Optimal angle bounds for Steiner triangulations of polygons

Christopher Bishop, Stony Brook University

Symposium on Discrete Algorithms, Jan 9-12, 2022

No Steiner Points With Steiner Points Dissection

Three types of triangulations

Good

Goal: make pieces as close to equilateral as possible.Minimize the maximum angle (compute MinMax angle)."Good" meshes improve performance of numerical methods.

Defn: ϕ -triangulation = all angles $\leq \phi$. **Defn:** $\Phi(P) = \inf\{\phi : P \text{ has a } \phi\text{-triangulation}\}.$ **Defn:** ϕ -triangulation = all angles $\leq \phi$. **Defn:** $\Phi(P) = \inf\{\phi : P \text{ has a } \phi\text{-triangulation}\}.$

Angles of a triangle sum to $180^{\circ} \Rightarrow$

$$\Phi(P) \ge 90^{\circ} - \frac{\theta_{\min}}{2} \ge 60^{\circ}.$$

 $\theta_{\min} = \min \min \text{ interior angle of } P.$

Taking $\theta \to 0 \Rightarrow$ no angle bound $< 90^{\circ}$ works for all polygons.

Thm (Burago-Zalgaller, 1960): $\Phi(P) < 90^{\circ}$ all polygons.

"Every polygon has an acute triangulation."

Rediscovered by Baker-Grosse-Rafferty, 1988.

Much work on acute and non-obtuse triangulations by Bern, Edelsbrunner, Eppstein, Erten, Gilbert, Hirani, Itoh, Kopczyński, Maehara, S. Mitchell Pak, Przytycki, Ruppert, Saraf, Shewchuk, Tan, Üngör, VanderZee, Vavasis, Yuan, Zamfirescu, ...

Remaining questions:

- Compute $\Phi(P)$ for a given P?
- Is optimal angle bound attained?
- Can dissections do better than triangulations?
- Give simple estimates of $\Phi(P)$?

Theorem (MinMax angle with Steiner points):

- (1) $\Phi(P)$ can be computed in linear time.
- (2) Bound is always attained except for some 60°-polygons.
- (3) Optimal bound for triangulations is same as for dissections.
- (4) $\Phi(P) \leq 72^{\circ}$ unless $\theta_{\min} \leq 36^{\circ}$; then $\Phi(P) = 90^{\circ} \frac{1}{2}\theta_{\min}$. (5) $\theta_{\min} \geq 144^{\circ} \Rightarrow \Phi(P) = 72^{\circ}$.

 60° -polygon = all angles multiples of $60^{\circ} \Rightarrow \Phi(P) = 60^{\circ}$.

Theorem (MinMax angle with Steiner points):

- (1) $\Phi(P)$ can be computed in linear time.
- (2) Bound is always attained except for some 60° -polygons.
- (3) Optimal bound for triangulations is same as for dissections.
- (4) $\Phi(P) \leq 72^{\circ}$ unless $\theta_{\min} \leq 36^{\circ}$; then $\Phi(P) = 90^{\circ} \frac{1}{2}\theta_{\min}$. (5) $\theta_{\min} \geq 144^{\circ} \Rightarrow \Phi(P) = 72^{\circ}$.

 60° -polygon = all angles multiples of $60^{\circ} \Rightarrow \Phi(P) = 60^{\circ}$.

Analogous result holds for computing MaxMin angle; see paper.

If no Steiner points, then Delaunay triangulation gives MaxMin angle. Algorithms for MinMax without Steiner points by Bern, Eppstein, Edelsbrunner, S. Mitchell, Tan, Waupotitsch. $O(n^2 \log n)$.

Idea of Proof:

Given P, construct a 60°-polygon P' that "approximates" P. Conformally map a nearly equilateral triangulation from P' to P. Conformal = 1-1, holomorphic = preserves angles infinitesimally. **Problems:** must map vertices to vertices, bound angle distortion, ... Also, Euler's formula sometimes forces vertices of degree 5 or 7.

Let L(v) = number of triangles with v as vertex.

Curvature of boundary vertex v: $\kappa(v) = 3 - L(v)$.

Curvature of interior vertex v: $\kappa(v) = 6 - L(v)$.

Euler's formula can be rewritten to look like Gauss-Bonnet:

$$\sum_{v \in \text{interior}} \kappa(v) = 6 - \sum_{v \in \text{boundary}} \kappa(v)$$

$$\kappa(\mathcal{T}) = 6 - \kappa(\partial \mathcal{T})$$

Define curvature of labeling L of vertices V of P (omit Steiner points):

$$\kappa(L) = 6 - \sum_{v \in P} \kappa(v).$$

Makes sense for any $L: V \to \mathbb{N}$, not just triangulations.

For acute triangulations (angles < 90°) it is easy to see $\kappa(L) \leq \kappa(\mathcal{T})$

since omitted boundary Steiner points have $L(v) \ge 3 \Rightarrow \kappa(v) \le 0$.

If a triangle has all angles $\leq \phi$, then all angles are $\geq 180^{\circ} - 2\phi$.

If a ϕ -triangulation has L(v) triangles at vertex $v \in P$ of angle θ_v , then $L(v) \cdot (180^\circ - 2\phi) \leq \theta_v \leq L(v) \cdot \phi.$ If a triangle has all angles $\leq \phi$, then all angles are $\geq 180^{\circ} - 2\phi$.

If a ϕ -triangulation has L(v) triangles at vertex $v \in P$ of angle θ_v , then $L(v) \cdot (180^\circ - 2\phi) \leq \theta_v \leq L(v) \cdot \phi.$

Defn: A labeling *L* of *P* is a ϕ -labeling if these inequalities hold, i.e., $\frac{\theta_v}{\phi} \le L(v) \le \frac{\theta_v}{180^\circ - 2\phi}.$

Every ϕ -triangulation gives a ϕ -labeling. Converse true? Not quite.

Suppose labeling L corresponds to a ϕ -triangulation. Easy to check that:

- If $\phi < 72^{\circ}$, then $\kappa(L) \leq \kappa(\mathcal{T}) \leq 0$.
- If $\phi < (450/7)^{\circ} \approx 64.28^{\circ}$, then $\kappa(L) = \kappa(\mathcal{T}) = 0$.

Remarkably, these necessary conditions are also sufficient.

Theorem: For $60^{\circ} < \phi < 90^{\circ}$, a polygon *P* has a ϕ -triangulation **iff** 1. $72^{\circ} \le \phi < 90^{\circ}$ and *P* has a ϕ -labeling *L* of V_P , 2. $\frac{5}{7} \cdot 90^{\circ} \le \phi < 72^{\circ}$, and *P* has a ϕ -labeling with $\kappa(L) \le 0$, 3. $60^{\circ} < \phi < \frac{5}{7} \cdot 90^{\circ}$, and *P* has a ϕ -labeling with $\kappa(L) = 0$. **Theorem:** For $60^{\circ} < \phi < 90^{\circ}$, a polygon P has a ϕ -triangulation iff 1. $72^{\circ} \leq \phi < 90^{\circ}$ and P has a ϕ -labeling L of V_P , 2. $\frac{5}{7} \cdot 90^{\circ} \leq \phi < 72^{\circ}$, and P has a ϕ -labeling with $\kappa(L) \leq 0$, 3. $60^{\circ} < \phi < \frac{5}{7} \cdot 90^{\circ}$, and P has a ϕ -labeling with $\kappa(L) = 0$.

Gerver (1984) proved necessity when P has ϕ -dissection.

Corollary: For φ > 60°, the following are equivalent:
(1) P has a φ-dissection.
(2) P has a φ-triangulation.

 \Rightarrow Dissections and triangulations give same angle bound.

Theorem: For $60^{\circ} < \phi < 90^{\circ}$, a polygon P has a ϕ -triangulation iff 1. $72^{\circ} \leq \phi < 90^{\circ}$ and P has a ϕ -labeling L of V_P , 2. $\frac{5}{7} \cdot 90^{\circ} \leq \phi < 72^{\circ}$, and P has a ϕ -labeling with $\kappa(L) \leq 0$, 3. $60^{\circ} < \phi < \frac{5}{7} \cdot 90^{\circ}$, and P has a ϕ -labeling with $\kappa(L) = 0$.

Corollary: If $\Phi(P) > 60^{\circ}$ this bound is attained.

Corollary: $\Phi(P) = 60^{\circ}$ iff $P = 60^{\circ}$ -polygon. Attained iff all side length ratios are rational.

Theorem: For $60^{\circ} < \phi < 90^{\circ}$, a polygon P has a ϕ -triangulation iff 1. $72^{\circ} \leq \phi < 90^{\circ}$ and P has a ϕ -labeling L of V_P , 2. $\frac{5}{7} \cdot 90^{\circ} \leq \phi < 72^{\circ}$, and P has a ϕ -labeling with $\kappa(L) \leq 0$, 3. $60^{\circ} < \phi < \frac{5}{7} \cdot 90^{\circ}$, and P has a ϕ -labeling with $\kappa(L) = 0$.

Cor: For an N-gon $\Phi(P)$ can be computed in time O(N).

However, $1 \times R$ rectangle needs $\gtrsim R$ triangles.

 \Rightarrow no bound for number of triangles in terms of N.

Idea for O(N) computation of $\Phi(P)$:

If $\theta_{\min} \leq 36^{\circ}$ then $\Phi(P) = 90^{\circ} - \theta_{\min}/2$. Find θ_{\min} in O(N).

Otherwise, finding $\Phi(P)$ (eventually) reduces to computing

$$\phi_0 = \inf\{\phi : \exists \phi \text{-labeling with } \kappa(L) = 0\} \le 72^\circ$$
$$= \inf\{\phi : \min(f(\phi), 0) + \max(g(\phi), 0) = 0\}$$

where f, g are the monotone step functions:

$$f(\phi) = \sum_{v \in P} \inf\{k : 180 - 2\phi \le \frac{\theta_v}{k} \le \phi\}$$
$$g(\phi) = \sum_{v \in P} \sup\{k : 180 - 2\phi \le \frac{\theta_v}{k} \le \phi\}$$

0

Note that $\phi_0 \in J$ = the O(N) (known) jump points of f, g. $O(N^2)$ work to find ϕ_0 ? Evaluate N-sums for O(N) values? However, we can find $\phi_0 \in J$ in time O(N) as follows:

- Find smallest, largest elements of J. Evaluate f, g.
- Find median of J by median-of-medians algorithm. Evaluate f, g.
- Decide if ϕ_0 is \geq or \leq median. Delete half of J.
- Repeat last two steps until ϕ_0 is found.
- Monotonicity implies new evaluations only use remaining points.
- \Rightarrow Work diminishes geometrically. Total is O(N).

Idea behind main theorem: conformal maps

Given P, build P' with angles $\psi_k = L(k) \cdot 60^\circ \approx \theta_k$ and $\sum \psi_k = (N-2) \cdot 180^\circ.$

This requires the labeling of P' to have curvature zero. If this is a ϕ -labeling of P, the conformal transfer idea works.

Idea behind main theorem: conformal maps

In this situation, interior vertices of all have degree 6.

 \Rightarrow This doesn't work if all ϕ -labelings have non-zero curvature κ .

E.g., acute triangulation of regular pentagon must contain degree 5 vertex.

Map $f: P' \to P$ can identify boundary segments.

Boundary vertices of P' become interior vertices of P.

In this figure, a degree 5 interior vertex is created.

Technical difficulty: slit is not straight (within 3°).

Triangulations must match up across slit.

This occurs if |f'(w)| = |f'(z)| whenever f(w) = f(z).

Differential equation can be solved explicitly (= conformal welding).

Creating a degree 7 vertex requires P' to be Riemann surface. All cases can be handled with these "tricks".

Thanks for listening

Lecture, slides and related papers are posted at https://www.math.stonybrook.edu/~bishop

Email questions to lastname@math.stonybrook.edu

Open Problems

- Proof doesn't give "practical" meshes. Benchmark existing methods?
- Construct triangulations within a bounded factor of optimal size?
- Minimal number of triangles needed to get optimal angles? NP hard?
- Compute optimal angle bound for conforming triangulation of a PSLG.

• If a PSLG has minimal angle θ does it have a ϕ -triangulation with $\phi = \max(72^\circ, 90^\circ - \theta/2)$? (Yes, if 72° is replaced by some $\theta_0 < 90^\circ$.)

• Two equal area polygons can be dissected into isometric sets of triangles (Wallace-Bolyai-Gerwien Thm). Compute the optimal angle bounds.

• An open set of polygons has optimal bound 72° . What is the probability a random polygon has this bound? What is a random polygon?