply that the associated homeomorphism V
(Section 2.3) is biLipschitz. Furthermore, one can show that Ar

contains a nonconstant function. Thus we obtain:

Corollary 1.2: There is a bilLipschitz, orientation reversing

homeomorphism ¢ of T to itself and a non-constant £ € A(D) such

"that few € A(D).

Before discussing the proof, we should mention some related
results, and following the usual conventions we consider V{ as an
increasing homeomorphism of R (instead of T) determined by mapping

the upper and lower half-planes to Rl and 92. Then a &ery well known
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result (see [2]) says that T is a quasicircle (Section 1.7) iff

there is a C> 0 so that

-1 <'Y(x+t)—i(x) <
(d.2) ¢ =Yymaen =°

for any x,t € R. In particulér, if W is bilipschitz it automatically
satisfies this condition. Also, if W is any increasing homeomorphism
satisfying (1.2) it corresponds to some quasicircle T. We say T 1is

a chord-arc curve if T is locally rectifiable and there is a C> 0
such that

¢(z,w) < Clz=w| , 2z,we€T

where £ denotes the arclength on T between two points. By a

theorem of David ([15]) this hdlds with C close to 1 iff V¥ is
absolutely continuous and log(y¥') is in BMO with small norm. This
happens if Y is bilipschitz with constant close to 1, so Theorem 1.1
fails if C is close to 1. Since AT is trivial if T is locally
rectifiable, Corollary 1.2 also fails in this case.

A related example is given in [45], where Semmes constructs a
non-locally rectifiable curve I satisfying (1.1). Also, in 130]
Garnett and O'Farrell give an example of an absolutely continuous VY on
T and a non-constant f € A(D) with foy € A(D).

In the next section we motivate the conmstruction, and in Section
3 we prove some simple estimates on harmonic measure. In Section 4 we

prove Theorem 1l.l.



2. The Basic Construction

The way we will build a curve with a given dimension, is to pass
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