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APPROXIMATING CONTINUOUS FUNCTIONS BY

HOLOMORPHIC AND HARMONIC FUNCTIONS

CHRISTOPHER J. BISHOP

Abstract. If Q is a Widom domain in the plane (e.g., finitely connected) and

/ is any bounded harmonic function on Q which is not holomorphic, then we

prove the algebra H°°(Sl)[f] contains all the uniformly continuous functions

on ÎÎ . The basic tools are the solution of the 5 equation with L°° estimates

and some estimates on the level sets of functions in BMOA.

1. Introduction

Suppose Q is an open set on the Riemann sphere, C, and let H°°(Q) denote

the algebra of bounded holomorphic functions on Í2. If / is any bounded,

measurable function on ß we let ZZ°°(Q)[/] denote the subalgebra of L00^)

generated by H°°(Cl) and /. Let C(£2) denote the uniformly continuous

functions on Í2 (i.e., those with continuous extension to Q, the closure of Q ).

The purpose of this paper is to prove

Theorem 1.1. Suppose Q. isa Widom domain and that f is a bounded harmonic

function on Q which is not holomorphic. Then H°°(£l)[f] contains C(Q).

We will not define Widom domains until §3, but should point out now that

any finitely connected domain is Widom. Also note that we are not assuming

/ has continuous boundary values, merely that it is bounded. When Q is

the unit disk, D, this result is due to Sheldon Axler and Allen Shields in [3].
This in turn generalized a result of Kenneth Hoffman on the unit circle, T,

which says C(T) c H°°(T)[f] for any / G L°°(J)\H°°(J) (see [25, p. 193 or
22, Theorem IX. 1.4]). Our approach seems new even in these cases, replacing

the use functional analysis with explicit constructions. The main difficulty in

extending this construction to multiply connected domains is that / need not

have a single-valued conjugate on fl. However, if we make a strong enough

assumption on /, then we do not need any hypothesis on Í2. Here / denotes

the complex conjugate of /.

Received by the editors May 4, 1988.
1980 Mathematics Subject Classification (1985 Revision). 30H05, 46JI5, 30E10.
Key words and phrases. Bounded holomorphic functions, function algebras, Widom domains,

Wermer maximality, the Chang-Marshall theorem, the 8 equation, BMOA.

The author is partially supported by a NSF Postdoctoral Fellowship.

©1989 American Mathematical Society

0002-9947/89 $1.00+$.25  per page

781License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



782 C. J. BISHOP

Theorem 1.2. Suppose Q is an open set and that f E H°°(Cl) is nonconstant

on each component of Q. Then C(ñ) c H°°(Q)[f].

The same result holds if / is real valued and has a single-valued conjugate

on Í2. Now let A(Q) denote the holomorphic functions on Í2 which have a

continuous extension to Q. It will follow from the proof of Theorem 1.2 that

Corollary 1.3. Suppose Q is an open set and that f E A(Q) is nonconstant on

each component of ÍÍ. Then C(Q) = A(Q)[f].

The analogous result for Theorem 1.1 is not true without some added as-

sumptions on Q. Let a be continuous analytic capacity (to be defined in §6)

and D(x ,r) the disk of radius r centered at x . We will prove

Theorem 1.4. Suppose Q is an open set and f g C(Q) is such that H°°(Çi)[f]

contains C(fi). If there is a r0> 0 and e > 0 such that

(1.1) a(D(x,r)\Q)>er

for all xEdÇl and r<r0, then A(£l)[f] = C(Q).

For example, suppose Q is a Widom domain which satisfies condition (1.1)

and consider A(£l) as a function algebra on dil. Suppose / G C(d£l)\A(£l)

and let / also denote its harmonic extension to ß. By Theorems 1.1 and 1.4

C(U) = A(Q,)[f], so restricting to the boundary we get C(d£l) = A(Cl)[f].

This says A(Q.) is a maximal subalgebra of C(dQ). When Q. is the unit disk,

this is the Wermer maximality theorem, [51]. For general open sets, A(Cl) will

not be maximal in C(dil), but in §7 we will describe all the closed subalgebras

of C(dQ) which contain A(Q. ), at least when Í2 is a union of Widom domains

which satisfies (1.1).

If K is a compact subset of the plane we let K° denote its interior, C(K) the

continuous functions on K and A(K) the continuous functions on K which

are holomorphic on K° . Combining Theorems 1.1 and 1.4 as above will give

Corollary 1.5. Suppose K is compact, each component of its interior is a Widom

domain (e.g. finitely connected) and (1.1) holds with respect to K°. If f E

C(K) is harmonic on K° and not holomorphic on any component of K° then

A(K)[f] = C(K).

Two special cases where the hypotheses of Corollary 1.5 are met are

Corollary 1.6. If C\K has only finitely many components and f is as above,

then A(K)[f] = C(K).

Corollary 1.7. If A(K) is a Dirichlet algebra and f is as above, then A(K)[f] =

C(K).  '

A(K) being a Dirichlet algebra means Re(A(K)) restricted to dK is dense

in Re(C(dK)). In the proof of Corollary 1.7, we will not use this definition, but

only a known geometric characterization of the sets K for which this occurs.
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HOLOMORPHIC AND HARMONIC FUNCTIONS 783

These corollaries generalize a result of Axler and Shields [3] where K = D is

the closed unit disk. Moreover, Alexander Izzo [28] has proven that A(K)[f] =

C(K) for every compact set K and real valued / as above.

Theorem 1.1 is probably true in greater generality, but we can easily produce

a domain where it fails by setting Q = D\E, where E is a compact subset of

the disk with zero analytic capacity, but such that Q is regular for the Dirichlet

problem (e.g., E is a Cantor set with dimension 1/2). Now let / G C(Q) be

the harmonic function with boundary values 1 on T = {|z| = 1} and -1 on

E. Then the level set {/ = 0} contains a loop y and if {hk} are holomorphic

on Q then they are actually holomorphic on the interior of y (since E is

removable for bounded holomorphic functions). Thus

¡¿2hkfkdz= fh0dz = 0.
J y J y

Hence / hdz - 0 for every h E H°°(Q)[f], which certainly implies C(Q) <£

H°°(Çl)[f].
One could also consider functions / which are not harmonic on Q. For

example, if / has one continuous derivative in a neighborhood of D then John

Wermer [53] showed A(D)[f] = C(D) iff the graph of / in C is polynomially

convex and R(E) = C(E) where E - {df = 0} and R(E) is the closure

in C(E) of the rational functions with poles off E (also see [52, 36, 37, 40

and 41]). The graph of a harmonic function on D is polynomially convex

so Wermer's theorem implies Theorem 1.1 on the unit disk when / is C .

However, if we assume / is C1 on D, Theorem 1.1 becomes much simpler

because then Re(/) G H°°(D)[f] and this easily implies C(D) c H°°(D)[f]
(see §8). Extensions of Wermer's theorem to multiple connected domains are

contained in [13 and 27].

Our strategy for proving Theorem 1.1 is as follows. Suppose we are given a

bounded harmonic, but not holomorphic, function / on Q and a continuous

function ^onfl. Let (&:Z)-»n denote a uniformizing map and set G = g o

í> and F = /o<t>. We will then prove that G E H°°(D)[F] by constructing the

required approximations. The main tools will be the solution of a 0 problem

with L°° estimates and some estimates on the level sets of a holomorphic

function with BMO boundary values. We will then "push" this solution down

to Q by an averaging technique developed in [11, 15, 16, 31]. This is the only

place we use the assumption that £2 is Widom, and this restriction may be

more an artifact of our approach than a real issue in the problem. Extending

Theorem 1.1 further will probably require a completely different idea.

The rest of this paper is organized as follows. In §2 we will prove Theorem

1.2 since it is quite easy, and motivates the approach we will take to proving

Theorem 1.1. In §3 we will discuss the uniformizing map and solve an approxi-

mation problem on the unit disk, given a certain lemma about BMOA. In §4 we

will show how to deduce Theorem 1.1 from our construction on D and in §5

we will prove the lemma. In §6 we will prove Theorem 1.4 and its corollaries.
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784 C. J. BISHOP

In §7 we will describe the algebras between A(Sl) and C(d£l). In §8 we will

discuss the Chang-Marshall theorem and sketch a proof of it using ideas from

§§2 and 3. In §9 we will discuss some special situations where Theorem 1.1 has

an easier proof and we conclude with some remarks and questions in § 10.

I would like to thank Sheldon Axler, Albert Baernstein, John Garnett, Don

Marshall, Donald Sarason and John Wermer for helpful conversations concern-

ing these results and Scot Adams, Alexander Izzo and the referee for their com-

ments on the original manuscript. I am particularly grateful to Peter Jones,

from whom I learned most of the techniques used here. This paper was written

during my visit to the Mathematical Sciences Research Institute for the program

on classical analysis, and it is a pleasure to thank MSRI and the organizers for

a very pleasant and exciting year.

2. Proof of Theorem 1.2

Take g E C(Q) and suppose / = u + iv E ZZ°°(Q) is nonconstant on each

component of Q. We wish to prove g E ZZ°°(Q)[/]. We will prove in §6

(Corollary 6.2) that we can approximate g by a function which is continuous

on Q, smooth on Q and holomorphic on £2 near dSl and so we assume g

has this form. If we are only interested in the case when Q is a domain we

can see this by noting that if x E 9Q and r > 0 then D(x ,r)\d£l has a

component of diameter at least r/4 and therefore y(D(x,r)\dQ) > r/4 (y

is analytic capacity). Thus by a result of Vitushkin (e.g. [49 or 18, Theorem

VIII.5.1]), g can be approximated on dCl by a rational function with poles off

dQ, and therefore by a continuous function on Q which is holomorphic on a

neighborhood of dCl.
We may assume ||/||    < 1. As usual, we set

2 \dx + 'dy)
"     2

and recall that a function F is holomorphic iff dF = 0. For each complex X

with \X\ < 1,
{/ = A}nsupp(ög)

is a finite set, so we may modify g to be constant in a neighborhood of each

such point. Thus we can obtain a gx which approximates g and which is

holomorphic near dQ and in a neighborhood of {/ = X} . Hence

liL.

is a smooth function of compact support. We may also assume co £ supp(i3^).

Then
dgk(w)dxdy

w = {j (f(w)-k)(z-wY

is a smooth function which solves the equation (/ - k)dhk = dgx . Therefore

gx - hk(f - X) is a bounded holomorphic function on Í2 and approximates g

near trie set {/ = A}.
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HOLOMORPHIC AND HARMONIC FUNCTIONS 785

Fix e small and choose a finite collection of points {X } such that the cor-

responding disks D(X-, e/\\hx W^) cover D. Set v. = 2e/\\hx\\°° and take a

partition of unity {PAx.y)} on D such that supp^) c D(Xj,v). Since

/ G ZZ°°(n), clearly Re(/), Im(/) G H°°(Q)[f]. Define

G(z) = !>*,(*) - hXj(z)(f(z)-Xj))Pj(Re(f(z)),Im(f(z)))
j

and observe G E ZZ°°(Q)[/] since the P- can be uniformly approximated by

polynomials. To see that G approximates g, write

\g-G\<lZ\s- g^wp^iZ^wf -Wj\-
j j

The first term is small since \g - gx\ was chosen small and ¿~2\P¡\ = 1. To

check that the second term is small, we split it into two pieces,

£     +     £
{j: \f(z)-lj\<2v}      {j: \f(z)-Xj\>2u}

The second sum is 0 and the first is small because

\hXj(z)\\f(z)-XJ\<\\hXj\\oo2uj<2e.

This completes the proof of Theorem 1.2.

We have also proven Corollary 1.3, since it is clear that if / is continuous,

so is each term in the definition of G. We should point out that similar results

have been obtained by Olin [38, §3], e.g., the case when / is holomorphic on

a neighborhood of Q.
If / is real valued and nonconstant on Q and its harmonic conjugate /*

is single valued then F = exp(-(/ + /'/*)) exp(2/) G ZZ°°(Q)[/] and the result

follows from the theorem. (This was pointed out to me by Alexander Izzo, who

also simplified my original proof of Theorem 1.2.) However, I do not know if the

result holds for any complex-valued / with single-valued harmonic conjugate.

Next we will give an application of Theorem 1.2. Suppose Q is a bounded

domain and let L2(£l) be the Hubert space of square integrable functions with

respect to area measure on Í2. Let La(Sl) denote the Bergman space on Í2,

i.e., holomorphic functions on Í2 which are in L (Í2).   Let Q denote the
1 2

orthogonal projection from L (Q) to La(Q.). Given a bounded function /

on Q we define the Toeplitz operator Tf by TAh) = Q(fh). We let Tl

denote the adjoint of Tf and note that if / G ZZ°°(f2) then T*f = Tj . A pair

Tr, T is called doubly commuting if TfT* = T*T Using Theorem 1.2 we

can show the following.

Corollary 2.1. Suppose Q is a bounded domain and f ,g E H°°(Q). Then

TfT* - T*T   if and only if either f or g is constant.

Since the proof of [2, Theorem 7], where fl is the unit disk, goes over word

for word we will not repeat it here. I would like to thank Sheldon Axler for

pointing out this result to me.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In [3, Theorem 1.2] on the unit disk is used to give a new proof of a result

of Rudin [42]: that H°°(D) + C(D) is a closed subalgebra of L°°(D) (this

generalizes Sarason's result on the unit circle [43]). In particular, it is used

to show that H°°(D) + C(D) is a subalgebra if it is a closed subspace. We

could use Theorem 1.2 to generalize this to arbitrary open sets, but this result

is already contained in the paper [14]. However, it has a completely elementary

proof which does not seem to be well known, so we will give it here.

Lemma 2.2. If Q is an open set then the closure of H°°(il) + C(Í2) is a sub-

algebra of L°°(Q.).

Let / G C(£2) and g E H°°(Q). We need only show that fg is in the

closure of ZZ°°(Q) + C(Q). We may assume Q contains oo and that / is a

smooth function on C which is constant on a neighborhood of oo. Now set

g = 0 off Q and define

r(g)(w) = f(w)g(w) + i j 8{Zz)d_f^Z) dx dy

(g(z) - g(w))df(z)

r/<

-u dxdy.
z -w

This is Vitushkin's operator (see §6). Note that TAg) is holomorphic on Q,

since g is and is bounded since / is smooth. Thus

, 1   f g(z)df(z) A
fg = T,(g)--J      z_w     dxdy.

The first term is in H°°(Çl) and the second term is continuous (it is a bounded

function of compact support convolved with a locally integrable function). This

completes the proof.

Unfortunately, it is not known when ZZ°°(f2) + C(Q) is a closed subspace of

Z,°°(Q). A sufficient condition can be given in terms of analytic capacity, y,

and continuous analytic capacity, a (defined in §6). It says ZZ°°(Q) + C(Q) is

closed if there is an e > 0 such that for all x EdQ and r < r(Q) we have

(2.1) a(D(x,r)\Çl)>ey(D(x,r)\Çl).

This is proven in [14 and 20], and is conjectured to be necessary. Also see these

papers for several equivalent formulations of condition (2.1).

3. AN APPROXIMATION ON THE DISK

Suppose Q c C is a domain. If C\Q contains three or more points, then the

universal covering space of £2 is the unit disk, D , and there is a uniformizing

map i>:ö-»Q. There is an associated group T of Möbius transformations

of D to itself such that <I> o y = í> for all y E T. If we let

z — w
p(z,w) = z ,w E D

1 - wz\

denote the usual pseudo-hyperbolic metric on D , then

f = {z E D : p(z , 0) < p(z , y(0)) Vy G T}
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is a fundamental domain for F, and is called the Dirichlet normal domain. For

details see [6, 31, 32 and 39]. We let H™(D) denote the bounded holomorphic

functions which are invariant under F and similarly for L™(D). Observe that

H^°(D) - H°°(Q) ; we will use the two notations interchangably. If <9Q has

isolated points, these are removable for bounded harmonic (and thus bounded

holomorphic) functions so we may add them to Q without changing Theorem

1.1. Thus from this point on we will assume that ß is regular for the Dirichlet

problem. This is no loss of generality, because our assumption that Q is Widom

implies it is a regular domain with at most countable many points removed [31,

Lemma 2.11].

Suppose a is a character of F, i.e., a homomorphism from F into the circle

group, T. We define H™(D) as the bounded holomorphic functions on D

which satisfy

foy = a(y)f

for every y eF . Such a function is called character-automorphic. One can also

think of these as bounded, multi-valued holomorphic functions on Q which

have single-valued modulus. We say Q is a Widom domain if H™(D) is

nontrivial for every a. The regular Widom domains can be characterized in

terms of their Green's functions. Fix a point w E Q and let G(z ,w) be the

Green's function on Q with pole at w . Let {w.} denote the critical points of

G, listed according to multiplicity. In [55] it is proven that a regular domain

Q is Widom iff

(3.1) YlG(wj'w)<oc-
j

Note that any finitely connected domain satisfies this condition since the Green's

function will have only finitely many critical points. We will not use Widom's

result directly. Instead we will make use of the hypothesis with the following

result of Pommerenke.

Fix w — <P(0) G Q and let {w } be the critical points of the correspond-

ing Green's function. Define B to be Blaschke product on D with zeros

{<I>~ (w)} = {y(0): y E F}. Then the zeros of its derivative B' are exactly

{í>~ ({u>j})} ■ Pommerenke proves in [39] that if fí is a Widom domain then

B is in the Nevanlinna class and its inner factor I is the Blaschke product

whose zeros are exactly the zeros of B'. Moreover, I satisfies |/| < \B'\. In

fact, these conditions characterize Widom domains. However, if we assume

Q is finitely connected, we will not need this result of Pommerenke. We can

simply take I = 1 in what follows, and use the relevant remarks in §4.

Now take g E C(Q) and suppose f = u + iv is bounded and harmonic

on Q, but not holomorphic. We wish to prove g E H°°(Q.)[f]. As is the

previous section, we may assume g is smooth on Q and is holomorphic on

a neighborhood of dQ. Similarly, we may assume g is holomorphic on a

neighborhood of each critical point w..
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Now consider the pullbacks of g o O and /oO to D which we will also

denote by g and /. They are invariant with respect to F and f = u + iv is

harmonic, but not holomorphic on D . Fix e > 0. Our goal in this section is

to construct a Ge H°°(D)[f] such that \g(z) - G(z)\ < e\I(z)\.

Let u   and v* denote the harmonic conjugates of u and v . Then

h = (u + v*) - i(v -u) = f + if*

is holomorphic on D and has boundary values in BMO, i.e., h is in BMOA

(see [22, Chapter VI] for related definitions and results). Moreover, h is not

constant because / is not holomorphic. Thus by replacing / by a scalar

multiple of itself we may assume the BMO norm of A is 1.

Let Sf = {2n(n + im): n ,m El} be the lattice of Gaussian integers (times

271 ). Given a function F on D we define

Ex = EX(F) = {z G D : F(z) EX + Sf}

i.e., Ex is a union of level sets of F. To construct our approximation of

g we are first going to approximate g on each set Ex(h) by an element of

H°°(D) and then "glue together" these approximations by a partition of unity

constructed from / and elements of H°°(D). To do this we will need the

following lemma:

Lemma 3.1. If F is in BMOA then there is a C > 0 (depending only on the

BMOA norm of F) such that for any X E C there exists an A e H°°(D) so that

for all z eD

C<_ËMJ_<!
- dist(F (z),X + Sf) -   '

Note, in particular, this implies Ex is a Blaschke sequence. In fact, EX(F)

is a Blaschke sequence whenever F is in the Hardy space H (D) (I would like

to thank Albert Baernstein for pointing this out to me). However, Lemma 3.1

itself holds only for BMOA. We will prove the lemma in §5.

Now fix X and let Ax be the function given by applying the lemma to h .

We would like to find a bounded solution of dHx = Bg/IAX, for then g -

HXAXI would be an element of H°°(D) which equals g on Ex . Unfortunately,

dg/IAx may blow up near Ex so we will first replace g by an approximation

Gx. Consider g on the fundamental domain &. Recall that s\xpxi(d g) n &

is a compact subset of & and that dg is smooth. Since Ex n supp(ög) is a

finite set we can replace g by an approximation Gx which equals g at each

such point and which is constant in a small neighborhood of these points. Also

note that \I\ is bounded away from zero on supp(<3g), so

(32) |VG,(z)|(l-|z|2)

(yi] |Z(z)|dist(/i(z), X + St) -   *

Since we only need to consider X E [0, 2n] x [0, 2n] we can use compactness to

show there are a finite number of the Ga 's such that for any X, (3.2) is satisfied
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by one of these functions. Thus the constant Cx can be taken independent of

X. Moreover, we can assume Gx = g on a neighborhood of I's zeros. Arguing

as before we may also assume that dg also vanishes on a neighborhood of

d9~'.
For each y E F we make a similar modification of g on y(&~) using the

observation that since h and hoy differ only by a constant, there is a a =

o(y ,X) such that

Exny(^) = y(Ean9-).

Since dg = 0 near d&~, the modifications on adjacent copies of !? do not

interfere with each other. Thus we can build a function Gx which agrees with

g on Ex, such that (3.2) holds for all z E D, and Gx — g on a T-invariant

neighborhood of {1 = 0}.

This is enough to imply that 5GX/AXI is a Carleson measure, and so we

can solve the equation with an Hx bounded on T. We will see directly that

Hx is bounded on all of D by solving the 5 equation by a method implicit

in Carleson's paper [10] and explicitly used by Jones in [29]. First recall that

a sequence {zn} in D is called interpolating with constant M if for every

sequence {an} E l°° with IKaJH^ < 1 there is a F G H°°(D) with [[FW^ <

M and F(zn) = an for all n .

If Q is regular, as we are assuming, the inverse image under O of a single

point is an interpolating sequence (see [31]). Moreover, since we are assuming

g is holomorphic near the boundary of Q, supp(<5g) is a compact subset of

Q and so if x E supp(<5g) then 0_1(a:) is an interpolating sequence with a

uniform constant, say M. Let x be such a point and {zn} the corresponding

sequence. By [22, Theorem VII.2.1] (or [30, Theorem 6]) there are holomorphic

Pehr Beurling functions {hn} which satisfy

*■(*„>-1.    £|A„I<C(M).
77

By Schwarz's lemma there is a ô = Ô(M) > 0 such that hn(z) >  1/2 if
2 _

\z-zn\ < ö(I -\zn\ ). Since suppig) is compact we can find a finite sequence

{Xj} c fi, j = 1, ... , N, with corresponding sequences {z]n} such that

{z:\z-zjn\<ô(l-\zjn\2)}

is a covering of supp(dg) in D . Thus we can write

supp(dg) = \jDJn

where the D'n are disjoint sets of diameter less than «5(1 - \zJn\2). Now set

dGx(w)dxdy
»iM-EZtfwjTg

Jn(w)Ax(w)I(w)(z - w)
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Then formally d(AxIHx) = AxIdHx = dGx so we need only check that the
series converges absolutely:

dxdy

~z~\
\HAz)\<Y.Y\hi(z)\—^= (   ^

' < CE£ l*¡!(*)l < CJ2C(M) ̂  CNC(M).
J   " j

Thus Hx is a bounded holomorphic function and the bound is independent of

X, say C, . Arguing in the same way (with A = 1 ) we can find a bounded HQ

on D such that

IdH0 = dg.

Now we turn to "glueing" our approximations on each Ex together. We have

\AXHX\ <Cxdist(h,X + Sf)

so given e > 0 we can choose a, v > 0 so small that dist(A(z),X + Sf) < 4v

implies

\Ax(z)Hx(z)\ < e.

Without loss of generality we assume 27c/tv = N is an integer and we consider

X 's of the form

Xjk = 2n(j/N + ik/N),        l<j,k<N

Let {PA be a partition on unity on T such that supp(ZJ'.) c D(el]U ,2v).

Following the proof in [3] we observe that the function

r,   . i/Re(A(z)) it(u(z)+v"(z)) itf(z)   t(v(z)+iv'(z))
Cr((z) = e = e = e       e

is in H°°(D)[f] since e~tf is and since e~t(v+tv ) is a bounded holomorphic

function. Similarly,

F (z) = eillm(h{z)) = e"Wz)-u'(z)) _ etf(z)e-t(u{z)+iu'{z))

is in H°°(D)[f]. Since polynomials in z and 1/z are dense in C(T) and

G x = (Gx)~x , F_x = (Fx)~x we can approximate the functions

Pj(Gx(z))Pk(Fx(z))

by polynomials in G, , C7_, , Fx and F_x . Since these are in H°°(D)[f] we

can find Q k = ^2 h ,klf which approximate them. More precisely, for any

77 > 0, we can find Qjk such that

J.k

<1

\Xjk - h(z)\ >2v mod Sf    =>     \Qjk(z)\<-£
/vzc,
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£ 10*1 < 5-
j.k

Now define

G = £(GJ* - »jkAjk^Qjk + (s - /V) h - £ QßJk

Jk

where Gik = Gx  , and similarly for ^ and H. Then G G ZZ°°(Z))[/] and
Jjk

\g-G\<

(3.3)

Bfy - s)Qjk
j.k

+

j.k

\I\

+ \H0\\I\ i-EQjk
j.k

Since H0 is bounded and |1 - ¿jQjk\ < t], the third term is bounded by a

small multiple of \I\ (independent of the particular choice of v or Qjk ). The

first term in (3.3) is identically zero in a T-invariant neighborhood of {I = 0}

(since GJk = g there), and so vanishes on a set of the form {|Z| < S} for some

small S . On the rest of D it is bounded by

E(Gjk-g)Qj,k
j.k

<sup||C7,,-s||£|ßy,|
;\* ;.*

<Csup 110^-^11
j.k

which is as small as we wish. Thus the first term is also bounded by a small

multiple of \I\. To estimate the second term note that

EWjkQjk
j.k

E        +        E
{j.k: \ÀJk-h{z)\<2v mod^T}     {j ,k: \K]k-h(z)\>2v mod 5f}

<3e + N2—J— C, <4e.
N2C,   '

Thus once we fix the Gx 's to make the first term in (3.3) small, this determines

the Hx 's and we can then choose v and the Qjk 's so that expression above is

small. Therefore the second term in (3.3) is also bounded by a small multiple

of \I\. We have now shown that for any e > 0 we can find a G G H°°(£>)[/]

such that

(3.4). \g(z) - G(z)\ < e\I(z)\ < emin(l, |Z?'(z)|)

This completes our construction on the unit disk, except for the proof of Lemma

3.1.
Our strategy to approximate g on the union of level sets

Ex = {z:h(z)EX + 2n(l + il)}
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might seem like an unmotivated "trick", but in fact it was essential. One can

show

H°°(D)[f] = H°°(D)[G,]

but Gt cannot tell the difference between points z and w if \Re(h(z)-h(w))\ E

2ntl. Even if we allow a finite number of t 's, say {tx, ... ,tn}, the set of

integers
itjk

S = {k: \e

is infinite. In fact, it is syndetic, i.e.,

< £ , j: = 1 "}

sup dist(m , S) < oo
mez

(see [17, Theorem 1.21]). Thus no matter how many of the Gt 's we allow

ourselves to use, there will still be a large subset of Ex whose points cannot be

well separated by these functions. Thus we must try to approximate g on all

of Ex by something in H°°(D), which is exactly what we did.

4.   T-PROJECTION OPERATORS

We will now use (3.4) to prove the result on Q. To do this we will use the

conditional expectation operator invented by Forelli [16] (also see [11, 15 and

31]). As in §3 let B denote the Blaschke product on D with zero set {y(0): y G

r}, B' its derivative and I the inner factor of B'. Then by differentiation

B'(z) £^( Y(z)

Moreover, the series

1(2)
^ry'(z)B(z)I(z)
^7(z) B'(z)

converges absolutely on 9" (see [39, §4]). Now define

*(/) = £(/o y(z))^|^.
r y(z)B (z)

One easily sees that if / is invariant under F, then E(f) = /. Also, if

/ E H°°(D) then E(f) is meromorphic on D , with poles possibly occurring

at the zeros of B1. Applying E to the functions g and G constructed in §3

and using (3.4)

\g-E(G)\ = \E(g-G)(z)\

(g-G)oy(z)
^£

r

r

< Ce.

I(z)

y'(z)B(z)I(z)

y(z)    B'(z)

y'(z)

Viz)

B(z)I(z)

B'(z)
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Thus E(G) uniformly approximates g. Finally, we need that

E(G)EH°°(Çl)[f].

We can write G as g - HQI plus a finite sum of terms which look like

Fqf' = (Gx-HxAxI-(g-H0I))qfl

where qEH°°(D) and qfl is a term that comes from expanding one of the Qjk

into powers of / times elements of H°°(D). Applying E to this expression

we get

E(Fq)f'

since / is T-invariant. Because Fq is holomorphic, E(Fq) is meromorphic

and invariant. But we also have

\FQ\ < (\GX -g\ + \HXAXI\ + \H0I\)\q\ < C\I\

so just as above, E(Fq) is bounded, and thus holomorphic. A similar, but

simpler, argument shows E(g-H0I) is bounded and holomorphic on Q. Thus

E(G) E ZZ°°(Q)[/] and it approximates g, completing the proof of Theorem

1.1.
If Q were finitely connected there is a simpler method we could have used

to deduce the approximation on £2 from the one on D . This would have been

to use

Theorem 4.1 (Forelli [16]). If £2 is a regular, finitely connected plane domain

then there is a bounded linear operator P: L°°(D) —> L\a(D) such that

(1) P(H°°(D))cH™(D).
(2) If F e L™(D) and GeL°°(D) then P(FG) = FP(G).
(3) P(l)=l.

This is also proven in [11]. To see how this proves Theorem 1.1, suppose

g € C(£2) and / is bounded and harmonic on ß but not holomorphic. Fix

£>0 and suppose there are bounded holomorphic functions {hk} on D such

that

go®-j2nk(f°®)    <e-

Then using the theorem,

k

and {P(hk)} are bounded holomorphic functions on £2. With this approach,

the construction on D could have been simpler, for we could drop all references

to B1 and I in §3. These projections also exist for some infinitely connected

domains, e.g., the homogeneous Denjoy domains described in §10 (see [11]).

However, any such domain is necessarily Widom, and there do exist Widom
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domains for which Theorem 4.1 is unknown, so the extra work we have done

is not completely unjustified. (Note that if Theorem 4.1 holds for a domain

£2, then the corona theorem is true on £2. The corona problem is still open

for general Widom domains, indeed, a proof for this case would imply it for

arbitrary planar domains.)

5. Proof of Lemma 3.1

Lemma 3.1 is just a way of quantifying the fact that an analytic function F

in BMO cannot pass near Sf very often. The John-Nirenberg theorem implies

F cannot visit points of Sf that are far away too often, and the analyticity

of F says it cannot remain in a neighborhood of any one point too long. This

is very reminiscent of the geometric charaterizations of BMO functions and

domains found in [25, 44 and 45], and in fact Lemma 3.1 characterizes BMOA.

Its converse is essentially contained in Theorem 3 of [4], which gives a "value

distribution" characterization of BMOA. To prove Lemma 3.1 we will use the

following estimates. Here Pz denotes the Poisson kernel on T with respect to

the point z,

P<ei6) =   l    *-|z|2

2k \e* _ Z|2 •

As before, let Sf = {2n(n + im) : n ,m El} and set

<p(z) = log(dist(z,Sf)).

Then cp is superharmonic on C\Sf, since it is the infimum of harmonic func-

tions, and is bounded above by log(v/27t).

Lemma 5.1. Suppose F eBMOA with norm 1. For z E D let X = X(z) be a

closest point of Sf to F(z). Let X = X(X) = {eie : \F(ew) - X\ < 1} . Then we

have

f     log\F(eW)-X\dd<Cx<oc.
Jt\x

f     <p°F(eW)P2(eie)dd > -C2 > -oo.
Jj\x

(1)

(2)

(3) J <p o F(eW)Pz(ew) dd > log|F(0) - X\ - C3.

The constants C, , C,, C, are independent of F and X.'2 '^3

Without loss of generality we may assume z = 0. By the John-Nirenberg the-

orem (e.g.,  [22, Theorem VI.2.1]), and the fact that   \F - X\ - y/2n  <

\F-F(0)\<\F-X\ + y/2n,
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f    log\F-X\de = f] [ log\F-X\de
JT\X k=xJ{8: k<\F-X\<k+\}

oo       »

< £ / iog+ \f - x\ de
k=0J(d- k<\F-F(0)\<k+\0}

oo

<£log(/c+10)|{Ô:|/--f(0)|>/c}|
7C=0

oo

<C^log(k)e
-Ck

k=0

<cx.

This proves the first claim. To prove the second, define

XSa = {e:\F(eW)-o\<ô}.

s

Clearly the collection {Xa},o E Sf, is disjoint for ô < n. By the John-

Nirenberg theorem there is an absolute ô > 0 such that \F(z) -o\ < ô implies

|{0GZ2:|ZVV(T|>l}|<i|Zz|

where Zz is the interval of length 2(1 - \z\) centered at z/|z|. In terms of

X  = Xx, this means

l*.nz,|    i

Now consider the usual decomposition of D into dyadic Carleson boxes. Let

{Qa} denote the disjoint collection of boxes which are maximal with respect to

the property that there is a point z in the top half of Q suchthat \F(zA-a\ =

ô. By Fatou's theorem {1°} , the bases of these cubes, cover almost every point

of Xa . Suppose z is such a point and let I be the base of the corresponding

box. Since log\F - a\ is subharmonic,

log(<?) = log|F(z)-a|

< j log\F(eW)-o\Pz(ei6)de

-hi      +fJi     J(T\nnx}     J(T\I)\X¿

The second term is negative and by the first part of the lemma the third term

is less than a constant, so

log(S) < f log\F(ew) - <j\Pz(e'e)de + Cx

which implies

-C <Clogô-C< ^ ¡log\F(z)-o\de.
\'\ Ji
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Let

Then,

r = *xu   U   <■

[     q>oF(ei6)de= f     <p o F(e'e)de +    V"     [  <poF(eid)de

>Clog(¿) + £ f  log|F-A|
a^Jx'

>-C + J2T,f ^g\F-X\
en j J'°

>-c+££c|z;iiogá
ajíX   j

>-c-c££i/;i
a^X   j

>-c-cj2\K\

>-c2

as required to prove the second claim.  To prove the last part of the lemma,

note that using parts (1) and (2),

[<poFde=[<poFde-r[     tpoFde
Ji Jx Jt\x

> f <p o F de - C,
Jx

= [ iog\F-x\de-c2
Jx

> Í log\F-X\de~Cx -C2

>log\F(0)-X\-C3

where the last step is the subharmonicity of \F - X\. This completes the proof

of Lemma 5.1.

We now turn to the proof of Lemma 3.1. Since we may assume F has BMO

norm 1, HZ^-aH^ > 1 for every constant a. Thus by composing with a Möbius

transformation we may assume dist(F(0) ,X+Sf)> 1/2. By considering F(rz)

and taking limits we may also assume F is analytic on D . With (p as before,

note that q> o F is superharmonic on D except at the points where F(z) E

X + Sf. Let B denote the Blaschke product which vanishes at exactly these

points (according to multiplicity) and note that r^oF-loglZ?! is superharmonic
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on D , and by [22, Theorem 1.6.7] will have a harmonic minorant 5 iff

inf  f q>oF(rei8)-log\B(eie)\de= [ <p oF(eW) - log\B(eW)\de
o<t-<Ut Jt

= Í <poF(e'e)de

> —00.

However, this is exactly part (3) of Lemma 5.1, so S exists. It is bounded

above because it is harmonic on D and satisfies

S <<poF -log\B\<<poF <log\/27r.

on T. Thus,
*,   \       r>i   \  S(z)+iS'(z)A(z) = B(z)e

is a bounded holomorphic function which satisfies

\A\ < ev°F <dist(F ,Sf).

To get the other inequality we first write B as a product

r/e-S"

where each Ba is the Blaschke product corresponding to the zero set {F — o} .

Corollary 6.1 of [4] says that

iog|z?CT(z)|>-a>-c|(T-f(z)l.

(In the notation of that paper, N(X ,z,F) = - log \Bx(z)\.) Thus if X is the

closest lattice point to F(z),

£log|Zi(7(z)|>-C4>-oo.

an

Now suppose zeD and let X be the closest lattice point to F(z). Using

Lemma 5.1, the facts that log|Z?J = 0 on T and that loglF - X\ - log\Bx\ is

harmonic on D,

o F P. de

de

S(z) = J <p

= f log\F-X\Pzde+ Í      cpoFP.
Jx, Jj\xà

> i iog\F-x\pzde-c2
Jx,

> f log\F-X\Pzde-C2-Cx

= j(log\F-X\-log\Bx\)Pzde-C5

= log\F(z)-X\-log\Bx(z)\-C5

= <poF(z)-log\Bx(z)\-C5.
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Thus we have shown

log|^| = log|5| + |5| > <p o F - C4 - C5

which implies

|y4| >e'C,~Cidist(F ,Sf)

as desired. This completes the proof of Lemma 3.1.

6. Proof of Theorem 1.4

We now turn to the proof of Theorem 1.4. The techniques are not new, but we

will review the details for completeness. We start by recalling the definition of

continuous analytic capacity, a. If E is a compact subset of the plane, let AE

denote the continuous functions on the Riemann sphere which are holomorphic

off E. Then

a(E) = sup{|/'(oo)| : / € A£ , H/l^ < 1 , /(oo) = 0}.

The regular analytic capacity y is defined similarly by taking the supremum

over / G H°°(C\E). For details and the basic properties of a and y see

[21]. We will also need to recall Vitushkin's localization operator ([49], but our

presentation follows [19]),

(f(z)-f(W))Sç>dx
z - w

where <p is smooth and has compact support.  T   has the following properties:

( 1 ) If X is the support of tp ,

\\T(f)\\oo<2diam(X)\\d<p\\oo  sup  \f(z)-f(w)\.
r w ,z&X

(2) T'(f) is continuous where / is.

(3) T9(f) is analytic off X .

(4) T'(f) is analytic where / is.

(5) / - T'(f) is analytic on the interior of <p~ (1).

Now suppose we have g E C(£2), / G C(£2) and {hk} c ZZ°°(£2) such that

N

g-Y,hkfk   <e-
k=0 oo

We assume the hk 's have a common bound M . We will use Vitushkin's oper-

ator to find functions {hk} c ^(£2) such that

T9(f)(w) = V(w)f(w)+l-j^^dxdy=X-j

g Ehfk
k=0

< Ce.

To simplify notation we consider

h = (h0,hx ,h,.h, / = (!././ ,fN)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOLOMORPHIC AND HARMONIC FUNCTIONS 799

as CN+X valued functions, and note that the inequality above now has the form

\\t-f-g\\00<e.

Fix n > 0 (to be chosen later), and let S be so small that \z - w\ < S implies

\g(z)_- g(w)\ < n and \fk(z)-fk(w)\<n for all k = I, ... , N. If we fix a

z g £2 and take w e D(z , S) n £2, then

\t(w) • f(z) - g(z)\ < \K(w) ■ f(w) - g(w)\

+ \fi(z).(f(z)-f(w))\ + \g(z)-g(w)\

<e + Mr] + t] < 2e

if r¡ is small enough. Now let {q>k} be a collection of smooth "bump functions"

such that

(1) supp(ö ) C D(x , S) for some x E <9£2.

(2) |Vç,.| < CS~X.
(3) <pj(z) = 1 for all z G D(xj, 8/2).

(4) If <D = 5>;,fhen d£2c<D~'(l).

Since a(D(x ,r5/4)\£2) > i/o for some v > 0, there is (as in [19]) a function

a which is continuous on all of C, holomorphic on Q u (C\Z)(x , S/4)), and

satisfies

\Uj(z)\ >Cv,       z E supry(d(p ).

|«,(^)| < -—-^—-j,       zee.
1 l-r-|z-X;.r

For each j choose a point zj e £2 n D(x¡ ,0/4) and set H. = H(z¡). Now

define

r,   n     i,   n    7   ^    a7(u;)  /" H^dcpAz)
A Aw) = h(w)tp Aw) + ^- / y—rdxdy,

J J n    J  aAz)(z-w)

aAw)   r    ff.dtp(z)
BAw) = Z? p (t/j) + ^^ /     , V        . rf*rfy ,

; '  ' n    J  üj(z)(z-w)

Cj(w) = Âj(w) - Bj(w),

C(w) = ̂ 2Cj(w).
j

The desired functions {hk} are just the components of the vector-valued func-

tion n - C. To see this, first note that

||(Ä-<?)./-i||00<||Ä./-i||00 + ||<?./||00

The first term is small by our earlier remarks and if z ,w E D(x ,ô) then the

definition of S gives

\(h(z) - Ñ¡) ■ f(w)\ < \K(z) • f(w) - g(w)\ + \H(Zj) ■ f(w) - g(w)\

<2e + 2s.
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Thus the second term is bounded by

i<?(uo-/(«oi<¡£
j

+\(Ji(w)-Hj).f(w)\\<pj(w)\

<£-rfl^\dxdy + smw)\
yu(l + \w-x/)J   \z-w\

< Ce.

It is easy to check that the components of H - C are holomorphic on £2.

Moreover, on the set {<I> = 1} ,

^     -,   ,     ^ö     ,   ,     aj(w)   r(fi(z)-H)d<p(z)
h(w)-C(w) = y   H.tpfw)-^—- / -r-TrJ-r—dxdy

¿-J   J J n    J      ctj(z)(w - z)

is a sum of continuous functions.   Therefore the components of h - £ are

continuous on £2 and hence in A(£i). This proves Theorem 1.4.

Next we will need the following lemma.

Lemma 6.1. If £2 is an open set which satisfies condition (1.1), then any g e

C(£2) can be uniformly approximated by a function G E C(£2) which is holo-

morphic where g is and also on £2nt/, U a neighborhood of d £2.

The proof is exactly like the argument above. We fix e and choose ô so

small that \z-w\ <ô implies \g(z) - g(w)\ <e. Now choose {<Pj} and {ay}

exactly as above and set

_,   ,        ,   ,    v^ aAw)  f (g(z) - g(w))3<pj(z)
G(w) = g(w) - >   -A- / -—--¿— dx dy.

¿-,    n    J        Oj(z)(z-w)

The arguments given above prove the lemma with U = {£) q>}■ = 1} .

Corollary 6.2. If £2 is an open set and g E C(£2) then g can be uniformly

approximated by a continuous function on £2 which is holomorphic on £2 ni/,

U a neighborhood of 9£2.

We argue as above until we reach the definition of the {Oj}. Let \E\ de-

note the area of E. Recall that for a set E, \E\ < (na(E))2 (see [21]).

If a(D(x.,ô/4)\Çï) > á/1000 we define a.  as above.   Otherwise we have

\D(Xj, S/4) n £2| > S2/100 and so we can find a compact Ej c D(Xj, S/4) n £2

such that a(Ej) >S/100. Now just take a; G AE with the desired estimates.

Having defined {a } for all j we now write down G as above and note that it

a¿(w)  f(h(z)-Hj)-f(w)d<p(z)*j\W)   f
aj(z)(z-w)

dxdy
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has all the desired properties. In particular, it is holomorphic on £2 n U with

U = {2Z<Pj = l}\UEj.
To prove Corollary 1.5, let £2 = K° and note that it is enough to approximate

g on £2. Observe that since g is continuous on K, we can apply Lemma 6.1

and so we may assume g is holomorphic except on finitely many components of

K°. On these components we apply Theorem 1.1 to get an approximation. Thus

we obtain a finite number of holomorphic functions {hk} which do the desired

approximation on K° . Corollary 1.5 now follows from Theorem 1.4. To prove

Corollary 1.6 we need only observe that if E contains an open connected subset

of diameter > r then a(E) > r (see [21]). Corollary 1.7 follows from a

geometric characterization of the sets K for which A(K) is Dirichlet given in

[20] (also see [7]). It says that A(K) is Dirichlet iff each component of K° is

simply connected and for all x EdK and all r sufficently small

a(D(x,r)\K°)>r/4.

This result does not actually require Theorem 1.1 since, as we shall see in §9,

when £2 is simply connected Theorem 1.1 follows from the special case of the

unit disk. It would be interesting to see if there was a direct proof of Corollary

1.7 from the definition of Dirichlet algebra.

The condition that

(6.1) a(D(x,r)nE)>er

for all x E E and r small enough, is usually difficult to verify (see [21]), but the

connected sets E with this property have a nice geometrical characterization

which can be checked in practice. If E c C is compact and x E E we say x

satisfies a double cone condition with respect to E if there is a 0O € [0, 2n),

0 < e < f and S > 0 such that

{x + reW: 0 < \r\ < 5 , |0 - 0O| < f - e} n E = 0

i.e., if there are two symmetric cones with vertex x which do not hit E. Then

if E is connected, (6.1) holds if and only if the set of points in E which sat-

isfy a double cone condition has zero linear measure, i.e., it can be covered by

a union of disks whose radii sum up to be as small as we wish [7, 8]. Using

this criterion, it is easy to construct sets K to which Corollary 1.5 applies. For

example, one can easily obtain such K which have arbitrarily small comple-

mentary components.

7. Algebras between A(Q) and C(d£l)

In this section we will consider A(£l) as a function algebra on 9£2, and we

will let / denote both a function in C(d£2) and its harmonic extension to £2

(which is continuous on £2 since we are assuming £2 is regular). Thus we can

say / e C(<9£2) is holomorphic on some component of £2 or refer to the value

f(z) for some z G £2 without introducing more notation. When £2 is the unit

disk, John Wermer [51] classified all the closed subalgebras of C(<9£2) which
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contain A(Q): there are none except C(<9£2) and A(Q). In this section we

will describe all these subalgebras in the case when Theorems 1.1 and 1.4 apply

to £2, i.e., when £2 satisfies (1.1) and all its components are Widom domains.

Other situations have been considered in papers such as [5, 13 and 26].

Suppose {£2 } are the components of £2 and let U denote the union of

some subcollection of the {£2 } . Now define

Av - {/ G C(<9£2) : / is holomorphic on Í7}.

Then Av is clearly a closed subalgebra of C(d£2) which contains ^(Q). We

shall prove these are the only such algebras.

Corollary 7.1. Suppose £2 is an open set which satisfies (1.1) and such that each

component is a Widom domain. Then the only closed subalgebras of C(dQ)

containing A(il) are of the form Ay. Moreover, distinct U 's give rise to distinct

A(U) 's. In particular, the maximal subalgebras of C(dQ) containing A(£l) are

exactly the algebras Aa .

Let A be a closed subalgebra of C(dil) which contains ^1(£2). Let U be

the largest subset of £2 such that every element of A is holomorphic on U, i.e.,

A c Ay , and Ay is the smallest such algebra. We will show Ay = A. Since

the algebras Ay are clearly distinct for distinct U 's this proves the lemma (if

Ux / U2 consider f(z) = l/(z - a) for an a G UX\U2 ).

Take g E Av. We will show g E A. By Lemma 6.1 we may assume g is

also holomorphic on a neighborhood of <3£2. Thus it fails to be holomorphic

on only a finite number of components {£2 } , j — I, ... ,N. For each j, A

contains a function / which is not holomorphic on £2 (by the definition of

U and the convention introduced above). We claim that

/W = £c,//z)
7

is not holomorphic on any £2 for some choice of constants {c } . To see this,

note that if hx and h2 are harmonic functions on a connected set, and h2 is

not holomorphic, then hx+th2 can be holomorphic for at most one value of t.

So using induction, we can easily construct the desired {c }. Thus by Theorem

1.1 we can find functions {hjk} in H00^^ such that ^hjkf uniformly

approximates g on £2 . This, plus the fact that g is already holomorphic on

the rest of £2, implies there are functions {hk} in ZZ°°(£2) such that Y,hkf

approximates g on all on £2. Applying Theorem 1.4 we may therefore assume

{hk} c A(Q).   Since / G A we have g E ^(£2)[/] c A as required.   This

completes the proof of Corollary 7.1.

Of course, if K is a compact set which satisfies the hypotheses of Corollary

1.5, then Corollary 7.1 applies to K°, so we obtain a description of all the

closed algebras between A(K) and C(dK). Better results are possible. For

example, in [5] it is stated that if K° = £2 is connected and K n D(x , r) does
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not separate the plane for some disk centered on ôQ, then A(K) is maximal

in C(dK).

In [26], Hoffman and Singer consider the algebra A(Q) when E — C\£2

consists of finitely many arcs which locally have positive area and they show

that A(d) is contained in a maximal proper subalgebra of C(E), though they

do not show A(Q) itself is maximal. If we replace their hypothesis with the

hypothesis that E satisfies (6.1), then Corollary 7.1 implies A(£l) is maximal

in C(E). Since (6.1) is implied by the condition

|D(jc,r)nZi| >er2

we see we have obtained a slightly stronger conclusion from a slightly stronger

hypothesis.

It would be very interesting to understand what happens when we drop our

(rather restrictive) hypotheses on £2. In particular, how important is the as-

sumption that the components are Widom domains? My first impression is

that the result should be true without this assumption. However, some con-

dition on the "thickness" of the boundary is needed. As an extreme example,

consider £2 = £2, U £22 = C\T . Then ^4(£2) is trivial, and C(T) certainly con-

tains many closed subalgebras other than A(Çlx) and ^(£22), e.g., the functions

which vanish on a closed proper subset E c T .

What happens if a(D(x , r)\£2) is positive for every disk centered on <9£2,

but (1.1) fails? One can easily construct an explicit example where this happens

as follows. Let F be an arc connecting 0 to 1 which satisfies condition (6.1) and

remains in the region {x , y : \y\ < \x(x - 1)|}. Now let E c [0,1] be a Cantor

set of positive length and replace the complementary intervals by appropriately

scaled copies of F. Then we obtain an arc which has positive continuous

analytic capacity in every neighborhood of every point, but such that (6.1) fails.

If £2 is the complement of this arc, is A(Q) maximal in C(<9£2)?

8. The Chang-Marshall theorem

We will now relate our earlier ideas to the well-known theorem of Chang [12]

and Marshall [33] (also see [23, Chapter IX]). In this section H°° = H°°(D)

will be considered both as a function algebra on D and on T.

Theorem 8.1 (Chang-Marshall). Suppose ZZ°°(T) c A C L°°(T) is a closed

algebra. Then A is generated by H°° and the complex conjugates of a collection

of inner functions. (In fact, this collection can be taken to consist of interpolating

Blaschke products.)

The original proof is nonconstructive, but Sundberg [46] and Vol'berg [50],

have shown how to make it constructive. We shall show below how to replace

a remaining duality argument by an explicit construction. In the proof of this

theorem one can easily reduce to the case A = H°°[f], \f\ = 1 on T and

/ G A (see [46 or 22]). We then fix s > 0 and construct a certain interpolating

Blaschke product B (depending on e ). First one shows B E A . In the original

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



804 C. J. BISHOP

proof this is done by an argument involving the maximal ideal space of H°° ,

and so is nonconstructive. However, Sundberg [46] showed B e A by an

explicit construction and an even simpler proof was later given by Vol'berg

[50]. The second step is to prove

dist(/,ZZ00(T)[Z?])<e

(so letting £-»0 gives a collection of Blaschke products which generate A =

H°°[f] ). Originally, this was proved using duality, i.e., showing

dist(/, H°°(F)[B]) = inf      sup      ^- f fBnFde ,
"   F€H> ,\\F\\ = \ ln J

and then estimating the right-hand side using Littlewood-Paley type arguments.

We shall prove it by explicitly approximating / by elements of H°°[B]. We

shall need the following

Lemma 8.2. Suppose f is a bounded harmonic function on D which is uni-

modular on T and let e > 0 be given. Then there exists S , v > 0, an open set

£2 c D with boundary F, a C°° function F on D and a Blaschke product B

with zeros {z } on F such that
*•   nJ

( 1 ) For a.e. z G T, rz E £2 for all r close enough to 1.

(2) Arclength on F is a Carleson measure.

(3) \f(z)\<\-v for zeF.
(4) \B(z)\< 1/2 for zeF.
(5) dF is supported in {z: dist(z ,F) < S (I - \z\)} and satisfies

\dF(z)\<C/(ô(l-\z\)).

(6) \f(z)-F(z)\<efor zeQ.

The first four conditions are just Marshall's original construction (see [33 or

22, Theorem VIII.4.1]), and (5) and (6) are just a minor variant. Using his

arguments one shows / can be approximated by a holomorphic function F

on £2. Setting F = 0 off £2 and "smoothing" gives the rest of Lemma 8.2.

For completeness, we begin with a sketch of Vol'berg's proof that B E

H°°[f]. Let / and B be as above and fix t] > 0. We shall prove

dist(B, H^^nnxCt].

Since \B\ has radial limit 1 a.e. on T, it suffices to approximate B on a set

of the form S (B) = {z: \B(z)\ > 1 - r¡} . Fix X E T and define

ax(z) = Re(l -Xf(z)),    Ax(z) = exp(-ax(z) - ia*x(z)).

Then \AX\ is bounded by 1 and is near 1 only when / is near X. We are

assuming that \f(zn)\ < 1 - v so 1^(^)1 < exp(-¡v) < 1. Thus by replacing

A? by a large power of itself we may assume Ax(zn) < r]. Since {zn} is an

interpolating sequence we can find holomorphic Pehr Beurling functions {hn}

such that
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Gx(z)

hn(zm) = °>    n^m,

¿2\hn(z)\<C,    ZED.
71

For a proof see [22, Theorem VII.2.1] (using duality) or [30, Theorem 6] (ex-

plicit construction). Now set

AÁ(z)-J2nhn(z)Ax(zn)

B(z)

Ex = {zED:\Ax(z)-i\<n}.

Then Gx E H°° and for zeEx,

\Gx(z)B(z)-l\<Cn.

Thus if z G S^B) n Ex,

\Gx(z)-B(z)\<Cr,.

Thus we have approximated B on pieces of S (B) and all that is left is to "glue

together" these approximations. As in §§2 and 3, let {P'Ax, y)} be a partition

of unity on {1 - n/4 < \z\ < 1} with supp^.) c D(Xj , n/2), {Xj} c T. Then

^) = £^.(z)/>/Re(/),Im(/))

is in H°°[f] since Re(/) and Im(/) are and since the {P'.} can be approxi-

mated by polynomials. Finally, if z G S (B) n Ex ,

|G(z) - B(z)\ < C        sup        \GX (z) - B(z)\ < Cn
j: f(z)esvLPp(Pj)       '

as required. This completes Vol'berg's construction.

Now we turn to approximating / using B. Take £2, F and B as in Lemma

2. Fix X with 3/4 < |A| < 1. We wish to solve the equation

dH*-B=X

with an L°° estimate on Hx which is independent of X. We can do this

because of conclusions (4) and (6) of the lemma. More precisely, because of

(4) we can write s\xox)(dF) = UDj where {D'.} is a disjoint collection of sets

of hyperbolic diameter ô and we can find holomorphic functions {h } which

satisfy

\hj(z)\>\,    zeDj,

£|A,-I<C.
J

(For details see §3 or [22, Chapter VIII].) As in §3 we set
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By conditions (4) and (6) and Schwarz's lemma, 8F(w) ^ 0 imples \B(w)\ <

1/2 + ô < 2/3, so for such a w , \B(w) - X\ > 1/12. Thus the series defining

Hx converges absolutely and with a bound C, independent of X. Thus

GX = F -(B- X)HX

is a bounded holomorphic function on D which approximates F near the set

{B = X} . Now take a partition of unity {PAx , y)} on {3/4 < \z\ < 1} with

supr)(Pj) c D(Xj, e/Cx). Then

G(z) = J2GÀj(z)PJ(Rc(B),Im(B))
j

is in H°°[B] (just as above) and for z G £2 n SX/4(B)

\f(z) - G(z)\ < \f(z) - F(z)\ + \F(z) - G(z)\

<e+ ]T \Hx(z)\\B(z) -Xj\
j: B(z)€supp(Pj)

<e+lOCxe/Cx

< lie.

Since the characteristic function of ilnSx/4(B) has radial limit 1 a.e. on T,

we deduce that |/(z) - G(z)| < 1 le a.e. on T . This completes the proof of the

Chang-Marshall theorem.

9. Special cases of Theorem 1.1

We can give simpler proofs of Theorem 1.1 in various special cases. We

have already discussed one simplification when £2 is finitely connected. If £2

is simply connected then Theorem 1.1 follows from the special case of the unit

disk. To see this, let / and g be as before. We can approximate g by a sum

of functions gx + g2 where gx has compact support in £2 and g2 is harmonic

on £2 and continuous on £2. Let O denote a conformai mapping from the

unit disk to £2. Let f ,gx,g2 also denote the pullbacks of these functions to

D via <$>. Then clearly gx E H°°(D)[f] since gx is still continuous and we

are assuming Theorem 1.1 for the disk. The function g2 is not necessarily

continuous, but it is in VMO [7, Lemma 5.1], so we can write g2 = u + v where

u and v are harmonic, u is continuous and v is in BMO with as small a

norm as we wish. Therefore, by a theorem of Varopolos [47, 48], we can find a

function v on D which agrees with v on T and such that |Vü| is a Carleson

measure with small norm. Therefore we can solve the d problem db = dv

with a function b whose Z,°°(T) norm is small. Since u is continuous, it is in

Hcc(D)[f]. Because v - b is bounded and holomorphic and

\\g. -u-(v- 6)|| = ||u -(v- b)\\ < sup\(v -v) + b\ = sup\b\
T T

is as small as we wish, we see that g2 is also in ZZ°°(£))[/], as required.
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Another simplification is possible if we assume / is real-valued in Theorem

1.1. In that case / has a real valued conjugate /* (after pulling back to D ),

so h = f + if is holomorphic. Thus e is bounded and holomorphic, and if

we assume H/H^ < 1 then

\eh(z) -eX\~dist(h(z),X + Sf).

Thus in Lemma 3.1 we can just take A to be this function, avoiding the argu-

ment in §5.

If / = u+iv has a single-valued conjugate on £2, then h = (u-v*)-i(v+u*)

is holomorphic on £2. Let w =log(h-X)-2H (where H denotes the harmonic

majorant of log+ \h -X\ ). Because £2 is a Widom domain, we can use Widom's

theorem to find a bounded function g such that

. w+iw'
Ax = ge

is a bounded, single-valued, holomorphic function (on the unit disk this would

just follow from the canonical factorization theorem [22, Section II.5]). Then

one can easily check that

I^^Cmin^-AI,^-^).

We can use this to set up a d problem (as in §2) and then approximate the

desired function on sets of the form

Fx = {h=X}u{\h-X\>M}

and thus on small neighborhoods of such sets. Covering the A-plane with finitely

many such neighborhoods and constructing the appropriate partitions of unity

gives the result. This construction is essentially the proof given by Axler and

Shields [3] on the unit disk, although they phrase it in the language of functional

analysis. In this argument we again used the assumption than £2 is Widom, but

in a much less essential way that before. Here we only needed to find a function

corresponding to one particular character, whereas our hypothesis implies we

could find functions corresponding to any character.

If we assume that / is real valued and continuous on £2 then the proof

becomes quite easy in many cases. We take the unit disk as an example. Assume

the range of / is the interval [-1,1]. For each X e [-1,1] the level set

Ex = {/ = X} is a compact subset of the closed disk with no interior and which

does not separate the plane (otherwise / would be constant!). Thus we can

approximate g on Ex by a function gx in A(D) (in fact, by a polynomial

using Lavrentiev's theorem) and this approximation remains good on Ea for

all a in a small open interval around X. These intervals cover [-1,1] so we

can choose a finite subcover {/,}, j = 1, ... , TV, and denote the corresponding

g/sby {gj} . Now choose a partition of unity {PA of polynomials on [-1,1]

such that

sup{\PJ(f(z))\\gj(z)\:f(z) $ Ij) < e/N.
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Then

Q(x)^^iPj(f(z))gj(z)
j

does the required approximation. Related arguments are given in [3, 26, 40].

This proof shows A(K)[f] = C(K) whenever we know that A(K) is dense in

C(E), E a level set of /. Alexander Izzo [28] has proven this whenever E is a

subset of K with no interior and such that each component of the complement

of E contains a component of the complement of K. Thus he deduces that

for any compact K, A(K)[f] = C(K) whenever / is a real-valued, continuous

function on K which is harmonic on K° , but not constant on any component

of K° . In fact, since we never use the harmonicity of / except to describe the

geometry of its level sets, the proof shows A(K)[f] — C(K) whenever / is a

continuous, real-valued function such that {/ = X} satisfies the hypothesis of

Izzo's theorem for each X. These conditions are also necessary, so he obtains

a characterization of all continuous, real-valued functions f on K such that

A(K)[f] - C(K). On the unit disk this was observed by Mergelyan [34].

10. Final remarks

Theorem 1.1 can probably be generalized, but I do not think the technique

used in this paper can be greatly extended, so we need another approach. In

particular, it would be interesting to see a regular, non-Widom, domain for

which Theorem 1.1 is true. For example, if £2 is the complement of a "square"

Cantor set then it is regular but not Widom. Does Theorem 1.1 hold for such

a domain? Part of the problem here may be to determine which characters of

T can actually occur as the argument of a multi-valued holomorphic function

on £2. Another special case to consider is the class of Denjoy domains, i.e.,

ö£2 = £cH (see [11, 31, 23]). E is called homogeneous if there is an e > 0

such that

\(x - r , x + r) n E\ > er

for all r > 0 and every x E E, and in this case the projections discussed in §4

exist. For what other Denjoy domains is Theorem 1.1 true?

We can also consider extending Corollary 1.5. Since if / is real valued it

holds for every compact K, one might expect it to hold for complex-valued

functions in the general case. If not, it should interesting to understand why it

fails.

Does Theorem 1.1 hold on general domains if we assume / has a single-

valued harmonic conjugate? If it has a single-valued, bounded harmonic conju-

gate, we proved in §2 that this is true. This probably fails, but if it were true one

might be able to "interpolate" between this result and Theorem 1.1 to obtain

classes of harmonic functions on a given domain such that C(£2) c ZZ°°(£2)[/]

in terms of the periods of /*. However, it may be that these periods are ir-

relevant to the problem and that their apparent importance may simply be an

artifact of our techniques.
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Finally, can one combine the ideas of this paper with the several complex

variables approach discussed in the introduction, or at least understand the

relationship between them? In particular, how important is the smoothness

at the boundary? For example, Corollary 1.5 shows C(D) = A(D)[f] if / is

harmonic, continuous and not holomorphic. Can it be deduced from the smooth

case? Is there a proof which does not use Theorem 1.1? If not, does Theorem

1.1 on D somehow follow from the special case of continuous functions?
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