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Suppose Γ = ∂Ω is Jordan curve, f : D → Ω is conformal.

Basic problem: how is geometry of Γ related to properties of f?
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If γ is a planar Jordan arc with endpoints z, w, we set:

• diam(γ) = diameter of γ

• crd(γ) = z − w = chord length of γ

• ℓ(γ) = length of γ,

• ∆(γ) = ℓ(γ)− crd(γ) = excess length

• β(γ) = sup{z ∈ γ : dist(z, L)/diam(γ)}, L = line through z, w
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Γ is a quasicircle iff diam(γ) = O(crd(γ)) for γ ⊂ Γ.

Γ is chord-arc iff ℓ(γ) = O(crd(γ)) for γ ⊂ Γ.



• For a conformal map, f ′ is never zero, so log f ′ makes sense.

• Also interested in Schwarzian derivative: S(f ) =
(

f ′′

f ′

)′
− 1

2

(

f ′′

f ′

)2
.

• If Γ is a quasicircle, f has a quasiconformal extension to plane, with
dilation µ defined on D

∗ = {|z| > 1}.

• Γ = f (T) is associated to a conformal welding h = g−1 ◦ f : T → T:

h

g

f
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Theorem (Pommerenke, 1978): Γ is asymptotically conformal, i.e.,

β(γ) → 0, as diam(γ) → 0,

iff log f ′ is in little Bloch class

B0 =

{

g holomorphic on D :
|g′(z)|

1− |z|
→ 0

}

.
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Theorem (Pommerenke, 1978): Γ is asymptotically smooth, i.e.,

∆(γ)

crd(γ)
=

ℓ(γ)− crd(γ)

crd(γ)
→ 0, as diam(γ) → 0,

iff log f ′ ∈ VMO.



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically
conformal

Bishop-Jones
condition

asymptotically
smooth

Each of four columns is a theorem giving 5 equivalent conditions.

Conditions become more restrictive moving left to right.
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Pommerenke’s theorem: log f ′ ∈ B0 ⇔ Γ asymptotically conformal.
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Pommerenke’s theorem: log f ′ ∈ VMO ⇔ Γ asymptotically smooth.
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Astala-Zinsmeister theorem:

log f ′ ∈ BMO ⇔ |S(f )|2(1− |z|2)3dzxdy is Carleson.

µ is a Carleson measure if µ(D(x, r)) = O(r).

BMOA are homomorphic functions such that

|g′(z)|2(1− |z|2)dxdy is Carleson
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C0(D) = {f : continuous, tending to 0 },

CM(D) = {f : |f |2(1− |z|2)−1dxdy is a Carleson measure },

CM0(D) = {f : |f |2(1− |z|2)−1dxdy is vanishing Carleson},

L2(dAρ) = {f :

∫

D

|f (z)|2(1− |z|2)−2dxdy < ∞},

Aρ = hyperbolic area
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Today’s talk is about Dirichlet space = {F :
∫

|F ′|2dxdy < ∞}.

Takhtajan and Teo defined metric on universal Teichmüller space (≈ space
of quasicircles) that makes it a disconnected Hilbert manifold.

One connected component is closure of the smooth curves. Elements are
called Weil-Petersson curves; they are rectifiable quasicircles.
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• Γ is WP ⇔ Γ has finite Loewner energy (Rohde and Wang)

• Large deviations of SLE(κ) as κ ց 0 (Wang).

• Connections to Brownian loop soup of Lawler and Werner (Wang).

• Computer vision, morphing (Sharon and Mumford, Feiszli and Narayan)

• “WP . . . correct analytic choice for the formulation of CFT.” (Radnell,
Schippers and Staubach)
• Connections to renormalized area, quantum entanglement, Ads/CFT.
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Γ is WP ⇔ log f ′ is in Dirichlet class (Takhtajan and Teo)

⇔

∫

|z|<1

|S(f )(z)|2(1− |z|2)2dxdy < ∞ (Cui)

⇔

∫

|z|>1

|µ(z)|2dAρ < ∞ (Cui)

⇔ log h′ ∈ H1/2 (Shen)

H1/2(T) = {g :

∫

T

∫

T

|g(z)− g(w)|2

|z − w|2
|dw||dz| < ∞}.
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What geometric condition goes in the empty box?

BMO case + Peter Jones’ traveling salesman theorem (TST) gives a hint.



Traveling Salesman Theorem (Jones): Γ is rectifiable iff

ℓ(Γ) ≃ diam(Γ) +
∑

dyadic Q

β2Γ(Q)diam(Q) < ∞.

Sum is over dyadic squares in plane.



diam(Q)βΓ

3Q

Q

βΓ(Q) =
1

diam(Q)
inf
L
sup{z ∈ Γ ∩ 3Q : dist(z, L)}

β measures local deviation from a line.



Peter Jones and I proved (1994) that a quasicircle Γ is rectifiable iff
∫∫

Ω
|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy < ∞

By the TST this is equivalent to
∑

Q

β2(Q)diam(Q) < ∞.
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By Koebe’s distortion theorem (for f (z) “near” Q)

|f ′(z)|(1− |z|2) ≃ diam(Q).



Peter Jones and I proved (1994) that a quasicircle Γ is rectifiable iff
∫∫

Ω
|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy < ∞

By the TST this is equivalent to
∑

Q

β2(Q)diam(Q) < ∞.

By Koebe’s distortion theorem (for f (z) “near” Q)

|f ′(z)|(1− |z|2) ≃ diam(Q).

“Canceling” gives
∫∫

|S(f )(z)|2(1− |z|2)2dxdy < ∞ ⇔
∑

Q

β2(Q) < ∞.

We already know that LHS characterizes Weil-Petersson class.



Theorem: Γ is Weil-Petersson iff it is a quasicircle and
∑

Q

β2(Q) < ∞.



Theorem: Γ is Weil-Petersson iff it is a quasicircle and
∑

Q

β2(Q) < ∞.

This is “finite total curvature”.

Deviation from flatness is square integrable over all scales and locations.

Contains all C2 curves. Critical smoothness near β(Q) ≃
√

diam(Q).

Allows infinite spirals to occur, so not C1.

There are many equivalent characterizations.

= boundaries of finite total curvature surfaces in hyperbolic 3-space.



Idea of proof: log f ′ in Dirichlet class implies f ′ is “mostly” constant
near boundary. Follow Pommerenke’s estimates to show images of short
boundary arcs are almost line segments and

∑

β2 < ∞.

Conversely, triangulate one side of Γ and reflect vertices using lines ap-
proximating Γ. PL extension gives a QC reflection with |µ(z)| ≃ β.Then

∑

β2 < ∞ ⇒

∫

|µ|2dAρ < ∞ ⇒ WP.

T

v*

v

T*

Γ



Recall the TST: if Γ ⊂ R
2 is a Jordan arc, then

ℓ(Γ) ≃ diam(Γ) +
∑

Q

β2Γ(Q)diam(Q).



Recall the TST: if Γ ⊂ R
2 is a Jordan arc, then

ℓ(Γ) ≃ diam(Γ) +
∑

Q

β2Γ(Q)diam(Q).

Here is a slight improvement:

ℓ(Γ) = crd(Γ) +O





∑

Q

β2Γ(Q)diam(Q)



 .

or
∆(Γ) ≡ ℓ(Γ)− crd(Γ) ≃

∑

Q

β2Γ(Q)diam(Q).

Modification of a known proof (e.g., Chapter 10, Bishop-Peres).
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Theorem: Γ is Weil-Petersson iff it is chord-arc and
∑∆(γj)

ℓ(γj)
< ∞

Sum is over a multi-resolution family of subarcs, e.g., take a dyadic de-
composition and triple length of each arc.

A dyadic decomposition of Γ consists of sets Z1 ⊂ Z2 ⊂ · · · ⊂ Γ so that
Zn divides Γ into 2n arcs of length 2−nℓ(Γ).

For a closed curve, this depends on the initial division into two pieces.



Theorem: Γ is Weil-Petersson iff it is chord-arc and
∑∆(γj)

ℓ(γj)
< ∞

Continuous version: Γ is WP iff it is a quasicircle and
∫

Γ×Γ

∆(z, w)

|z − w|3
|dw||dz| < ∞

∆(z, w) = ∆(γ) for shorter subarc γ connecting z, w.



Γn is polygon given by nth generation dyadic points. Then ℓ(Γn) ր ℓ(Γ).



Γn is polygon given by nth generation dyadic points. Then ℓ(Γn) ր ℓ(Γ).

Theorem: Γ is Weil-Petersson iff it is a quasicircle and
∞
∑

n=1

2n [ℓ(Γ)− ℓ(Γn)] < ∞



The Menger curvature of three points x, y, z ∈ R
2 is c(x, y, z) = 1/R

where R is the radius of the circle passing through these points.

Let ℓ(x, y, x) = |x−y|+ |y−z|+ |z−x| = perimeter of triangle (x, y, z).

x

y

z

R



Theorem: Γ is WP iff it is chord-arc and satisfies
∫

Γ

∫

Γ

∫

Γ

c(x, y, z)2

ℓ(x, y, z)
|dx||dy||dz| < ∞.



Theorem: Γ is WP iff it is chord-arc and satisfies
∫

Γ

∫

Γ

∫

Γ

c(x, y, z)2

ℓ(x, y, z)
|dx||dy||dz| < ∞.

It is known that
∫

Γ

∫

Γ

∫

Γ
c(x, y, z)2|dx||dy||dz| < ∞.

iff
∑

Q

β2(Q)diam(Q) < ∞.

To get above result, divide both sides by a scale factor.



If Γ is rectifiable, it has a tangent direction τ (z) ∈ T a.e. on Γ.

z

z

τ(  )

w

w

τ(  )

Theorem: Γ is Weil-Petersson iff it is chord-arc and
∫

Γ

∫

Γ

∣

∣

∣

∣

τ (z)− τ (w)

z − w

∣

∣

∣

∣

2

|dz||dw| < ∞.

In other words, τ ∈ H1/2(Γ) (Sobolev space).



Proof uses discrete analog summed over multi-resolution family:
∑

j

1

ℓ(Γj)

∫

Γj

|τ (z)− τ (Γj)|
2|dz| < ∞

Fairly easy: Discrete version ⇒ continuous version ⇒
∑

β2 < ∞

“
∑

β2 < ∞ ⇒ discrete version” uses martingales.



θ θ

β

Suppose that midpoint of a dyadic arc is on bisector of its endpoints.

Then new tangent directions differ by ±θ = O(β) from old one.

⇒ polygonal tangents define a martingale on Γ .
∑

β2 < ∞ ⇒ L2 bounds on martingale.

Maximal functions and martingale convergence imply result.
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In reality, midpoint is not on bisector, but is within ∆(Γj) of bisector.

Change in angles are not equal, but satisfy

|θ1 − θ2| ≤ β(Γj) ·∆(Γj)/ℓ(Γj).

So polygon angles are a small perturbation of a martingale. This suffices.



1θ 2θ

∆
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When we bisect arc by length, harmonic measure (for either side) is also
bisected up to a factor controlled by sums of β’s and ∆’s.

Thus bisecting harmonic measure on one side almost bisects for other side.

This proves Shen’s theorem:

WP ⇔ log h′ ∈ H1/2.

Is there a higher dimensional analog?



“Round” βs:

Let εΓ(Q) be the smallest ε > 0 so that 3Q intersects disks D1, D2 sepa-
rated by Γ, both with radius diam(Q)/ε and dist(D1, D2) ≤ ε · diam(Q).

Q
diam(Q)/ ε

ε diam(Q)

Γ

For single Q, we have β(Q) . ε(Q), but not conversely.



Theorem: Γ is WP iff it is chord-arc and satisfies
∑

Q

ε2Γ(Q) < ∞

ε(Q) provides a link to hyperbolic geometry.



Hyperbolic metric the unit ball B is dρ = ds
1−|z|2

.

In the upper half-space R3
+ = {(x, y, t) : t > 0}, metric is dρ = ds/2t.

Geodesics in B are diameters or circular arcs perpendicular to ∂B

Geodesics in R
3
+ are vertical rays or semi-circles perpendicular to R

2.



CH(Γ) denotes the hyperbolic convex hull of Γ

For a curve, CH(Γ) is the union of all geodesics with endpoints in Γ.



For a circle, this is a hemisphere.

In general, CH(Γ) has non-empty interior.

There are two boundary surfaces, each asymptotic to Γ.



Suppose Ω is Jordan domain with boundary Γ.

The dome of Ω is upper envelope of all hemispheres with base disk in Ω.

Region above dome is intersection of half-spaces, hence convex.

CH(Γ) is region between domes of “inside” and “outside” of Γ.



Upper and lower boundaries of hyperbolic convex hull of a square.



Let δ(z) be the hyperbolic distance to farther boundary component.

δ(  )z

CH(   )Γ
z

For z ∈ CH(Γ), δ(z) measures “width” of convex hull near z.

δ(z) = 0 iff Γ is a circle (hull has no interior).

For quasicircles, δ(z) ∈ L∞ (not conversely).



Theorem: A quasicircle Γ is WP iff δ(z) ∈ L2, i.e.,
∫

∂CH(Γ)
δ2(z)dAρ(z) < ∞.



Theorem: A quasicircle Γ is WP iff δ(z) ∈ L2, i.e.,
∫

∂CH(Γ)
δ2(z)dAρ(z) < ∞.

Thus Γ is WP iff its hyperbolic convex hull is asymptotically “thin”.

First geometric condition that is obviously conformally invariant.

“Thickness” of convex hull also important in Teichmüller theory and Kleinian
groups. Measures “complexity” of the quotient 3-manifold.



Idea of proof: Use
∑

ε2 < ∞ and

Lemma: If two disks of diameter 1/ǫ are distance ǫ apart in plane, then
their domes are hyperbolic distance ≃ ǫ apart.

ρ ∼ ε

1/ε 1/ε

ε
D1 D2

Corollary: δ(z) . ε(Q) if z is height diam(Q) above Q.



Theorem (Mike Anderson, 1983): Every Jordan Γ ⊂ R
2 is bound-

ary of at least one minimal surface S in R
3
+.

The minimal surface S has infinite hyperbolic area: minimal means mini-
mal under compact variations.

Important Fact: Any such minimal surface is contained in CH(Γ).



2nd fundamental form K(z) measures curvature of an embedded surface.

Roughly K2 = a2 + b2 if surface is graph of ax2 + by2 locally.

Theorem (Andrea Seppi, 2016): For a minimal surface S trapped
between non-intersecting planes distance δ apart near z, K(z) = O(δ).



2nd fundamental form K(z) measures curvature of an embedded surface.

Roughly K2 = a2 + b2 if surface is graph of ax2 + by2 locally.

Theorem (Andrea Seppi, 2016): For a minimal surface S trapped
between non-intersecting planes distance δ apart near z, K(z) = O(δ).

Cor: If Γ is WP then it bounds a surface with finite total curvature, i.e.,
∫

S
K2(z)dAρ(z) < ∞.



Theorem (Charles Epstein, 1986): If S is a surface with |K| < 1,
then the Gauss maps Gj, j = 1, 2 define a quasiconformal reflection across
Γ with dilatation |µ(G(z))| = O(K(z)).

Gauss map = follow normal geodesics from surface to boundary.



Theorem (Charles Epstein, 1986): If S is a surface with |K| < 1,
then the Gauss maps Gj, j = 1, 2 define a quasiconformal reflection across
Γ with dilatation |µ(G(z))| = O(K(z)).

If S is has finite total curvature, then
∫

C\Γ |µ|
2dAρ < ∞. Thus:

Thm: Γ is WP iff it bounds a minimal surface of finite total curvature.



t

S has infinite hyperbolic area, but a “renormalized area” was introduced
by Robin Graham and Ed Witten:

Yt = Y ∩ {(x, y, z) : z > t}, AR(Y ) = lim
tց0

[

Aρ(Yt)− ℓρ(∂Yt)
]

Related to the AdS/CFT correspondence in string theory and quantum
entanglement (e.g., analogous to surface area of event horizon measuring
entropy of a black hole).



Finite renormalized area is closely related to finite total curvature.

Alexakis and Mazzeo proved that if Γ ∈ C3,α, then AR(Y ) < ∞ and

AR(Y ) = −2πχ(Y )−
1

2

∫

Y
|K0|

2dAρ,

where K0 is trace free 2nd fundamental form (= K for minimal surfaces).

Thus we expect:

∂S ∈ WP ⇒

∫

S
K2dAρ < ∞ ⇒ AR(S) < ∞,

but WP curves are too rough to apply their result (not even C1).



Finite renormalized area is closely related to finite total curvature.

Alexakis and Mazzeo proved that if Γ ∈ C3,α, then AR(Y ) < ∞ and

AR(Y ) = −2πχ(Y )−
1

2

∫

Y
|K0|

2dAρ,

where K0 is trace free 2nd fundamental form (= K for minimal surfaces).

Thus we expect:

∂S ∈ WP ⇒

∫

S
K2dAρ < ∞ ⇒ AR(S) < ∞,

but WP curves are too rough to apply their result (not even C1).

However, the result it is still true anyway:

Thm: S minimal + ∂S ∈ WP ⇒ S has finite renormalized area.



Idea is that cylinders X = Γ× (0, 1] have finite renormalized area:

Aρ(Xt) =

∫

Γ

∫ 1

t

1

r2
drds = ℓ(Γ)(

1

t
− 1), ℓρ(∂Xt) =

1

t
ℓ(Γ)

⇒ AR(X) = Aρ(Xt)− ℓρ(Xt) = −ℓ(Γ)



Define a dyadic cylinder in the upper half-space:

X =

∞
⋃

n=1

Γn × [2−n, 2−n+1),

where {Γn} are inscribed dyadic polygons in Γ.

Discrete analog of minimal surface with boundary Γ.



Our earlier estimate
∑

n

2n(ℓ(Γ)− ℓ(Γn)) < ∞

implies Γ is WP iff the dyadic cylinder has finite renormalized area.



Lemma: If Γ is Weil-Petersson, then the limits

lim
t→0

[Aρ(St)− Aρ(Xt)], lim
t→0

[ℓρ(St)− ℓρ(Xt)],

both exist and are finite.

Proof: orthogonally project X → S; use β, δ to estimate area/length.



Thm: S minimal + ∂S ∈ WP ⇒ S has finite renormalized area.



Thm: S minimal + ∂S ∈ WP ⇒ S has finite renormalized area.

Does converse hold? A formula of Alexakis-Mazzeo may help:

Aρ(St)−
1

t
ℓ(∂St) = −2πχ(St)−

1

2

∫

St

|K|2dAρ −

∫

∂St

(κt − 1)dℓρ



THANKS FOR LISTENING


