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Non-rectifiable limit sets of dimension one. (English. English summary)
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R. Bowen proved that any deformation of a cocompact Fuchsian group gives a quasi-
Fuchsian Kleinian group whose limit set is either a circle or has Hausdorff dimension
> 1. This was extended to all divergence type groups by the author and was shown to
be false for all convergence groups (of the first kind) by K. Astala and M. Zinsmeister.
They showed that all such groups have a deformation such that the limit set is a non-
circular rectifiable curve. Zinsmeister asked if Bowen’s property could fail in a different
way, namely, are there quasi-Fuchsian groups whose limit sets are not locally rectifiable,
but still have dimension 1? The author shows that there are many such groups by
constructing quasiconformal deformations of convergence type Fuchsian groups such
that the resulting limit set is a Jordan curve of Hausdorff dimension 1, but having
tangents almost nowhere. The main tools in this construction are a characterization of
tangent points in terms of Peter Jones’ β’s, a result of Stephen Semmes that gives a
Carleson type condition on a Beltrami coefficient µ which implies rectifiability, and a
construction of quasiconformal deformations of a surface which shrink a given geodesic
and whose dilatations satisfy an exponential decay estimate away from the geodesic.

Vasily A. Chernecky
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Quasiconformal mappings of Y -pieces. (English. English summary)

Rev. Mat. Iberoamericana 18 (2002), no. 3, 627–652.
The main purpose of the paper is to present an explicit way of deforming a Riemann
surface collapsing a given closed geodesic γ. In particular, it is done by a quasiconformal
deformation with the complex dilatation µ such that |µ| decays exponentially fast away
from γ. The construction is used in a companion paper in the same volume to construct
quasi-Fuchsian groups whose limit sets are non-rectifiable curves of dimension 1. In
fact, the author gives precise estimates of |µ| for generalized Y -pieces that are Riemann
surfaces bounded by three closed geodesics (or punctures) which are homeomorphic to
a sphere minus three discs (or points). Every finite area Riemann surface can be written
as a finite union of such pieces. Alexander Vasil′ev
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Quasiconformal Lipschitz maps, Sullivan’s convex hull theorem and Brennan’s
conjecture. (English. English summary)

Ark. Mat. 40 (2002), no. 1, 1–26.
The purpose of this paper is to point out a connection between three-dimensional
hyperbolic geometry and the expanding properties of planar conformal maps. It is
shown that a theorem of Dennis Sullivan concerning convex sets in hyperbolic 3-space
implies the factorization theorem: Let Ω $ R2 be a simply connected domain and let
C(∂Ω)⊂H3 be the hyperbolic convex hull of ∂Ω (this is the hyperbolic convex hull of the
set of all hyperbolic geodesies with endpoints in ∂Ω). Suppose Sullivan’s theorem holds
with quasiconformal constant K and that f : D→ Ω is conformal. Then f = g ◦h, where
h: D→D is a K-quasiconformal self-map of the unit disk D and g: D→ Ω is expanding
in the sense that |g′(z)|>C|f ′(0)| for all z ∈D. One consequence is that if (even a weak
version of) Sullivan’s theorem could be proved with its conjectured sharp constant K =
2, then the Brennan conjecture would follow. In particular, there is always a Lipschitz
homeomorphism from any simply connected Ω (with its internal path metric) to the
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unit disk. Some other related results and questions arising from Sullivan’s theorem are
also discussed: sharp constants in Sullivan’s theorem, harmonic measure, dimension
of the convex hull measure, dimension distortion, integral means, deformations of
Fuchsian groups, minimal sets, conformal welding, the action on quasisymmetric maps,
quasiconformal maps in higher dimensions, uniformly perfect sets.

Vasily A. Chernecky
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Compact deformations of Fuchsian groups. (English. English summary)
Dedicated to the memory of Thomas H. Wolff.

J. Anal. Math. 87 (2002), 5–36.
Let G be a Kleinian group (a discrete group of hyperbolic isometries of the 3-ball B3)
which is non-elementary, and let M = B3/G be the quotient orbifold. The limit set
Λ ⊆ S2 of G has a partition as Λc ∪Λe, where Λc is the set of points x in Λ such that
there is a geodesic ray in B3 ending in x with its projection into M returning to a
compact set of M infinitely often (points in Λc are called conical limit points, or points
of approximation in, for instance, [A. F. Beardon and B. Maskit, Acta Math. 132 (1974),
1–12; MR0333164], or radial limit points in, say, [P. Tukia, Invent. Math. 82 (1985),
no. 3, 557–578; MR0811551]), so that its complement Λe in Λ can be thought of as the
“escaping” limit set. If G is a Fuchsian group, a compact deformation Φ of G is a G-
compatible quasiconformal homeomorphism of C that is analytic on the unit disc D ⊆
C and with its dilatation compactly supported modulo G, so that G′ = ΦGΦ−1 is a
quasi-Fuchsian group. Here it is shown that any compact deformation Φ of a Fuchsian
group preserves the Hausdorff dimension of the escaping limit set Λe, and that Φ(Λe) is
contained in a countable union of rectifiable curves.

The proofs require looking at subsets of D known as Carlson squares, and then a
range of analytic techniques is applied, involving the Schwarzian derivative of Φ and the
Green’s function of the Riemann surface D/G. Jack O. Button
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summary)
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The author proves the theorem: Let f be aK-quasiconformal mapping of the upper half-
plane H onto itself and let ε > 0. There exist a constant C and a (K+ ε)-quasiconformal
mapping of H onto itself which is C-bi-Lipschitz with respect to the hyperbolic metric
on H and which agrees with f on the boundary of H. H. Renelt
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Proc. Amer. Math. Soc. 129 (2001), no. 12, 3631–3636.
A map f is said to be quasisymmetric if there is a homeomorphism η of [0,∞] to itself
such that

|x− y| ≤ t|x− z| =⇒ |f(x)− f(y)| ≤ η(t)|f(x)− f(z)|.

For a given compact metric space X define its conformal dimension as C.dim(X) =
inff dim(f(X)) where the infimum is taken over all quasisymmetric maps f of X
into some metric space and “dim” denotes Hausdorff dimension. Here the authors
are interested in the question of whether the infimum must be attained by some
quasisymmetric image of X. It is known that for some sets (e.g. the Cantor middle third
set in R) the conformal dimension is zero, whereas any quasisymmetric image must
have strictly positive dimension. In this paper the authors show that the self-similar set
known as the “antenna set” has the property that inff dim(f(X)) = 1 (the infimum is
over all quasiconformal mappings of the plane), but that this infimum is not attained
by any quasiconformal map; indeed, is not attained for any quasisymmetric map into
any metric space. G. Lakshma Reddy
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Divergence groups have the Bowen property. (English. English summary)

Ann. of Math. (2) 154 (2001), no. 1, 205–217.
The author gives a new proof of a theorem of D. Sullivan [Bull. Amer. Math. Soc. (N.S.)
6 (1982), no. 1, 57–73; MR0634434] about convex hulls in hyperbolic 3-space. Using this
theorem, he establishes that the limit set of every deformation of a divergence type
Fuchsian group is either a circle or has dimension > 1. The result finishes the study of
a dichotomy (the Bowen) property of Fuchsian groups begun by R. Bowen [Inst. Hautes

Études Sci. Publ. Math. No. 50, (1979), 11–25; MR0556580]. I. Kra
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32. M. Urbański, On the Hausdorff dimension of a Julia set with a rationally indifferent

periodic point, Studia Math. 97 (1991), 167–188. MR1100686
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Bishop, Christopher J. (1-SUNYS) ; Tyson, Jeremy T. (1-SUNYS)

Locally minimal sets for conformal dimension. (English. English summary)

Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 361–373.
The conformal dimension of a metric space X [cf. P. Pansu, Ann. of Math. (2) 129

(1989), no. 1, 1–60; MR0979599] is C dim(X) = infj dim[fd(X)], where the infimum is
taken over all quasisymmetric maps of X into some metric space and “dim” denotes
Hausdorff dimension. A set X is called minimal for conformal dimension if C dim(X) =
dim(X). {The authors do not define the “conformal dimension” of a set, e.g., X ⊂Rd,
but, as I have deduced from their paper, in this case, C dim(X) is given by the above
formula, where the infimum is taken over all quasisymmetric maps of the set X into
a metric space.} Their main result is Theorem 1: If 1 ≤ α < d and K <∞, then there
is a compact, totally disconnected set X ⊂Rd of Hausdorff dimension α such that (1)
dim[f(X)]≥ α for all K-quasisymmetric maps of X to a metric space, (2) for any ε > 0
there is a quasiconformal map g of Rd to itself such that dim[g(X)] < ε. In particular,
C dim(X) = 0.

They obtain also, as corollaries, that for every α ∈ [1, d), there is a totally disconnected
set X ⊂ Rd minimal for conformal dimension and a set X ⊂ Rd with C dim(X) = α,
but this dimension is not attained for any quasisymmetric image of X. Finally, for sets
X ⊂Rd, they consider also the quasiconformal dimension QC dim(X) = inf dim[g(X)],
where the infimum is taken over all quasiconformal maps g of Rd to itself. It is possible
to have QC dim(X) > C dim(X) if X is minimal for quasiconformal selfmaps of Rd,
but not minimal for quasisymmetric maps which do not extend to the whole space
Rd. P. Caraman
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Bishop, Christopher J. (1-SUNYS)

Bi-Lipschitz homogeneous curves in R2 are quasicircles. (English. English
summary)

Trans. Amer. Math. Soc. 353 (2001), no. 7, 2655–2663.
The aim of the paper under review is to characterize bi-Lipschitz homogeneous curves
(BLH curves) in the plane.

The main result is Theorem 1.1: If Γ is a bi-Lipschitz homogeneous closed curve
in R2, then it is a quasicircle. Namely, this theorem says that in R2, a bi-Lipschitz
homogeneous closed curve must satisfy the bounded turning condition.

Ghamsari and Herron showed that if Γ is a rectifiable closed curve in R2, then it is
a quasicircle. And Herron and Mayer proved it when Γ was homogeneous with respect
to a group of uniformly bi-Lipschitz mappings. They gave an example of a curve in R3

which is bi-Lipschitz homogeneous but not bounded turning.
By combining Theorem 1.1 with these results of Herron and Mayer, the author deduces

the characterizations of BLH curves in the plane, as Corollary 1.2. Kiyoko Nishizawa
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Bishop, Christopher J. (1-SUNYS)

Quasiconformal mappings which increase dimension. (English. English
summary)

Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 397–407.
The author gives a proof of the following general theorem which includes some particular
previous results: (1.1) For any compact set E in Rd with dim(E) > 0 and any 0 < γ <
d there is a quasisymmetric map h: Rd → Rd such that dim(h(E)) > γ. The proof is
first reduced to a class of “standard Cantor sets” which are proved to lie on quasiarcs,
hence a new reduction to the case d= 1 is given which is solved by a modification of the
measure; then (1.1) is proved for d≥ 2 by a quasiconformal extension. J. Ferrand
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Bishop, C. J. (1-SUNYS) ; Böttcher, A. (D-TUCHM) ;
Karlovich, Yu. I. (D-TUCHM) ; Spitkovsky, I. (1-CWM)

Local spectra and index of singular integral operators with piecewise continuous
coefficients on composed curves. (English. English summary)

Math. Nachr. 206 (1999), 5–83.
The authors establish a symbol calculus for deciding whether singular integral opera-
tors with piecewise continuous coefficients are Fredholm on the Lebesgue space Lp(Γ, w)
where 1 < p <∞, Γ is a composed Carleson curve, and w is a Muckenhoupt weight in
the class A0(Γ). They also provide index formulas for the operators in the closed alge-
bra of singular integral operators with piecewise continuous matrix-valued coefficients.
The main theorem is based upon three pillars: identification of the local spectrum of
the Cauchy singular integral operator at the endpoints of simple Carleson arcs, an ap-
propriate “N -projections theorem”, and results of geometric function theory pertaining
to the problem of extending Carleson curves and Muckenhoupt weights. V. S. Pilidi
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Tipping, Michael E. (4-MSFT) ; Bishop, Christopher M. (4-MSFT)

Probabilistic principal component analysis. (English. English summary)

J. R. Stat. Soc. Ser. B Stat. Methodol. 61 (1999), no. 3, 611–622.

MR1610908 (99j:30023) 30C65

Bishop, Christopher J. (1-SUNYS)

A quasisymmetric surface with no rectifiable curves. (English. English
summary)

Proc. Amer. Math. Soc. 127 (1999), no. 7, 2035–2040.
The author provides an interesting and clever construction, based on repeated stretch-
ings and foldings, which proves the following theorem and may have further uses later:
there is a quasiconformal mapping f of R3 onto itself such that for a suitable constant
C > 1 and a suitable positive increasing function φ(t) with limt→0 +φ(t)/t = +∞, we
have

1/C ≤ |f(z)− f(w)|/φ(|z−w|)≤ C

for all distinct z, w in the plane R2×{0}.
This then implies that f(R2×{0}) contains no rectifiable curves, which gives a nega-

tive answer to a question of S. Rohde. More generally, if E ⊂R2×{0} and Hα(f(E))<
+∞, then Hα(E) = 0, where Hα(E) denotes the α-dimensional Hausdorff measure of
E. The author notes that this f also answers some other, more technical questions which
we omit in this review. A. Hinkkanen
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Bishop, Christopher J. (1-SUNYS) ; Jones, Peter W. (1-YALE)

Hausdorff dimension and Kleinian groups.

Acta Math. 179 (1997), no. 1, 1–39.
This is a very remarkable paper which represents an important contribution to the
geometry and metrical theory of Kleinian groups, an area with a long tradition as well
as a lot of current activity.

The main results of the paper are reflected in two theorems. Let G denote a non-
elementary Kleinian group acting on the closure of hyperbolic 3-space D3 ∪ S2. Let
L(G)⊂ S2 and δ(G) ∈ (0, 2] denote the corresponding limit set and exponent of conver-
gence, respectively. Recall that G is called analytically finite if (S2\L(G))/G is a finite
union of compact Riemann surfaces with at most finitely many punctures and branch
points. Also, let Lr(G) denote the radial limit set, where ξ ∈ Lr(G) if and only if the
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geodesic ray from the origin in D3 to ξ projects onto M = D3/G to give a geodesic ray
which returns infinitely often to some compact subset of M . Recall that G is called geo-
metrically finite if every limit point is either a radial limit point or else (in the case where
G has parabolic elements) one of the countably many parabolic fixed points. Finally, let
dimH denote Hausdorff dimension. Theorem 1. For any non-elementary Kleinian group
G we have that dimH(Lr(G)) = δ(G). Theorem 2. If G is analytically finite and not
geometrically finite, then dimH(L(G)) = 2.

These two theorems of the paper give rise to rather interesting and deep further
results. For instance, for analytically finite G, we have that: geometrical finiteness
and dimH(L(G)) < 2 are equivalent; δ(G) < dimH(L(G)) implies area(L(G)) > 0;
the box-counting dimension and Hausdorff dimension of L(G) coincide. For finitely
generated G, further consequences are: L(G) is either totally disconnected or a cir-
cle, or dimH(L(G)) > 1; if Gn converges algebraically to G, then dimH(L(G)) ≤
lim infn dimH(L(Gn)).

The proof of Theorem 1 is purely elementary (but nevertheless rather beautiful). The
key observation is to interpret in a straightforward geometric manner the divergence of
the Dirichlet series for values smaller than the exponent of convergence. The proof of
Theorem 2 combines the expertise of the two authors in the theory of harmonic measure
with an estimate of E. B. Davies on the heat kernel on M and a theorem of Elstrodt
and Patterson concerning the bottom of the spectrum of the Laplacian on M .

The paper significantly generalises previously known results by various authors. Since
it appears to be a nearly impossible task to list the complete history of those related
works, the reviewer refers for a first account to the representative list of references given
in the paper. Bernd O. Stratmann
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MR1478778 (99f:30066) 30F40 28A78

Bishop, Christopher J. (1-SUNYS) ; Jones, Peter W. (1-YALE)

Wiggly sets and limit sets. (English. English summary)

Ark. Mat. 35 (1997), no. 2, 201–224.
Let E be a subset of R2. For Q a dyadic square in R2, let αQ be the square concentric
to Q and homothetic of ratio α, let L be the set of lines intersecting Q and

β(Q) = (diamQ)−1 inf
L∈L

sup
z∈E∩3Q

d(z, L),

which measures the minimum oscillation of the set E in all directions in Q. Say E is
uniformly wiggly if there exists β0 > 0 such that β(Q) ≥ β0 for every Q such that 1

3Q
meets E and diamQ≤ diamE.

The authors prove that if E is uniformly wiggly, then the Hausdorff dimension of
E is at least 1 + cβ2, where c is a universal constant. Improving work of Bowen, of
Sullivan, and of Canary and Taylor, they give several applications to limit sets Λ of
Kleinian groups G (i.e. discrete subgroups of PSL2(C), assumed to contain no abelian
subgroup of finite index), where Λ ⊂ P1(C) is the accumulation set of any orbit, by
proving that many of them are uniformly wiggly. Let Ω = P1(C)rΛ be the domain of
discontinuity of G. Say G is analytically finite if Ω/G is a compact Riemann surface with
finitely many points removed. Let δ(G) = inf{s ≥ 0:

∑
g∈G e

−sd(x0,gx0) <∞}, where d

is the hyperbolic distance in the ball with boundary P1(C). The authors prove that if
G is analytically finite, and Ω0 is a simply connected invariant component of Ω, then
dim(∂Ω0) = 1 if and only if δ(G) = 1 if and only if ∂Ω0 is a circle. So the limit set of an
analytically finite Kleinian group is either totally disconnected, a circle or has Hausdorff
dimension > 1, and it satisfies δ(G)> 1 if nongeometrically finite. Frédéric Paulin

MR1476980 (98j:30051) 30F40 28A78 30C35 31A15

Bishop, Christopher J. (1-SUNYS) ; Jones, Peter W. (1-YALE)

FThe law of the iterated logarithm for Kleinian groups. (English. English
summary)

Lipa’s legacy (New York, 1995), 17–50, Contemp. Math., 211, Amer. Math. Soc.,
Providence, RI, 1997.
Suppose G is a Kleinian group acting on the hyperbolic three-ball B and let Λ and
Λc denote the limit set and conical limit set respectively. The purpose of this paper
is to prove the following result: Suppose G is an analytically finite but geometrically
infinite Kleinian group such that the injectivity radius of M = B/G is bounded away
from zero. Then Λ r Λc has positive Hausdorff measure with respect to the function

ϕ(t) = t2
√

log 1
t log log log 1

t . If, in addition, G is topologically tame and Λ 6= S2, then
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Λ has finite Hausdorff ϕ-measure and Λc has zero ϕ-measure. The corollaries on the
size of the conical limit set, the existence and ergodicity of conformal densities, and the
differentiability of quasiconformal conjugacies are also obtained. Vasily A. Chernecky

MR1428819 (97k:60105) 60G17 60J65

Bishop, Christopher J. (1-SUNYS) ; Jones, Peter W. (1-YALE) ;
Pemantle, Robin (1-WI) ; Peres, Yuval (1-CA-S)

The dimension of the Brownian frontier is greater than 1. (English. English
summary)

J. Funct. Anal. 143 (1997), no. 2, 309–336.
Let Xt be a two-dimensional Brownian motion and let A be the boundary of the
unbounded connected component of the complement of X[0, 1]. It is proved that the
Hausdorff dimension of A is strictly greater than 1. It had been conjectured that the
dimension is equal to 4/3. Krzysztof Burdzy
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Bishop, Christopher J. (1-SUNYS)

Geometric exponents and Kleinian groups. (English. English summary)

Invent. Math. 127 (1997), no. 1, 33–50.
Let G be an analytically finite Kleinian group (i.e. the quotient of the domain of
discontinuity Ω ⊂ S2 by G is a finite union of surfaces of finite type). Let {Ωj} be an
enumeration of the components of Ω, and define diam(Ωj) and inrad(Ωj) as the metric
diameter and radius of largest disk inside Ωj , respectively (using the spherical metric
on S2). The first theorem of this paper states that the series

∑
j diam(Ωj)

2 converges.
The idea of the proof is based on estimating the diameter of all sets in the G orbit of
a particular component Ω0 (by hypothesis, there are only finitely many G-equivalence
classes in {Ωj} ). For Ωj = gjΩ0, the author proves a lemma of Maskit showing that
diam(Ωj) is comparable to r2

j/ηj where rj is the radius of the isometric circle of gj and

ηj is the distance from g−1
j (∞) to Ω0. Elementary estimates finish the proof.

The second result is that the Poincaré exponent of convergence forG equals the critical
exponents for both

∑
j diam(Ωj)

s and
∑
j inrad(Ωj)

s. If, in addition, the limit set Λ of

G is a null set (with respect to Lebesgue measure), then these exponents agree with
the Hausdorff dimension of Λ. Finally, the author defines a Whitney decomposition
for planar regions and shows the corresponding critical exponent for any Whitney
decomposition of Λ equals the Poincaré exponent when Λ 6= S2. The proofs of these
statements require some nontrivial lemmas from harmonic analysis. Eric M. Freden
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MR1404092 (97f:30064) 30F40 57M50 57M60

Bishop, Christopher J. (1-SUNYS)

On a theorem of Beardon and Maskit. (English. English summary)

Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 383–388.
A Kleinian group G is a discrete (as a group of matrices) subgroup of the group
PSL(2,C). It acts conformally on points in S2 via homeomorphisms and isometrically
on points in the unit sphere B3 = {x ∈R3: |x|< 1} equipped with the Poincaré metric
ds2 =
dx2/(1− |x|2)2.

We say that G is geometrically finite if its action on points in B3 has a finite-sided
fundamental polyhedron. Since G is discrete, it follows that the orbit of any element
under G can only accumulate in S2; therefore we define the limit set Λ(G) of G as the
closure of the set G(0) = {x ∈B3: x= g(0), g ∈G}. For z ∈ S2 let Γ(x, r) be the convex
hull (in Euclidean geometry) of {z} and {x ∈ B3: |x| < r}. The point z as above is a
conical limit point if there exists an r < 1 such that z is the accumulation point of the
set Γ(x, r)∩G(0).

In this paper the author proves the following theorem: Let G be a discrete subgroup
of PSL(2,C). Then G is geometrically finite if and only if every point in Λ(G) is either
a conical limit point or a fixed point of a parabolic element of G. (Recall that g ∈ G is
parabolic if it has only one fixed point in S2.)

The technical step in the proof of the above theorem is based on a result due to F.
Bonahon about closed geodesics in hyperbolic 3-manifolds [see Ann. of Math. (2) 124

(1986), no. 1, 71–158; MR0847953].
This result refines a similar theorem of A. F. Beardon and B. Maskit [see Acta Math.

132 (1974), 1–12; MR0333164]. André C. Rocha

MR1398371 (97j:46053) 46J15

Bishop, Christopher J. (1-SUNYS)

A distance formula for algebras on the disk. (English. English summary)

Pacific J. Math. 174 (1996), no. 1, 1–27.
Let H∞(D)[F] be the closed algebra on the disk generated by H∞(D) and a count-
able collection F of bounded harmonic functions. For g ∈ L∞(D), the distance from
g to H∞(D)[F] is denoted by dist(g,H∞(D)[F]). A recipe is given for calculating
dist(g,H∞(D)[F]). Let F = {fn}n∈I , where I = N or I = {1, · · · , N}. For each fn = un+
ivn, there corresponds a holomorphic function hn = ((un + v∗n)− i(vn− u∗n))/2 (possi-
bly unbounded), where u∗n is the harmonic conjugate of un with u∗n(0) = 0. Put H =
{hn}n∈I . For δ > 0 and α= {an}n∈I ∈CI , define ΩH(α, δ,m) =

⋂
hn∈H,n≤m Ωhn(an, δ),

where Ωhn(an, δ) = {z ∈D; |hn(z)− an|< δ}. It is proved that

dist(g,H∞(D)[F]) = inf
δ>0, m∈I

sup
α∈CI

dist(g,H∞(ΩH, (α, δ,m))).

The author also discusses the Bourgain closure of H∞(D)[F] and gives a new proof of
a result of S. Axler and A. L. Shields [Indiana Univ. Math. J. 36 (1987), no. 3, 631–638;
MR0905614]. Keiji Izuchi
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MR1398152 (98h:30061) 30F40 20H10

Bishop, Christopher J. (1-SUNYS)

Minkowski dimension and the Poincaré exponent.

Michigan Math. J. 43 (1996), no. 2, 231–246.
In this paper the author obtains the connection of a Poincaré exponent of convergence
with the geometrical property of the limit set Λ(G). Let Ω(G) = S2Λ(G) be the ordinary
set of a Kleinian group G. If z0 ∈ Ω(G) then the critical exponent (or Poincaré exponent)
is defined as

δ(G) = inf
{
s:
∑
g∈G

dist(g(z0),Λ(G))s <∞
}
,

where distance is in the spherical metric. It is known that this exponent does not depend
on the choice of z0. The upper Minkowski dimension of a compact K ⊂R2 is defined as

Mdim(K) = lim supε→0 logN(K, ε)/ log(1/ε),

where N(K, ε) is the minimal number of ε-balls needed to cover K. Theorem 1.1:
Suppose G is an analytically finite, non-elementary Kleinian group. If area(Λ(G)) =
0 then δ(G) = Mdim(Λ(G)). {For related results see C. J. Bishop [Invent. Math. 127

(1997), no. 1, 33–50; MR1423024].} Gregory M. Lyan

MR1376540 (97c:28015) 28A80 28A75

Bishop, Christopher J. (1-SUNYS) ; Peres, Yuval (1-CA-S)

Packing dimension and Cartesian products. (English. English summary)

Trans. Amer. Math. Soc. 348 (1996), no. 11, 4433–4445.
Summary: “We show that for any analytic set A in Rd, its packing dimension dimP (A)
can be represented as supB{dimH(A×B)− dimH(B)}, where the supremum is over
all compact sets B in Rd, and dimH denotes Hausdorff dimension. (The lower bound
on packing dimension was proved by Tricot in 1982.) Moreover, the supremum above
is attained, at least if dimP (A) < d. In contrast, we show that the dual quantity
infB{dimP (A×B)− dimP (B)} is at least the ‘lower packing dimension’ of A, but
can be strictly greater. (The lower packing dimension is greater than or equal to the
Hausdorff dimension.)” Claude Tricot

MR1328340 (96m:46052) 46E35 41A63

Bishop, Christopher J. (1-SUNYS)

A counterexample concerning smooth approximation. (English. English
summary)

Proc. Amer. Math. Soc. 124 (1996), no. 10, 3131–3134.
Summary: “We answer a question of W. S. Smith, A. Stanoyevitch and D. A. Stegenga
[J. London Math. Soc. (2) 49 (1994), no. 2, 309–330; MR1260115] in the negative by
constructing a simply connected planar domain Ω with no two-sided boundary points
and for which every point on Ωc is an m2-limit point of Ωc and such that C∞(Ω) is not
dense in the Sobolev space W k,p(Ω).”
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MR1326997 (96k:46091) 46J15 30D55 46J20

Bishop, Christopher J. (1-SUNYS)

Some characterizations of C(M). (English. English summary)

Proc. Amer. Math. Soc. 124 (1996), no. 9, 2695–2701.
Let H∞ denote the algebra of bounded analytic functions on the open unit disc D,
let M(H∞) denote its maximal ideal space, and let X denote the Shilov boundary of
H∞. In this article, the author gives necessary and sufficient conditions for a bounded
continuous function g defined on D to extend continuously to M(H∞). The author
obtains several corollaries, one of which is related to results of Axler and Shields, and of
Ivanov.

S. Axler and A. L. Shields [Pacific J. Math. 145 (1990), no. 1, 1–15; MR1066396]
showed that a continuous function on D∪X with values in C∪{∞} has a nontangential
limit at almost every point of the unit circle T. In this paper, the author shows that
a bounded continuous function f on D has a continuous extension to X if and only if
f has nontangential limits almost everywhere on T. O. V. Ivanov has several related
results in his paper [Dokl. Akad. Nauk Ukrain. SSR 1991, no. 7, 5–8, 177; MR1157940],
as well as several other related papers. Pamela Gorkin

MR1385195 (97m:68172) 68T10 92B20

Bishop, Christopher M. (4-ASTN-AM)

FNeural networks for pattern recognition. (English. English summary)
With a foreword by Geoffrey Hinton.

The Clarendon Press, Oxford University Press, New York, 1995. xviii+482 pp. $98.00;
$45.00 paperbound. ISBN 0-19-853849-9; 0-19-853864-2
There has been an acute need for authoritative textbooks in neural networks that
explain the main ideas clearly and consistently using the basic tools of linear algebra,
calculus, and simple probability theory. There have been many attempts to provide such
a text, but until now, none has succeeded. This is a serious attempt at providing such
an ideal textbook.

By concentrating on pattern recognition aspects of neural networks, the author is able
to treat many important topics in much greater depth. The most important contribution
of the book is the solid statistical pattern recognition approach, a sign of increasing
maturity of the field.

The first chapter provides an introduction to the principal concepts of pattern recog-
nition. Chapter 2 deals with the problem of modeling the probability distribution of a
set of data, and reviews conventional parametric and non-parametric methods, as well
as discussing more recent techniques based on mixture distributions. Single-layer neural
networks are introduced in Chapter 3. Chapter 4 provides a comprehensive treatment
of the multi-layer perceptron. Radial basis function networks are discussed in Chapter
5. Several error functions can be used for training neural networks, and these are ex-
amined in Chapter 6. Chapter 7 reviews many of the most important algorithms for
optimizing the values of the parameters in a network. Chapter 8 covers a range of is-
sues associated with data-preprocessing, and describes practical techniques related to
dimensionality reduction and the use of prior knowledge. Chapter 9 provides a num-
ber of insights into the problem of generalization, and describes methods for addressing
the central issue of model order selection. The final chapter discusses the treatment of
neural networks from a Bayesian perspective.

This book is aimed at researchers in neural computing as well as those wishing to
apply neural networks to practical applications. It is also intended to be used as the
primary text for a graduate-level course on neural networks. Exercises are provided at
the end of each chapter.



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2026

The book is largely self-contained as far as the subject of neural networks is concerned,
although some prior exposure to the subject may be helpful to the reader. It is assumed
that the reader has a good working knowledge of vector and matrix algebra, as well as
integral and differential calculus for several variables. Răzvan Andonie

MR1303516 (96d:30028) 30C85 30D40

Bishop, Christopher J. (1-SUNYS)

How geodesics approach the boundary in a simply connected domain.

J. Anal. Math. 64 (1994), 291–325.
This paper is an excellent contribution to the theory of “fine structure” of harmonic
measure and other conformal invariants which has been developed in recent work by N.
G. Makarov, P. Jones, the author, and others. Let ω be a bounded Jordan domain in the
plane. Consider the set of hyperbolic geodesics of ω emanating from some fixed interior
point z0. Each geodesic ends at some point of ∂ω, and the correspondence between
the geodesics and their terminal boundary points is bijective. The author addresses
questions of the following type: If a geodesic is close to its terminal point at some time
t, how likely is the geodesic to stray far away from it later?

It turns out that this and related questions can be given satisfyingly precise answers.
Let f be a Riemann map of the unit disk onto ω with f(0) = z0. Then the geodesics from
z0 are indexed by points eiθ on the unit circle, and are parameterized by the formula
γ(t, θ) = f(eiθ), 0≤ t≤ 1. Set

e(t, θ) = |γ(t, θ)− γ(1, θ)|, E(t, θ) = sup
t≤s≤1

e(s, θ).

Let φ be a positive decreasing function on (0, 1), subject to some mild restrictions.
Define

I(φ) =

∫ 1

0

φ−9/2(t)
dt

t
, L(θ) = lim sup

t→1

E(t, θ)

e(t, θ)φ(e(t, θ))
.

Theorem. If I(φ)<∞, then L(θ) = 0 for a.e. θ. But if I(φ) =∞ there exists an ω for
which L(θ) =∞ for a.e. θ.

As one might imagine, the proofs are complicated. They rely on ingenious decom-
positions dictated by the geometry of geodesics and numerous estimates of harmonic
measure. The domains illustrating sharpness have fractal boundaries of just the right
type. The magic exponent 2/9 arises as follows: if Ei, i = 1, 2, 3, are three disjoint
subsets of a circle, with respective longest arcs of angular measure θi

∗, then

3∑
i=1

1

θi
∗ ≤

9

2π
.

There are also results in which the distance e(t, θ) from a point on the geodesic to its
endpoint is replaced by the shortest distance b(t, θ) from that point to ∂ω.

Albert Baernstein, II
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MR1274085 (95j:30008) 30C35 30C62 30C85

Bishop, Christopher J. (1-SUNYS)

Some homeomorphisms of the sphere conformal off a curve. (English. English
summary)

Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 2, 323–338.
A closed set E in the plane is said to be removable for conformal homeomorphisms if
any homeomorphism of the Riemann sphere which is conformal off E must be conformal
on the whole sphere (i.e., a Möbius transformation). On the other hand, a closed curve
Γ is said to be flexible (for conformal homeomorphisms) if for any other closed curve
Γ′ and any ε > 0 there is a homeomorphism Φ of the sphere which is conformal off
Γ and such that Φ(Γ) is in the ε-neighborhood of Γ′ with respect to the Hausdorff
metric. The main result of this paper is to show that there exists a closed Jordan curve
which is flexible. It is proved by an iterative construction based on the following idea.
If the curve Γ was actually a thin strip of some positive width, there would be no
problem constructing Φ by letting it be any conformal map on either side of the strip
and interpolating these maps continuously across the strip. If the strip is “filled up” by
a highly oscillating curve, then conformal maps on either side of the curve can still be
continuously interpolated in some sense. The construction shows that, for any Hausdorff
measure function h with h(t) = o(t) as t→ 0, one can make the flexible curve to have
zero Hausdorff measure with respect to h. This extends a result of R. P. Kaufman on
non-removable sets which are close to σ-finite length [Ann. Acad. Sci. Fenn. Ser. A I
Math. 9 (1984), 27–31; MR0752389].

This paper also gives a nice survey of some known results and open problems about
removable sets for several different classes of functions such as analytic functions with
finite energy and quasiconformal maps. Shan Shuang Yang

MR1269200 (95f:30034) 30C85 30C62 31A15

Bishop, Christopher J. (1-SUNYS) ; Jones, Peter W. (1-YALE)

Harmonic measure, L2 estimates and the Schwarzian derivative. (English.
English summary)

J. Anal. Math. 62 (1994), 77–113.
This paper is part of the recent program, pursued by a number of people, where classical
analytic “L2-techniques” are put to work to register the geometry of sets, rather than
the behavior of functions. This point of view is lucidly explained in the introduction.
For instance, if Γ is a Jordan curve in the plane, then, for x ∈ Γ and t > 0, write ε(x, t) =
max{|π− θ1(t)|, |π− θ2(t)|}, where θi(t) is the angle measure of the longest arc in the
circle, centered at x with radius t, also contained in Ωi, one of the two complementary
domains of Γ. Carleson has conjectured that the Dini type condition

∫
0
ε(x, t)2 dt/t <

∞ characterizes, up to a set of linear measure zero, those points x on Γ that admit a
tangent.

The first result of this paper is a proof of a statement that is slightly weaker than
Carleson’s conjecture, which to my knowledge is still open. In this version ε(x, t) is
replaced with β(x, t), which measures the “smoothness” of Γ at x at the scale t as in
the second author’s work on the traveling salesman problem and rectifiable sets [Invent.
Math. 102 (1990), no. 1, 1–15; MR1069238].

In the second part of the paper the authors sharpen and quantify their earlier work
[Ann. of Math. (2) 132 (1990), no. 3, 511–547; MR1078268] on harmonic measure and
rectifiable curves. They present an integrability condition on the derivatives of the Rie-
mann mapping (this involves the Schwarzian of the mapping, among other things) which
assures that the boundary of the image domain is reasonably well approximable by recti-
fiable curves. From this result one can derive Lavrent′ev-type estimates for the harmonic
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measure in domains whose boundary is not necessarily (locally) rectifiable. Many of the
techniques used here are elaborations on the ideas of the difficult aforementioned 1990
paper by the authors.

The paper contains a wealth of related results connecting the geometry of a simply
connected domain to the behavior of the Schwarzian of its Riemann mapping function.
Particularly appealing is Theorem 4, which gives characterizations, both geometric and
analytic, of the domains whose Riemann mapping function has the property that the
logarithm of its derivative is in BMO on the circle. This characterization complements
an earlier work of K. Astala and M. Zinsmeister [Math. Ann. 289 (1991), no. 4, 613–625;
MR1103039]. One of the geometric characterizations of these BMO-domains immedi-
ately gives their bi-Lipschitz invariance, a property which a priori is far from obvious.

Juha Heinonen

MR1240926 (94j:30032) 30D50 30D45

Bishop, Christopher J. (1-SUNYS)

An indestructible Blaschke product in the little Bloch space. (English. English
summary)

Publ. Mat. 37 (1993), no. 1, 95–109.
In this paper, the author constructs an infinite Blaschke productB in B0, the little Bloch
space, that is indestructible, i.e., such that (B− a)/(1− aB) is also a Blaschke product
for every point a in the unit disk. In a previous paper [Pacific J. Math. 142 (1990), no. 2,
209–225; MR1042042], the author showed how to produce an infinite Blaschke product
in B0 by constructing its zero set, but the method there seems unsuited for producing
an indestructible Blaschke product. Here the author employs a “cut and paste” scheme
based on a method of K. Stephenson [Trans. Amer. Math. Soc. 308 (1988), no. 2, 713–
720; MR0951624] for constructing inner functions in B0. One builds a simply connected
Riemann surface lying over the unit disk by pasting together copies of the disk along
suitably chosen radial slits. One obtains the desired Blaschke product by composing
a Riemann map from the disk to the surface with the projection from the surface to
the disk. The details are formidable. By a similar construction, the author produces a
function in VMOA of sup-norm 1 which, in every interior neighborhood of each point
on the unit circle, assumes each value in the disk infinitely often. D. Sarason

MR1208564 (94g:22023) 22E40 30F35

Bishop, Christopher (1-UCLA) ; Steger, Tim (1-CHI)

Representation-theoretic rigidity in PSL(2,R).

Acta Math. 170 (1993), no. 1, 121–149.
Let Γ be an abstract group and G a noncompact connected simple Lie group
with trivial center. Let ι1, and ι2 be two inclusions of Γ in G such that ι1(Γ) and
ι2(Γ) are lattices in G, i.e., are discrete subgroups of G of finite covolume. ι1 and
ι2 are said to be equivalent if there is an automorphism ρ of G such that ι2 =
ρ · ι1. According to the strong rigidity theorem of G. D. Mostow, if G is not isomorphic
to PSL(2,R), then ι1 and ι2 are equivalent. This is false if G= PSL(2,R). In the paper
under review, the authors prove the following nice theorem: If π1 and π2 are irreducible
unitary representations of PSL(2,R) not in discrete series, then π1 · ι1 and π2 · ι2 are
equivalent representations of Γ if and only if ι1 and ι2 are equivalent and, moreover, π1

and π2 are equivalent representations of PSL(2,R).
The key step in the proof of this theorem is an interesting criterion for the equivalence

of ι1 and ι2 which the authors prove using some geometric considerations. Recall that
PSL(2,R) acts on the upper half-plane H by Mobius transformations. Let d(·, ·) denote
the hyperbolic metric on H and for g ∈ PSL(2,R), let h(g) = exp(−d(g(i), i)). Then the
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criterion is that ι1 and ι2 are equivalent if and only if
∑
γ∈Γ h

s(ι1(γ))h1−s(ι2(γ)) =∞,
for some s, 0< s < 1. Gopal Prasad

MR1159563 (93a:60125) 60J65 31A20 60G17

Bishop, Christopher J. (1-SUNYS)

Brownian motion in Denjoy domains.

Ann. Probab. 20 (1992), no. 2, 631–651.
A susbset Ω of R2 is called a Denjoy domain if it is open and its complement E is a subset
of R. If Ω is a Denjoy domain then, for almost every x ∈ E (with respect to harmonic
measure) and ε > 0, Brownian motion in Ω, conditioned to exit at x, hits [x− ε, x) with
probability 1 if and only if it hits (x, x+ε] with probability 1. If the Hausdorff dimension
of E is less than 1 then a.s. Brownian motion killed upon exiting Ω makes a closed loop
around its exit point. Several other related results are proved. Krzysztof Burdzy

MR1155854 (93f:30023) 30C85 30C35 30C62 31A15

Bishop, Christopher J. (1-UCLA)

FSome questions concerning harmonic measure.

Partial differential equations with minimal smoothness and applications (Chicago, IL,
1990), 89–97, IMA Vol. Math. Appl., 42, Springer, New York, 1992.
This article is a survey covering 12 interesting open questions associated to the behaviour
of harmonic measure on the boundary of a planar domain. Most of the problems arise
from attempts to extend in natural ways the fundamental theorems of N. G. Makarov
[Proc. London Math. Soc. (3) 51 (1985), no. 2, 369–384; MR0794117]. It should prove
useful to young workers looking for serious problems to get started with. T. J. Lyons

MR1115072 (93a:31011) 31B20 30C85 31A15

Bishop, Christopher J. (1-UCLA)

A characterization of Poissonian domains.

Ark. Mat. 29 (1991), no. 1, 1–24.
Given a domain Ω in Rn, the harmonic measures dωx, x ∈ Ω, define a map of L∞ of the
boundary ∂Ω (in Rn ∪{∞}) into the bounded harmonic functions on Ω. If this map is
onto, the domain is said to be Poissonian.

A number of interesting results are proved, of which Theorem 1.1, which characterizes
such domains, is the most striking; Ω is Poissonian if and only if, for every pair of
disjoint subdomains Ω1 and Ω2 with ∂Ω1 ∩ ∂Ω2 ⊂ ∂Ω, the harmonic measures ωi for
Ωi are mutually singular. As a consequence, every component of the intersection of
two Poissonian domains is Poissonian. Also, if E ⊂Rn is a closed subset of a Lipschitz
graph, then Ω = Rn rE is Poissonian if and only if E has zero (n− 1)-dimensional
measure.

The author also characterises Poissonian plane domains in terms of a Wiener type
condition which is a weakening of the double cone condition used by Bishop et al.
[Pacific J. Math. 138 (1989), no. 2, 233–236; MR0996199].
{See also the following review [MR1115078].} J. C. Taylor
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MR1065010 (92k:22018) 22E40

Bishop, Christopher (1-UCLA) ; Steger, Tim (1-CHI)

Three rigidity criteria for PSL(2,R).

Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 1, 117–123.
From the text: “Let G be PSL(2,R), the quotient of the group of 2× 2 real matrices
with determinant one by its two-element center, {±I}. By a lattice subgroup of G we
mean a discrete subgroup such that the space of cosets G/Γ has finite volume. A familiar
example of a lattice subgroup is PSL(2,Z), the subgroup of matrices in PSL(2,R) with
integer entries. Let Γ be an abstract group and let ι1 and ι2 be two inclusions of Γ
in G, each having a lattice subgroup as its image. We say ι1 and ι2 are equivalent
if there is some (continuous) automorphism α of G such that ι2 = α ◦ ι1. This paper
describes three closely related criteria for the equivalence of ι1 and ι2: one analytic, one
representation-theoretic, and one geometric.”

MR1081289 (92c:30008) 30C35 30C62

Bishop, Christopher J. (1-UCLA)

Conformal welding of rectifiable curves.

Math. Scand. 67 (1990), no. 1, 61–72.
Suppose that D1 and D2 are Jordan domains on the Riemann sphere C and that
ψ: Γ1→ Γ2 is a homeomorphism, where Γi = ∂Di. Then ψ admits a conformal welding
if there exist a Jordan curve Γ with complementary domains Ω1 and Ω2 and conformal
mappings Φi:Di→ Ωi whose homeomorphic extensions to Di satisfy ψ = Φ−1

2 ◦Φ1.
A. Hubershowed that a conformal welding may not exist even when Γ1 and Γ2

are rectifiable and ψ is an isometry [Comment. Math. Helv. 51 (1976), no. 3, 319–331;
MR0425110]. On the other hand, it was hoped that under these circumstances the
curve Γ would be well behaved; for example, rectifiable if a welding did exist [J. M.
Anderson, K. F. Barthand D. A. Brannan, Bull. London Math. Soc. 9 (1977), no. 2, 129–
162; MR0440018]. In the article under review the author shows that this is not the case
by constructing a pair of rectifiable Jordan curves Γ1 and Γ2 and an isometry ψ: Γ1→
Γ2 for which a welding exists and the curve Γ has positive area.

Two consequences of the author’s construction are as follows. First, the curve Γ
corresponding to a welding for an isometry ψ between rectifiable curves need not be
uniquely determined up to a Möbius transformation. Second, for each 1 ≤ d < 2 there
exists an isometry ψ between chord arc curves which admits a conformal welding where
Γ has Hausdorff dimension greater than d. F. W. Gehring

MR1078268 (92c:30026) 30C85

Bishop, Christopher J. (1-UCLA) ; Jones, Peter W. (1-YALE)

Harmonic measure and arclength.

Ann. of Math. (2) 132 (1990), no. 3, 511–547.
This paper provides affirmative answers to two well-known conjectures on harmonic
measure and conformal mappings. Theorem 1 states that if Ω is a simply connected
domain in the plane and Γ is a rectifiable curve, then a set E ⊂ ∂Ω∩ Γ has positive
harmonic measure only if it has positive length. This result was conjectured by Øksendal
and it is impressive when one remembers that harmonic measure quite often can be
supported on a set of zero length; it follows that then it is impossible to draw a
rectifiable curve through every point in the support. In Theorem 2 the authors establish
a quantitative version of Theorem 1. The so-called Hayman-Wu theorem [W. K. Hayman
and J.-M. G. Wu, Comment. Math. Helv. 56 (1981), no. 3, 366–403; MR0639358] asserts
that for any line L and any conformal mapping f from the unit disk into R2 the length
of f−1(L) is bounded by an absolute constant, now known to be less than 4π [K. Øyma,
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“Harmonic measure and conformal length”, Proc. Amer. Math. Soc., to appear]. Later
J. L. Fernándezand D. H. Hamilton[Comment. Math. Helv. 62 (1987), no. 1, 122–134;
MR0882968] proved that if the line is replaced by a chord arc curve L then the length
of f−1(L) is bounded by a constant C(L). They also conjectured that the sufficient
condition for such a result to hold is the (obviously necessary) Ahlfors-David regularity:
the part of L inside any disk has length no more than a fixed constant times the radius
of the disk. The authors here use the harmonic measure device introduced by J. B.
Garnett, F. W. Gehringand Jones [Indiana Univ. Math. J. 32 (1983), no. 6, 809–829;
MR0721565] and point out that the above level set conjecture follows from Theorem 2.
The introduction in the paper contains a clear account of the history and background
of these appealing problems.

In proving Theorems 1 and 2 the authors’ method is to reduce them to the case where
Ω itself has rectifiable boundary, for then classical results apply. This is done in several
astute steps. First, results of Pommerenke are used to show that Ω can be replaced
by the image of the normal fundamental domain F under a universal covering Φ:D→
R2 rE (here D is the unit disk and E is assumed to be compact). The main bulk
of the paper consists of the construction of a Lipschitz subdomain L of F such that
Φ(L) has rectifiable boundary and E positive harmonic measure in Φ(L); it is in this
construction that the essential assumption “E lies on a rectifiable curve” is used. Jones,
in his traveling salesman paper [Invent. Math. 102 (1990), no. 1, 1–15; MR1069238],
found a quantitative way to measure the rectifiability of a set in terms of geometric
square functions, and this leads to an estimate for the Schwarzian derivative of the
covering map Φ. The desired Lipschitz domain is then built by using this estimate with
potently applied L2-techniques in good and bad cubes. The estimate for the Schwarzian,
Lemma 3.1, is interesting in its own right and the authors have successfully employed it
in new problems in their forthcoming work.

Regrettably, this ingenious paper does not lend itself to easy reading. The reviewer
soon surrendered in an effort to verify all the details. There is an unfortunate misstate-
ment in the proof of Lemma 3.1. As easy examples show, it is not true that the domains
{Vn} lie in R2 rE (p. 520, line 26). It is thus impossible to define the Green’s function
G on VN in terms of Φ−1, and the proof rests on these assumptions. Bishop informed
the reviewer that Lemma 3.1 can be salvaged by replacing VN by the domain D (de-
fined on p. 524) and then integrating G−GN over the boundary of D. It seems that in
this case the desired estimate (3.2) can be obtained by using the reasoning on pp. 523–
524, and, e.g., Lemma 3.5 becomes redundant. Juha Heinonen

MR1042042 (91b:30101) 30D45 30D55 46E15 46J15

Bishop, Christopher J. (1-UCLA)

Bounded functions in the little Bloch space.

Pacific J. Math. 142 (1990), no. 2, 209–225.
A necessary and sufficient condition is given for a bounded holomorphic function in
the unit disk to belong to the little Bloch space B0. This condition is in terms of the
measure which arises in the canonical factorization theorem. In particular, this provides
an answer to D. Sarason’s question about the characterization of the Blaschke products
in B0 in terms of the distribution of their zeros and the author gives an explicit example
of such a Blaschke product. David Bekolle
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MR1015126 (90k:30064) 30D55 30H05

Biship, Kristofer (1-MSRI)

An element of the disk-algebra that is stationary on a set of positive length.
(Russian)

Algebra i Analiz 1 (1989), no. 3, 83–88; translation in Leningrad Math. J. 1 (1990), no.
3, 647–652.
We say that the function ϕ is stationary on the set E ⊂ ∂D = {z: |z| = 1} if there
exists an absolutely continuous function ψ on ∂D such that ψ(eiθ) = ϕ(eiθ) and ψ′ =
0 a.e. on E. The author constructs a virtuoso example of a nonconstant function f
from a disk algebra, which is stationary on a set of positive length. Thus he answers
a question of V. P. Khavin, B. Jörickeand N. G. Makarov. The result obtained has
interesting applications in operator theory and function theory. As the author notes,
the general problem of describing the measurable sets E ⊂ ∂D, for which there does
not exist a nonconstant function from H1(D) that is stationary on E, is far from being
solved. Oleg V. Ivanov

MR0996199 (90d:30069) 30C85 31A15

Bishop, C. J. (1-UCLA) ; Carleson, L. (1-UCLA) ; Garnett, J. B. (1-UCLA) ;
Jones, P. W. (1-YALE)

Harmonic measures supported on curves.

Pacific J. Math. 138 (1989), no. 2, 233–236.
This article exhibits necessary and sufficient conditions for the mutual singularity of
two harmonic measures associated with two disjoint simply connected plane domains.
More precisely, the following geometric characterization is established. If ω1 and ω2 are
harmonic measures associated with the complements of a Jordan curve Γ, then ω1⊥ω2

if and only if Λ1(T ) = 0, where T is the set of all points on Γ which have a tangent. In
addition to a lemma credited to Beurling, the proof employs a rcent refinement of N. G.
Makarov’swork [Proc. London Math. Soc. (3) 51 (1985), no. 2, 369–384; MR0794117] due
to Ch. Pommerenke[J. Analyse Math. 46 (1986), 231–238; MR0861701]. Interpretations
and modifications to the proof are provided for the case where Γ is a Jordan arc as well
as the general case of two disjoint simply connected plane domains. David A. Herron

MR0976315 (90a:46134) 46J15 30H05 46J10

Bishop, Christopher J. (1-MSRI)

Constructing continuous functions holomorphic off a curve.

J. Funct. Anal. 82 (1989), no. 1, 113–137.
In this paper the author provides new and interesting proofs of some known results
about the algebra of a plane domain complementary to a compact set.

More precisely, let K be a compact set in the Riemann sphere C and let AK =A(Cr
K) be the algebra of functions analytic and bounded on CrK and continuous on the
closure of CrK. It is not known when AK contains nontrivial functions, but one can
characterize the sets K for which AK is big enough in some sense, for instance when it
is a Dirichlet algebra over K.

The following results are proven. Theorem (Browder and Wermer): Let Γ be a curve;
then AΓ is Dirichlet on Γ if and only if ω1⊥ω2, where ω1 and ω2 are the harmonic
measures on each component of C r Γ. Theorem (Davie): Let K be a compact and
connected set; then AK is Dirichlet on K if and only if the harmonic measures for
different components of C rK are mutually singular and each component of C rK
is nicely connected (nicely connected means that, on the boundary of the component,
there is a set of full harmonic measure where the conformal map on the unit disc is
injective). Theorem: If K is compact and connected then the following are equivalent:
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(i) AK is Dirichlet on K; (ii) AK is pointwise boundedly dense in H∞(CrK); (iii) AK
is strongly pointwise boundedly dense in H∞(CrK).

The proofs given in the paper replace the use of functional analysis, mainly of the
Hahn-Banach theorem, by explicit constructions involving the ∂ problem. In particular,
this gives explicit constructions of nontrivial functions in the algebra AK . Some related
results about the action of singular homeomorphisms of the unit circle on the disc
algebra are also obtained as a consequence of the previous proofs. Julià Cuf́ı

MR0961619 (89j:30051) 30E10 31A05 46J15

Bishop, Christopher J. (1-UCLA)

Approximating continuous functions by holomorphic and harmonic functions.

Trans. Amer. Math. Soc. 311 (1989), no. 2, 781–811.
Let H∞(Ω) denote the algebra of bounded holomorphic functions on an open connected
subset Ω of the extended complex plane. The main result of the present work can
be described as follows: Let f be a bounded harmonic function on Ω which is not
holomorphic. Then the algebra generated by H∞(Ω) and f contains any uniformly
continuous function on Ω.

This result is proved for a rather general class of sets including any finitely connected
domain. The special case where Ω is the unit disc was previously proved by S. Axlerand
A. Shields[Indiana Univ. Math. J. 36 (1987), no. 3, 631–638; MR0905614].

The paper is very well written and contains many interesting results and methods.
First the author proves the above result when f is the complex conjugate of a nontrivial
function in H∞(Ω). This proof is rather short, it motivates the proof of the general
case, and there are no restrictions on Ω in this special case. The general case is much
harder. The problem is “pulled back” from Ω to the unit disc D by a universal covering
map. In D the main methods involve solution of a ∂ problem with L∞ estimates and a
delicate analysis of level sets of certain analytic functions in D. These analytic functions
are assumed to have (Fatou) boundary values belonging to BMO, the class of functions
having bounded mean oscillation.

Finally the problem is transferred back to Ω by an averaging procedure, and it is here
that some restrictions on Ω are needed. There is no doubt that a detailed study of the
present paper will pay off well for the interested reader. Arne Stray
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In this very beautiful paper, the author settles two important problems. Theorem: For
any 1 ≤ d < 2 there exists a quasicircle Γ of dimension d such that the corresponding
welding homeomorphism is bi-Lipschitz. Corollary: There exists a bi-Lipschitz homeo-
morphism ψ: R→ R and a nonconstant f ∈ A(H+) such that f ◦ ψ ∈ A(H−). (Here
A(H±) denote the spaces of continuous functions with bounded holomorphic extensions
to H± respectively; H± = {Imz ≷ 0}.)

The theorem improves a result of S. Semmes[Ark. Mat. 24 (1986), no. 1, 141–158;
MR0852832]. It is worth mentioning that the bi-Lipschitz constant cannot be taken
close to 1, for by a result of G. David, Γ must be a chord-arc curve in this case. The
corollary answers a question of Semmes to the effect that the operator f 7→ P (f ◦ψ)
with ψ′ ∈ A∞ (the Muckenhoupt class) need not be invertible in BMOA. (P denotes
the projection from BMO to BMOA.) An example of an absolutely continuous ψ on R

such that f ◦ψ ∈ A(H−) for a nonconstant f in A(H+) was originally given by J. B.
Garnettand A. G. O’Farrell[Pacific J. Math. 65 (1976), no. 1, 55–63; MR0419775], whose
construction is lurking in the background of the paper under review. N. G. Makarov
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