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BOUNDED FUNCTIONS IN THE
LITTLE BLOCH SPACE

CHRISTOPHER J. BISHOP

We give a characterization of the bounded functions in the little
Bloch space. In particular, we characterize the Blaschke products in
the little Bloch space in terms of the distribution of their zeros, and
give an explicit example of such a Blaschke product.

1. Introduction. Let D = {\z\ < 1} denote the unit disk. The little
Bloch space, 3S^ consists of the holomorphic functions f on D such
that

\ιmχ\f'{z)\{\-\z\2) = 0.

Then H°°(D) n&o is a subalgebra of H°°{D) (the bounded holomor-
phic functions on Z>), but which functions does it contain? In this note
we shall give a characterization of H°°(D) n 3B§ in terms of the mea-
sures which arise in the canonical factorization theorem. We should
also mention that the space H°°(D) Π^b is sometimes called COP
("constant on parts") because it consists of the functions in H°°(D)
which are constant on each Gleason part (except D) of the maximal
ideal space of H°°(D). For this, and other facts about 38§, see [2] or
[3].

A special case which has received some attention is the question of
which Blaschke products are in 3&§m For example, any finite Blaschke
product is in ̂ 0> but the existence of infinite products in ̂ 0 is n ° t
obvious. In [18] Donald Sarason constructed such a product (answer-
ing a question from [17]) from the singular inner function associ-
ated to a measure μ whose indefinite integral is in λ*9 the Zygmund
class of uniformly smooth functions (see [1], [10], [14], [15], [19] and
[22]). However, his construction does not tell us where the zeros of the
product are. Sarason poses the question of characterizing the Blaschke
products in 3§§ in terms of the distribution of their zeros and, as a first
step, the problem of explicitly constructing the zeros of some Blaschke
product in 3S^ Our characterization of H°°{D) Π^o> when restricted
to Blaschke products, answers Sarason's question and in §4 we will
use it to give an explicit example of an infinite Blaschke product in
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the little Bloch space. Our construction will be quite reminiscent of
Kahane's construction of a function in λ* ([13]).

Another construction of infinite Blaschke products in < 0̂ was given
independently by Ken Stephenson [21] and the author [6] using "cut
and paste" techniques. The idea here is to construct the image surface
of the function by identifying copies of the unit disk along certain
slits. However, as in Sarason's example, the zeros of this Blaschke
product cannot be explicitly computed. Other constructions of inner
functions in ̂  have been given by Carmona, Cufί and Pommerenke
in [8] and Sundberg (personal communication). The little Bloch space
arises in several contexts, for example, in the theory of conformal
mapping (see [16]). Another example is [4], where Axler proves that
the Hankel operator Hj on the Bergman space L2(D, dxdy) is compact
i f f /e ,3b (also see [5]).

To state our result we need some notation. For an interval / c T
we call

Q(I) = {reiΘ : eiθ e /, 1 - |/| < r < 1}

the Carleson square with base /. Also,

T(Q) = {reiθ : eiθ e /, 1 - |/| < r < 1 - |/|/2}

denotes the "top half of Q and 1{Q) = |/| denotes its side length.
Given an interval / and λ > 0 we let λl denote the concentric interval
of length λ\I\. Similarly for squares Q and λQ. Also recall the Poisson
kernel on D is given by

1 -\z\2

P() J 1 1 1PZ(W) = J—11

Given a Carleson square Q we let PQ denote the Poisson kernel for
the point z at the center of the top edge of Q. Given a sequence {zn}
in D we define a positive measure v by

where δn is the unit point mass at zn. Note that v is a finite measure
iff {zn} are the zeros of some Blaschke product.

If F e H°°{D) the canonical factorization theorem [11, Theorem
II.5.5] says we can write

F(z)=AB(z)G(z)S(z)

where A is a constant of modulus 1,
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is a Blaschke product,

is outer and

is a singular inner function. Thus we can associate to any bounded
function F a measure μ on D given by

dμ = £ < U 1 - | Z Λ | ) + <tt - log |*Ί^ = dv + dσ

with ^ supported on the interior of the disk and σ supported on the
boundary. If ||-F||oo < 1 then μ is positive. Also note that

\F(z)\ = |Λ(z)|exp (J Pz(w)dσ(wή .(1.1)

Our characterization is in terms of the measure μ. It says F is in
the little Bloch space iff adjacent Carleson squares get about the same
mass from μ. More precisely, if Q is a Carleson square let Q c Q be
a square of half the size. Then,

THEOREM 1. Suppose F is in the unit ball ofH°°(D). Then F e J Ό
iff for every ε > 0 there exist N, δ > 0 such that l(Q) < δ implies either

(1)

or

(2a)

(2b)

holds.

r~\x,/ ^ 1 /,

μ{Q) M(Q')

W) KQ)
< ε

I PQ{w) dμ{w) < ε
J(NQY

The result says that when we look at a square one of two things
can happen. Either the box is "heavy" (gets a lot of mass from μ)
or it is "light" in which case all the nearby squares get approximately
the same mass and the far away squares do not contribute much to
the value of F on Q. If F is a Blaschke product, then μ — v, so our
characterization in terms on μ becomes a characterization in terms of
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the distribution of zeros. In §4 we will construct a sequence of points
{zn} so that the corresponding v satisfies

(3) W(Q)-2v(Q')\<ev(Q)

for all sufficiently small squares, and this will give a Blaschke product
in 3B§. Also note that a measure on T satisfies (2a) for all small squares
iff its indefinite integral is in A*. Thus the functions considered by
Sarason in [18] are not too different from "typical" functions in 3S§.
For a given square, (2b) will always hold for a large enough N, so the
point here is that it hold uniformly for all small enough boxes. In the
course of the proof we shall see explicitly how TV and δ depend on ε.

In the next section we prove the sufficiency of our conditions and in
§3 we prove necesssity. In §4 we give an explicit example of a Blaschke
product in &&§. In §5 we conclude with some remarks and questions.
I would like to thank John Garnett, Peter Jones, Don Sarason, Ken
Stephenson, Carl Sundberg, Tom Wolff and the referee for many help-
ful remarks and suggestions. The referee's efforts, in particular, greatly
improved the clarity and accuracy of the original manuscript. This pa-
per was written during my visit to the Mathematical Sciences Research
Institute for the program on classical analysis, and it is a pleasure to
thank MSRI and the organizers for a very pleasant and exciting year.

2. Proof of sufficiency. Suppose F is holomorphic on Zλ We claim
that F is in the little Bloch space iff

(2.1) lim fmaxlFI-minlF^ = 0.

Clearly F e 3B§ implies this condition. On the other hand, Bloch's
theorem (e.g., [9, Theorem XII. 1.4]) says that if g is holomorphic on
the unit disk and |g'(0)| = 1 then g(D) contains a disk of radius 1/72.
Applying this to F and a disk in T(Q) shows the above condition im-
plies F G J o . Thus it suffices to show that the hypothesis of Theorem
1 implies (2.1) for F.

Fix η > 0. We will show that for every small enough square Q

<n

for every z e T(Q). Let ε be a positive number which we will choose
later depending only on η and F.

First we consider the case when Q satisfies condition (1).
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L E M M A 1. There is a universal A>0 such that for z e T(Q),

\F(z)\ <expί-.

Let

W))'

G(z,w) = -log z — w
1 -wz

be the Green's function for the unit disk and recall that
2 ft I _ I 2 \ / Ί ι Λ . . ι 2 \

|21 - z - w
1 -wz -wz\

Also, if z € Γ(β) and w € Q then

= (l-\w\')Pz(w).

ι î-M

Thus,

log|F(z)| = - : , 2 B ) - ί Pz(w)dσ

\z,zn)- f Pz{w)dσ

_ C

This is the lemma. So if

4 - C -A μ(Q)
KQ)'

> l/(2ε) and ε is small enough, we have

< exp(-π/β) < η,exp I -i

|F(z)|<exp(-^/2β)<ι/.

This implies the desired inequality for "heavy" squares. Now suppose
Q is a "light" square, i.e., $£1 < l/(2ε).

μ(T(Q)) = 0LEMMA 2. //f^ < 1/β «

i.e., Γ((2) contains no zeros ofF).

Suppose not. Let Q\, Q2 C Q be the two disjoint Carleson squares
with side length /(β)/2. Then by (2a)

= μ(Q) - μ{Qι) - μ(Q2) <

This is a contradiction, proving Lemma 2.
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Let k be a large integer (to be chosen later depending on^) . Fix a
point z € T(Q). If Q is small enough, the zeros of F can be split into
two subsets, {zn} = {zx

n} u {z^} which satisfy

| z - z , 2 | < 2 * ( l - | z | ) and 1 - \z2
n\ < 2~k(ί - \z2

n\)

for all n. This is because if Q is a square with ϋΓ(Q) adjacent to T(Q)
then (2a) implies

Thus Lemma 2 applies to Q as well as Q. If /cε < l/(2β) we can iterate
this argument /c times to obtain the above splitting. (If necessary,
choose β\ < l/(2y/k) and assume 2kl(Q) is less than the corresponding
δ\ given by Theorem 1.)

We let 9? denote the 22k disjoint Carleson squares of side length
2~kl{Q) and lying inside 2kQ. Let "a « 6" mean that \a - b\ is small
(i.e., less than η/4). Then if/: is large enough and l(Q) is small enough
we have

)\ = ΣG(z,zn) + JPz(w) dσ

« / Pz(w)du(w) + / P2(^) rfσ

= / Pz(w) dμ(w)

= Σ f P*W

[
Jτ

st **«" holds be
above,

~ HQ)Jτ Λ )dθ~2πKQV
The first **«" holds because with k large, /(Q) small and z and ix; as

(Here α ~ 6 means α/ft is close to 1.) The second one holds because
of (2b), and the third because the Poisson kernel Pz is almost constant
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on each Qj if k is large enough. The fourth holds because the integral
of Pz over the complement of 2kQ is small. Thus if 1{Q) is small
enough (depending only on F and η),

IΛUI-«pf-2Λmi -"
for z eT(Q). This completes the proof of sufficiency.

3. Proof of necessity. Now we come to the less obvious direction;
proving that the conditions in Theorem 1 are necessary. Fix an F e

> and assume \\F\\oo < 1. We will need the following lemma.

LEMMA 3. Given ε > 0 there exits β,δ > 0 such that ifl(Q)<δ

and \F(z)\ < β for some z e T(Q) then >M > 1/ε.

This lemma is the key step in the proof of Theorem 1. It is like a
converse to Lemma 1 of the previous section, but is slightly harder to
prove. Note, for example, that it can fail if F is not in little Bloch
(e.g., take disjoint Carleson squares {Qj} with l(Qj) -*0 and place a
zero just above each box). To prove the lemma, divide the measure μ
into two measures μ\ and μ2 supported in \Q and \QC respectively,
and let F\ and F2 be the corresponding factorization of F . Suppose
z e T(Q). We will show that given η > 0 there is a β > 0 such that
|F(z) | < β implies |FΊ(z)| < η. Given this, we deduce the lemma as
follows. For z e T(Q) and w9zn G ̂ Q we have

G(z9 zn) < C i ^ W , Pz(w) < -ϊj-;.

Therefore if η < exp(-2C/ε),

2C/e<-logι/<-log|F1(z)|= T G(z9zn)+ I Pz{w) dσ

as desired.
We will now prove the claim. Fix β > 0 and assume |F(z) | < β

for some z e T{Q). We will show that IF^z)! < η(β) < βc for some
C > 0. We start by setting Q = ±Q and letting / be the base of <λ
Fix eιθ G 7 and for n = 0,1,2,... consider the points
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Clearly \F2(wn)\

and
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1, but how quickly? We claim that if z e \QC then

-wnz -Wn-χZ

for some 0 < a < 1. To see the first inequality square both sides and
use the inequality xa < 1 - α(l - x), 0 < x < 1 to reduce to showing

1 -
Z -Wr.

-wnz
<o 1-

Using the equality following Lemma 1 this reduces to
2

< a < 1.-wnz
-\Wn-l\

When l(Q) is small the first term is close to 1/2 and the second term
is less than

which gives the desired inequality. The proof for PWn{z) is similar.
Thus using (1.1) we obtain

\F2{wn)\>\F2{wn_x)\«.

Let τ > 0 (to be chosen below depending only on β) and let δ be so
small that 1 - \z\ < δ implies \F'(z)\{\ - \z\) < τ. Then \F(wn)\ < τ +

\F(wn-\)\ and if τ < β then |-F(?i;o)| < 2j?. Now suppose |Fi(w;o)| >
2\fβ. Then |F2(tί;o)| < \/^ Now choose k so that

\F2(wk)\ >

Then for j = 1,2,..., the preceding estimates give

U+ l)

Taking 7 > (Iog3)/| logα| and τ < \fβ/{j + 1) gives

< (y/β + U + l)τ)/(β^a)J) < 2βx'\

Thus we have proved that either \F{(w0)\ < 2y/β or |Fi(ti;n)| < 2βιl?>

for some n > 0. This argument works for any eiΘ e / so we have
proven there exists a set E c 2~4Q whose radial projection is all of
I and such that \F\(z)\ < 2βιl2> on E. A variant of Hall's lemma
(see [7]) implies the harmonic measure of such an E in D\E with
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respect to the point z is bounded away from 0 (independently of E
and z G T(Q)). Since log |/*Ί | is subharmonic this gives

log|*i(z)| < C (msΛloglFxl) < Clog(2jί1/3).

This implies the desired inequality, and completes the proof of Lem-
ma 3.

We can now start the proof of necessity. Consider a Carleson square
Q and assume (1) of Theorem 1 does not hold, i.e.,

< l / β

KQ) ~ 1 / ε

By Lemma 3 \F\ > β on T(Q). Given an JV > 0 we let Fx and
F2 denote the factorization of F corresponding to NQ and {NQ)C

respectively. Using (2.2) one sees that to prove (2b), it suffices to
show \F2(z)\ > 1 - Cε for some small C > 0 and z e T(Q). Let
η = Cε. Now choose an integer k and positive number τ such that
(with a as above)

(l-η)a-k<β/4, kτ<β/2.

Let N = 2k+A. Now suppose z 0 G T(Q) satisfies \F2(z0)\ < 1 - η.
We will obtain a contradiction. Choose δ so small that 1 - \z\ < 2kδ
implies |iΓ /(z)|(l - \z\) < τ. For 0 < j < k define points {Wj} by

a r g ( ^ ) = arg(zo), 1 - \wk\ = 2*(1 - |z o | ) .

Then arguing as in Lemma 3 gives

\F(wk)\>β-kτ>β/2,

\F2(wk)\<(l-η)^k<β/4.

This implies \F\(wk)\ > 2, a contradiction (since |Fi| < \F\ < 1). Thus
> 1 - η and so (2b) must hold with N = 2k+4 and δ as above.

Next, we will show that

K-fj-prr- +lθg\F(z)\ < 6

for any z e T(Q) and from this (2a) follows. First we prove
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Let n be an integer (to be chosen below depending on ε) and let W
be the collection of 2n disjoint Carleson squares in Q of side length
r = 2~nl(Q). Let R denote the union of these small squares. Since
\F\ > β on Γ(β), it is larger than β/2 on Q\R if Q is small enough
(since F is in 3&§) Thus μ(Q) = μ{R). If Q is even smaller we can
conclude \F(z)\ ~ \F(zo)\ for all z e Q\R and z 0 G T(Q) and that F
has no zeros in 2nQ Π {\z\ < 1 — r}. Thus using (2.2) as we did in §2,
we see that by first taking n large enough and then l(Q) small enough
we get

Pz(w)dμ(w) + log\F(z0)\ <ε/4

for z 0 € T(Q) and z e Q\R. Set / = (1 + 2~'J/2)/ (/ is the base of Q)
and note that

forw eR. Hence if 2-"/2 < e/(8|log£|),

μ(Q)

KQ)
< Ίλί,Pre,e{w)—\ dμ(w)

2π
l+22~n/2

2π

n/l r
— / Pre,β(w) dμ

JD

(-log|F(z0)| +

1
<-—log\F(z0)\

To prove the other direction we take N so that (2b) is satisfied
with ε/4, and increase n (if necessary) so that 2"/2 > N. Let 7 =
(l_2-"/2)7. Then if eiθ eϊ,

/ Pre,s(w)dμ(w) - I Pre,e(w)dμ(w)
JR JD

<e/4.
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Thus for small enough <2,

>

This completes the proof of Theorem 1.

4. The example. In this section we will use Theorem 1 to explicitly
construct a Blaschke product in 3B§. Let K\ < K2 < be a sequence
of integers and set

#o = π/8, θn+\ = Θn/Kn.

Now consider the Carleson squares {Q"} given by

Qn = {reiθ :i-θn<r<l9jθn<θ<U+ l )β Λ } .

The whole collection is called Ψ and the squares of size θn are denoted
by %. To each Q eW we associate an integer N(Q). For Q G 85 we
let N(Q) = 0. To define it for later generations we assume each Kn is
of the form

for integers kn. For a square Q € % with N(Q) = j we label the
Kn (n + l)s t generation squares contained in Q so that kn of them get
the number j' - 1, kn + 1 get the number j + 1 and 3 get j . They are
arranged so that the two outside boxes get / s and the third j separates
the block of (j - l)'s from the (j + l)'s. See Figure 1. We have done
this so that when we are finished, any two adjacent squares have labels
differing by at most 1. (Q\ G % and Qi^&m are called adjacent if
Q\ n Qi φ 0 and \n — m\<\.) We now define {zn} by placing a point
on the top edge of any Q such that N(Q) = 0.

Claim. There is a sequence {Kn} such that the corresponding se-
quence {zn} forms the zeros of a Blaschke product in 3§§.

We will show that if Q e Wn and Q1 G 8^+1 satisfies Qf C Q then

ΛQ)(4.1)
/(β)

<
/(β)
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j j + l . . . j + 1 j j - 1 . . . j - 1 j

V 1

FIGURE 1

if l(Q) is small enough. We then use it to verify the hypotheses of
Theorem 1.

We can do this because the ratio jM has a very nice interpretation.
Let

knPn — Qn — T7~ < Pn
K

and consider the random walk on the integers which at time n steps
to the right with probability pn and to the left with probability qn. A
sample path will be denoted ω and its position at time n by ω(n).
Since pn > qn this random walk has a drift to the right. Define the
"Green's function"

G(x9y9j) = expected number of visits to y starting at x at time j .

Then observe that for Qe%

μ(Q)
l(Q) '

where CQ > 0 is some normalizing constant. We introduce the random
walk notation only for convenience. It expresses exactly what we need,
and the arguments seem more intuitive when stated about random
walks than about Carleson squares.

If the sequence K\ = Kι = is constant then there is a simple,
explicit formula for G(x9y) and the desired estimate will follow from
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this formula and a few simple observations. We also need the follow-
ing notation:

Fk(χ>y>j) = probability of first being at y at time j + k,

starting at x at time j ,

F{x,y,j) =
k>0

= probability of eventually hitting y,

starting at x at time j .

For j > 0 we let GJ'(x,y), F£(x,y) and Fj(x,y) denote the same
functions but for the time invariant walk corresponding to p = pj9

q = qj. If p > q are fixed and the corresponding Green's function is
G then it is known that

\ {P-Q)~\ ftx<y,

P-q)~\q/p)x~y, ftx>y.

F(x,y) = (p-q)G(x,y).

This formula is proved in [20, PI.5] under the assumption that
p + q = 1 (one merely solves the difference equation satisfied by G,
i.e., G(x,y) = pG(x - l,y) + qG(x + l,y)). For p + q < 1 the same
proof shows G has the same form except possible for a multiplicative
constant and in [20, E3.1] that constant is shown to be 1. (Alterna-
tively, one can see that the Green's function for the pair {p,q} with
p + q < 1, must be G/(p + q) where G is the Green's function for the

Next we wish to see that if {Kn} grows slowly enough, then G(0,0,0)
is finite (and hence that {zn} are the zeros of a Blaschke product).
First consider the time invariant walk with p = 1/3 and q = 1/6, i.e.,
6 = K\ — Kι = . There is a time T\ at which the probability of
finding a sample walk to the left of 100 is less then 1 /100. Now change
the walk by taking Kn = Sΐor n> T{. The number of expected returns
to zero now increases, but only slightly. This is because a walk ω with
ω{Tx) < 100 is expected to return to zero at most (3/8 - 1/4)"1 = 8
times and a walk with ω(T\) > 100 is expected to return at most
8(2/3) 10° times. Thus the expected number of returns to zero after
timeΓj forthenewwalkisatmost8/100+8(2/3)1 0 0 < 1/2. Similarly,
we take Kn = 10 for n > Γ2, where T2 is chosen so large that the
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expected number of returns to zero after time Tι is less than 1/4.
Continuing in the obvious way we obtain a sequence {Kn} tending to
infinity, but such that the expected number of returns to zero is finite.
Thus {zn} are the zeros of a Blaschke product.

Now we turn to proving (4.1). Using the above formulas and some
obvious inequalities,

00

G(x - 1,0,7) > G(xy0J) = Y^Fk{x,x- \J)G{x - 1,0,; + k)
k=ι

oo

>G(x-l,OJ)ΣFk(x,x-l,j)
j f c = l

>G(x-l,OJ)FJ\x,x-l)

Similarly,

G(x,0J+l)>G(x,0J)

= qjG(x - 1,0,7 + 1) +PjG(x + 1,0, j + 1)

+ (I -pj - gj)G(x,0,7 + 1)

> qjG{x,0,j + 1) +pj (l - -J-) G(x,0,j + 1)

> ( l - A ^ G ( x , 0,7 + 1).

By our earlier remarks, this means if Q e Wn and Q' c Q is in
then

μ(Q) μ(Q') < C\G(N(Q),0, n) - G(N(Q'), 0, n +
W) KQ')

< C\G(N(Q),0,n)-G(N(Q),0,n+l)\

+ C\G(N(Q),0,n+l)-G(N(Q'),0,π+l)\

which is the desired inequality, (4.1), iΐKn is large enough (i.e., if l(Q)
is small enough). We now wish to estimate μ(Q) for all small squares.
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Fix Q and choose n so that θn < l(Q) < θn-\. Choose Q G ffn so that
Q overlaps at least half of Q and let N = N(Q) and K = Kn. Note
that if Q G 8J, U % + 1 hits Q, then \N - N(Q)\ < 5. Thus,

μ(Q) >

/(β)

κ) l(Q)
and

If TV > 5 then the sum over &n is zero and so we get

/ c\ M(2) < MQ) < Λ , c\ μ(Q)
\ K) /(Q) - l(Q) -\ ~^KJ

as required. If N < 5 then μ(β) = c0G(N,0,n) > CKl(Q) and the
sum over % is bounded by 3/(Q). Thus the inequality above is still
true (with a slightly larger C). If we fix ε in the statement of Theorem 1
then taking K large enough (hence l(Q) small enough) in the inequality
above shows that either (1) or (2a) must hold. To get (2b), observe
that since Kn > K\ = 6, arguing as above gives

μ(6Q)<2(l+2/Kι)
βμ(Q)<l2μ(Q)

and so

°° r
PQ(w) dμ(w) <TC dist(w,QΓ2 dμ(w)

Q)e kZi J6k+ιQ\<>kQ

/:=« k=n

This completes the proof that our example is in the little Bloch space.
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5. Remarks. First of all, it might be useful to point out that just
because dμ satisfies the conditions in Theorem 1, the individual mea-
sures dv, dλ, and log \F\dθ/2π need not. In other words, F e H°°(D)
Π ̂ b does not imply that its Blaschke, singular inner or outer factors
are in 3&§m This was first observed by Harold Shapiro in [19] (also see

[1]).
Greg Hungerford [12] has recently proven the following: if E is the

singular set of an infinite Blaschke product in ^ 0 (the accumulation
set of its zeros on T) then the Hausdorff dimension of E is 1. The
main idea is to use Lemma 3 to show there exists an η > 0 so that if
Q is small enough and \B(z)\ < η for some z e T(Q) then there is a
disjoint collection of subsquares {Qj} such that \B(ZJ)\ < η for some
zj € T(Qj), l(Qj) < β and ΣKQj) > <*KQ), where β = o(l(Q)) as
l(Q) —> 0 and a is independent of Q. From this one can deduce the
result. A similar, but simpler, argument shows that if J? is a Blaschke
product in 38§ then for any ε > 0 there is a δ > 0 such that \B(z)\ = 0
and 1 — \z\ < δ imply

Enie iθ iθ Z -1*1)}<B(\-\z\)\φ®.
1*1

I do not know if this has been previously observed.
Finally, note that if z, is a zero of a Blaschke product B, then

- ZjZk

B is called interpolating if the right hand side is bounded away from
zero independently of j , so if B is in the little Bloch space it is defi-
nitely not interpolating, since the left hand side goes to zero uniformly
as \ZJ\ —> 1. It is conjectured that every Blaschke product can be uni-
formly approximated by interpolating Blaschke products, but if this
were to fail a Blaschke product in ^ 0 might be a good candidate for
a counterexample. Can the Blaschke product constructed in §4 be
uniformly approximated by interpolating Blaschke products?
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