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S(f ) denotes the singular values of f , i.e.,
• critical values = {f (z) : f ′(z) = 0}
• asymptotic values = limits of f on curves to ∞

B denotes the Eremenko-Lyubich class of transcen-
dental entire functions for which S(f ) is a bounded set.

S ⊂ B is the Speiser class; S(f ) is a finite set.

How to construct such functions?



The basic idea is to construct a quasiregular function
g with the desired property and singular set and then
use the measurable Riemann mapping theorem to find
a quasiconformal map φ so that f = g ◦ φ is entire.

Since φ is a homeomorphism, the singular values of f
are the same as for g and the tracts of f are quasicon-
formal images of the tracts for g; often we can get good
estimates for φ and deduce f and g have very similar
geometry.
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We have a tree T with marked vertices (-1, +1).

τ is QC from components to half-plane.

Vertices of tree map to πiZ.

τ is not continuous across tree edges, but cosh ◦τ is.



Given an edge e of T and r > 0 we define

e(r) = {z : dist(z, e) < rdiam(e)},

Take union over all edges to get T (r).



A conformal map τ : Ω → Hr maps each edge e of
T = ∂Ω to an interval of ∂Hr.

These intervals partition ∂Hr. Denote partition I.

For each I ∈ I, let QI ⊂ Hr be the open square with I
as one side. Let VI ⊂ Hr be the union of these squares.

Lemma τ−1(VI) ⊂ T (r) for some fixed r > 0.



A homeomorphism τ between rectifiable curves γ1, γ2
respects length if it is absolutely continuous with
respect to arclength and |τ ′| is a.e. constant, i.e.,

ℓ(τ (E)) = ℓ(E)ℓ(γ2)/ℓ(γ1),

for every E ⊂ γ1.

Generalizes linear map between line segments.



Theorem: Suppose T is an unbounded, locally
finite tree in C with rectifiable edges, and suppose
each of its complementary components {Ωj} has a
K-quasiconformal map τj : Ωj → Hr that respects
length on each edge and such that (“the integer im-
ages condition”):

ℓ(τj(e)) = 2πn (1)

for some odd integer n; assume adjacent intervals
have lengths within a fixed factor M of each other.
Then there is a f ∈ S and a quasiconformal φ so
that f ◦ φ = cosh ◦τ off T (r). The quasiconstant of
φ depends only on K and M .
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τ −1τ ψ

For each complementary component of T , we build a
QC map ψ of Hr into a subdomain W ⊂ Hr.



τ −1τ ψ

Let I be the partition consisting of τ -images of edges in
T . We may assume each element of I consists of a odd
number of elements of Z .



τ −1τ ψ

Our map ψ will be linear on each element of Z and
hence length respecting on these intervals. It will also
be the identity off VI . For each I ∈ I, it will map
exactly one subinterval of I in Z to an element of Z .
The remaining subintervals of Z in I are mapped to
segments with interiors inside Hr.



τ −1τ ψ

We also require that if the ψ images of two open Z in-
tervals intersect, then they have the same image and are
traversed in opposite directions by ψ(iy) as y increases.
Moreover, every interval of Z that is mapped into Hr is
paired with another interval of Z in this way.



τ −1τ ψ

Thus ∂W ∩ Hr consists of finite trees rooted at the
points Z = iπZ. If two points are identified by ψ, then
the values of cosh at these points must be the same, i.e.,
cosh ◦ψ−1 is continuous on Hr.
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Here is a simple fold for n = 3. One interval is expanded
and the othe two are folded to form opposite sides of a
one edge tree rooted on the boundary.

In general we do this for large n, but uniform QC bounds
on the folding map (this is hard part).



Lemma If τ is QC from Ω to Hr so that

ℓ(τ (e)) ≥ 2π (2)

and adjacent intervals have comparable lengths, then
there is a QC ψ : Hr → Hr so that ψ ◦ τ satisfies (1)
(integer images). ψ = Id on {z : ℜ(τ (z)) > 1} and
has uniformly bounded QC-constant.

Easy to prove.



Lemma Suppose I = {Ij} is a bounded geometry
partition of the real numbers (i.e., adjacent intervals
have comparable lengths) so that every interval has
length ≥ 1. Then there is second partition J = {Jj}
so that

1. Every endpoint of J is an integer.

2. The length of Jj is an odd integer.

3. Ij and Jj have lengths differing by ≤ 2.

4. The left endpoints of Ij and Jj are within 2.5.

Let J0 be the maximal interval in I0 with (1) and (2).
For j > 0, let the left endpoint of Jj be the right end-
point of Jj−1. Choose its right endpoint so Jj is maxi-
mal satisfying (1), (2). Then (3) and (4) follow.



We can interpolate between the two partitions in a biLip-
schitz way on a unit width strip and take ψ the identity
elsewhere.



A locally finite graph T has “bounded geometry” if:

1. every edge is twice differentiable with uniform bounds.

2. edges meet at angles bounded away from zero.

3. non-adjacent edges e, f satisfy
dist(e,f )
diam(e)

> c > 0.

The only consequence of bounded geometry we really
need is that if τ maps two edges on ∂Ω to adjacent in-
tervals of ∂Hr, then the images have comparable length
(with a constant independent of the edges and τ .) In this
case we say the induced partition of ∂Hr has “bounded
geometry”.



Theorem: Suppose T has bounded geometry with
conformal maps τ : Ω → Hr associated to each com-
plementary component and suppose

inf ℓ(τ (e)) > 0,

where the infimum is over all edges of T and both
possible τ images of e. Then there exists f ∈ S and
a K-quasiconformal φ so that f ◦φ = eτ off T (r). K
only depends on the bounded geometry constants.

The “big images” condition is usually easy to check.
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For each integer j, let xj ∈ γ∞ be the point that is
closest (in the hyperbolic geometry of Hr) to γj = γIj .

Then ℓ(Ij) ≥ ℓ(I0) if

ρ(γj, xj) ≤ ρ(xj, x0).



zI

xIz0

In many examples, we can verify stronger estimates

ρ(γj, xj) ≤ λρ(xj, x0).

for some 0 ≤ λ < 1 or

ρ(γj, xj) ≤ C,

These imply exponential growth of partition intervals.
This means we can insert more vertices and decrease
size of T (r) exponentially.





To allow finite asymptotic values or critical points with
arbitrarily high degree, the tree T is replaced by a con-
nected graph whose complementary components are each
mapped to one of three possible standard domains:

1. a disk

2. a left half-plane

3. a right half-plane

So far have seen only right half-planes.



A disk or left half-plane can only share an edge with a
right half-plane. A right half-plane can share edges with
any of the three types.
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Disk components: Ω is bounded and ∂Ω is a closed
Jordan curve that is the union of a finite number of
edges of T , say d.

We are given a length respecting quasiconformal map
τ : Ω → D. The map σ : D → D is z → zd followed
by a quasiconformal map ρ : D → D, to place critical
value where we want.

If a critical value a is desired, then ρ is chosen so ρ(0) =
a. If |a| < 1/2, then ρ can be chosen to be conformal
on {|z| < 3/4}, so, in this case, the dilatation of ρ is
supported on {z : 34 < |z| < 1}. The dilatation of σ is
bounded by O(|a|) and is supported on

{z : 1−
1

d
log 4 < |z| < 1}.



Left half-plane components: Here Ω is an un-
bounded Jordan domain and we are given a length re-
specting, quasiconformal τ : Ω → Hl.

The map σ : Ω → D \ {0} is just z → exp(z). This
gives a component with finite asymptotic value 0.

If a different asymptotic value a with |a| < 1/2 is de-
sired, we post-compose this map with quasiconformal
map ρ : D → D such that ρ(0) = a and ρ is the iden-
tity on ∂D.



Right half-plane components: Here Ω is simply
connected and unbounded and we are given a length re-
specting, quasiconformal map τ : Ω → Hr. The bound-
ary may be a tree instead of a Jordan curve.

After folding, intervals I ∈ Z will be identified either
with another arc on the boundary of a right half-plane
component (type I) or a disk or left half-plane (type II).

On the type 1 intervals we let σ(iy) = cosh(iy) and on
the type 2 intervals we let σ(iy) = exp(iy). We then
extend σ to be quasiregular on all of Hr and equal to
cosh on {z : ℜ(z) > 2π}.
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Theorem: Suppose T is a bounded geometry graph
and τ is conformal from each complementary com-
ponent to its standard version. Assume τ maps
• the vertices of disk comps. to roots of unity,
• the vertices of LHP comps. to {2πiZ}
• the edges of RHP comps. to length > ǫ > 0.
Then there is an entire function f and a quasicon-
formal map φ of the plane so that f ◦φ = eτ off T (r).
The only singular values of f are ±1 (critical values
coming from the vertices of T ) and the critical val-
ues and singular values assigned by the disk and left
half-plane components.



Theorem: There is an f ∈ B whose Fatou set
contains a wandering domain.



Lemma: There is an f ∈ B, a disk D0 and an
increasing sequence of integers {nk} ր ∞ so that if
we set Dn = f (Dn−1) for n ≥ 1, then

1. The diameter of Dn tends to zero.

2. dist(0, Dnk) ր ∞, but dist(0, Dnk+1) ≤ 1 for all
k = 1, 2, . . . .



(1) implies every subsequence has a subsequence that
either approaches ∞ or converges to a finite constant.
Thus D0 and all its images are in the Fatou set.

Suppose n < m and Dn and Dm were in the same
component Ω of F(f ). The hyperbolic distance between
Dm and Dn cannot increase under iteration.

Iterate nk+1−m times; then Dm maps to Dnk+1 near
the origin, butDn maps toDnk+1−m+n whose distance
from 0 grows to ∞ with k.

But then hyperbolic distance between the iterates ofDn
and Dm increases to ∞ with k. By contradiction, all
Dn’s are in different components of the Fatou set.



Proof of Lemma:

Use g = cosh ◦ sinh in horizontal strip S+ and g =
σk(z − zk)

dk in disks Dk. Use folding construction in
vertical strips to get f = g ◦φ, where φ is QC and close
to identity.

Verify 1/2 iterates to ∞ along real axis.



Proof of Lemma:

Let Dk be disk nearest kth iterate of 1/2.

Let Uk be component of f−k(Dk) near 1/2.

Choose dk so large that f (12Dk) is small compared to
Uk+1. Check this is not circular.

Adjust σk so that f (12Dk) ⊂ Uk+1. Check does not
effect earlier containments.



Proof of folding theorem

The proof is an explicit construction of piecewise linear
map of a half-plane into a subset of itself.

The data is a partition of the boundary into odd, integer
length intervals.

The result is a piecewise linear map of the half-plane
into a subset of itself that expands one unit interval
from each partition interval to the whole interval, and
maps all others to edges of a finite tree in the half-plane,
rooted on the boundary.
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