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PART I: DIFFUSION LIMITED AGGREGATION (DLA)

 



























DLA, n = 10000



DLA, n = 10000





DLA, n = 100000

How fast does the diameter grow?
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Log-log plot of DLA radii versus n

Slope of best linear fit = 0.57432
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Numerical experiment for growth rate.



Trivial upper bound is O(n).



Trivial lower bound is Ω(
√
n).



Theorem (Kesten): diam(DLA(n)) = O(n2/3).



Theorem (Kesten): diam(DLA(n)) = O(n2/3).

Equivalent: DLA takes & m3/2 steps to exit ball of radius m.



Sketch (following Lawler). Suppose βm3/2 disks suffice to exit, β > 0.

Then cluster contains a chain of lattice points z = {z1, . . . , zk} so that

|z1| < m/2, |zk| > m,

|zj − zj+1| ≤ 4, j = 1, . . . , k, m/4 ≤ k ≤ βm3/2.



Let Wm(z) be all clusters associated to a chain z. Let Wm = ∪zWm(z).

At most O(m280k) chains: O(m2) starting points and 80 choices per step.

Claim: Prob(Wm(z)) ≤ (Cβ)k.

Assuming claim, Kesten’s theorem follows: if β small,
∑

m

Prob(Wm) ≤
∑

m

∑

z

Prob(Wm(z)) ≤ C
∑

m

m2(80Cβ)m < ∞.

By Borel-Cantelli a.s. Wm occurs only finitely often, i.e., eventually the
exit time from radius m is always bigger than βm3/2. QED



Proof of claim: Suppose Dj is disk covering zj. How long do we wait
between choosing Dj and Dj+1?

The Dj+1 must land within distance 4 of Dj. Probability bounded using:

Beurling’s thm: If Ω = C \K, K compact and connected, x ∈ K,

ω(∞, D(x, 1) ∩K,Ω) ≤ C
√

diam(K)
.

1K

R



If cluster has diameter ∼ m, probability of adding Dj+1 at next step is

p . m−1/2.

The probability of waiting t steps to add it is

Prob(waiting > t) ≥ (1− p)t.

Claim (hence Kesten’s theorem) then follows from:

Lemma: IfX1, . . . , Xn are independent geometric random variables with
parameter p, then

Prob(

n
∑

k=1

Xk <
an

p
) ≤ (2e2a)n.



Beurling’s theorem is sharp when K is line segment. Since clearly DLA
never looks like a line segment, we should get a smaller estimate for har-
monic measure, hence a longer waiting time, hence a better upper bound
for the diameter of DLA.

How to make this precise?



Amazingly, there is no known better lower bound than the trivial
√
n.

Conjecture: Almost surely,

lim
n→∞

diam(DLA(n))√
n

= ∞.

If DLA(n) is roughly a disk of radius
√
n then any boundary disk is hit

with probability ≃ 1/
√
n, which gives which gives the trivial lower bound.

For non-trivial lower bound, we need to show there are points that get hit
with probability ≫ n−1/2.



Consider convex hull of the DLA cluster. What is the harmonic measure
of the disks that touch the convex hull boundary?



If convex hull has “sharp angles” some vertices have larger than average
harmonic measure, implies faster than trivial growth.



One way to have “sharp angles” is to have few vertices: if the convex hull
boundary has few vertices, some of the angles should be large.



How many convex hull vertices are there at time n?
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Number of convex hull vertices, averaged over 100 trials.
Plotted versus log(n), looks linear.

Numerically, ≈ (2.2) log n.



How to measure deviation of convex hull from disk? Gauss map? Perhaps
curvature of boundary defines a measure that is not close to uniform. Then
use Ahlfors distortion type estimate to show convex hull vertices are likely
to get hit.



Red disks where on convex hull boundary when added.
Percentage probably tends to zero, but how fast?







PART II: SHORT PATHS IN THE BROWNIAN TRACE



Robin Pemantle proved Brownian motion does not cover a line segment.

Question: Does it cover a rectifiable curve?

Question: Does it cover a curve of dimension 1 + ǫ, any ǫ > 0?

Percolation dimension = minimal dimension of Jordan arc inside the set.

Frontiers have dimension 4/3 (Lawler et. al.).

Brownian trace contains curves of dimension 5/4 (Dapeng Zhan).



200 step random walk.



Minimal distance rooted spanning tree.



A shortest path from 0 to
√
n/2.



1000 step random walk.



Minimal distance rooted spanning tree.



A shortest path from 0 to
√
n/2.



10000 step random walk.



Minimal distance spanning tree, wrt to origin.



Minimal length path to distance
√
n.



Log-log plot of graph distance 0 to {|z| = 1
2

√
n}.





Paths can be straight where trace is dense.



Paths wiggle more when trapped between components.



Can any two components be separated by a rectifiable curve?



Is the intersection of two boundaries rectifiable?



Intersection should have dimension 3/4 (= dim of cut-points).
Self-similar sets of dimension < 1 are rectifiable.

Rectifiable sets characterized by Jones’ β-numbers.



For a dyadic square Q, β(Q) measures how close E is to a line inside 3Q.
Jones TST says that E lies on a rectifiable curve if and only if

∑

Q

β(Q)2ℓ(Q) < ∞,

where the sum is over all dyadic squares.

Q

3Q

β



Call a square ǫ-dense for a given trace if the trace comes within ǫ of every
point of the square.

Since the trace has Hausdorff dimension 2, there are many such squares
at every scale. (Otherwise the trace is porus and has dimension < 2.)

Inside ǫ-dense squares, we can draw paths that are ǫ close to straight. Pe-
mantle’s proof shows that such squares cannot “line up”. Can they “perco-
late”, that is, does their union have connected components of macroscopic
size (comparable to diameter of the trace)?



PART III: THE GRAPH OF COMPLEMENTARY COMPONENTS



Consider the complementary components of the Brownian trace as vertices
of a graph, with two being adjacent if their boundaries overlap.

Wendelin Werner conjectured this graph is connected, i.e., any two com-
ponents are connected by a path hitting the trace only finitely often.

What about a path that hits the trace countably often? Hits in a set of
small Hausdorff dimension?



N = 200,  The trace

  

200 random steps on square grid.



N = 200, Number of components = 22

  

Components form a graph under edge adjacency.



N = 200, Number of components = 22, Depth = 2

   

The bounded components colored by graph distance to outer component.



N = 1000,  The trace

  

1000 random steps on square grid.



Components colored by graph distance to outer component.



10,000 steps



10,000 steps



10,000 steps



20,000 steps



30,000 steps



40,000 steps



50,000 steps, 10%-component at depth 12
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Component diameters versus graph distance from outer component

Component diameter versus graph distance from outer component.
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Log-log plot of max diameter vs depth

Slope (max) = -2.067 Slope (ave) = -0.8805

Same plot in log-log coordinates.
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Plot of average tree depth versus n

Growth of maximal graph distance (depth) to outer component.
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Log-log plot of average tree depth versus n

Slope = 0.35774

averaged data

linear fit

Maximum distance from outer component looks like n.36.
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Log-log plot of number of components versus n

Slope = 1.0003

averaged data

linear fit

Number of components appears linear in n
Averaged over 100 trials.



How could Werner’s conjecture fail?

Need large component surrounded by much smaller components. Would
happen if it was surrounded by ǫ-dense squares for every ǫ.

If ǫ-dense squares “percolate”, they might form macroscopic loops that
cause Werner’s conjecture to fail.



PART IV: TRIANGULATION FLOWS



A triangulation: overlapping edges agree.



A dissection.



A triangle.



Its in-circle.



The central region and three sectors (thin version).



The three sectors are foliated by circular arcs.
Defines flow on a triangulation that stops at boundary or cusp point.



Later we will consider “thick” central regions.
Will need edges to be bases of half-disks contained inside triangle.



• Start with any triangulation.



• Start with any triangulation.
• Make central parts.



• Start with any triangulation.
• Make central parts.
• Propagate vertices until they leave thin parts.



• Start with any triangulation.
• Make central parts.
• Propagate vertices until they leave thin parts.



• Start with any triangulation.
• Make central parts.
• Propagate vertices until they leave thin parts.



• Start with any triangulation.
• Make central parts.
• Propagate vertices until they leave thin parts.



• Start with any triangulation.
• Make central parts.
• Propagate vertices until they leave thin parts.
• How many new points are created?



Delaunay triangulation of 10 random points,



The boundary of the triangulation



The central regions.



Propagation lines starting at all cusp points.



Propagation lines identify boundary points; induces tree.
Discontinuous, but piecewise length preserving.



triangulation of 30 points.



The central regions.



Propagation lines starting at all cusp points.



Delaunay triangulation of 30 random points in disk.



The central regions.



Propagation lines starting at all cusp points.



Enlargement 1.



Enlargement 2.



60 points



The central regions.



Propagation lines starting at all cusp points.



Log-log plot of number points created versus n.



Delaunay triangulation of 30 random points on circle.



The central regions.



Propagation lines starting at all cusp points.



Theorem: For a triangulation of a simple polygon by diagonal, at most
O(n2) points are created.

Proof: In this case, the triangles form the vertices of a tree where adja-
cency means sharing an edge.

Since a flow line never re-enters a triangle, it visits at most n triangles, so
at most O(n2) points are generated.



A simple polygon



A triangulation of the polygon using diagonals.



The central cusp regions.



No flow line returns to a triangle, so each path
creates at most n new points, for a total of O(n2).



The n2 is sharp.



The n2 is sharp.



Each point “along top” creates a path that hits ≃ n triangles.



The n2 is stable under small perturbations of vertices.



A ring of equilateral triangles.



The in-circles are tangent.



The the cusps touch; for a closed flow line.



No matter how we triangulate interior, flow lines never exit.



No matter how we triangulate interior, flow lines never exit.



No matter how we triangulate interior, flow lines never exit.



Alternative triangulation of interior: more closed orbits.



Randomly perturb some vertices; flow lines “leak” to the boundary.









The triangulation flow arises from applications to optimal meshing and
finite element methods.

A triangulation is non-obtuse if every angle is ≤ π/2. Called a NOT
for short. Triangulation is acute if every angle is < π/2.

Non-obtuse triangulations important in various applications, e.g, give bet-
ter numerical methods.

For example, Vavasis showed that matrices arising from finite element
method for a certain PDE have conditions numbers that grow exponen-
tially (in number of triangles) for general triangulations, but only linearly
for non-obtuse triangulations.

Other numerical methods are faster, simpler to implement, or provably
correct when using non-obtuse triangulations.



Fact: every triangulation has a non-obtuse refinement (possibly using
many, many more triangles).

Fact: some n-triangulations require n2 elements in a non-obtuse refine-
ment.

Fact: No polynomial bound is possible with angle bound θ < 90◦.

Question: does every triangulation have a polynomial sized non-obtuse
refinement?



Fact: every triangulation has a non-obtuse refinement (possibly using
many, many more triangles).

Fact: some n-triangulations require n2 elements in a non-obtuse refine-
ment.

Fact: No polynomial bound is possible with angle bound θ < 90◦.

Question: does every triangulation have a polynomial sized non-obtuse
refinement?

Answer: Yes (B. 2016). Any n-triangulation has a non-obtuse refinement
with O(n2.5) elements. Gap remains between 2 and 2.5.



The segment [v, w] is a Gabriel edge of a point set V if it is the diameter
of an open disk missing V . (Special case of Delaunay condition.)

Gabriel edge.



The segment [v, w] is a Gabriel edge of a point set V if it is the diameter
of an open disk missing V . (Special case of Delaunay condition.)

Not a Gabriel edge.



It’s easy to see that every edge of a NOT is Gabriel.

θ>90

The converse is almost true in following sense.



Lemma (Bern-Mitchell-Rupert 1994): if we add N vertices to
edges of a n-triangulation so every edge becomes Gabriel, then there is a
non-obtuse refinement with O(n +N) triangles.



Lemma (Bern-Mitchell-Rupert 1994): if we add N vertices to
edges of a n-triangulation so every edge becomes Gabriel, then there is a
non-obtuse refinement with O(n +N) triangles.

Idea: each triangle can be non-obtusely refined using only the given points
on boundary. Thus refinements mesh together.

We can add such points by using triangulation flows.



If suffices to consider “thickened” central regions. With “thick” regions,
every flowline terminates in finitely many steps (depends on geometry).

Tube is “swept out” by fixed diameter disk. Verifies Gabriel condition:
disk lies inside tube or central region or outside convex hull.



Simple-NOT-Theorem: any triangulation of a simple n-gon by diag-
onals can be refined to a O(n2)-NOT.

Proof: We saw earlier that the triangulation flow generates at most n2

new points. QED

Improves 1993 O(n4) bound of Marshall Bern and David Eppstein.









General NOT-theorem: Any triangulation with n triangles, can be
refined to a NOT with O(n3/2) using non-obtuse triangles.

Idea: we perturb the flow lines (instead of the triangulation), in order to
get them to run into each other, while still giving the Gabriel condition.
Requires adding about n3/2 new lines; each visits at worst n triangles.



Adding lots of points is like increasing 2nd derivative of flow.

Argument is a discrete version of a “closing lemma”: if we limit the amount
of bending, we must estimate how many steps are needed to create closed
orbits in the perturbed triangulation flow.

Can we make a precise connection to closing lemmas in surface dynamics?

What about triangulations of polyhedral surfaces?

Hyperbolic triangulations of Riemann surfaces?

What about 3 dimensions?



THANKS



An application of the NOT theorem
Consider a finite set of points in the plane.



Voronoi cells (think of cell phone connecting to closest tower).



If region boundaries conform to cell boundaries, then a phone always con-
nects to a tower in the same region.



Given countries, can we place towers so this happens?

Do a polynomial number of towers suffice?



Given countries, can we place towers so this happens?

Do a polynomial number of towers suffice? Yes (B 2016)



Proof: It’s easy to place points explcitly if regions are all non-obtuse tri-
angles. In general, triangulate the regions, then non-obtusely refine the
triangulation.


