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S(f) denotes the singular values of f, i.e.,
e critical values = {f(z) : f'(2) =0}
e asymptotic values = limits of f on curves to oo

B denotes the Eremenko-Lyubich class of transcen-
dental entire functions for which S(f) is a bounded set.

S C B is the Speiser class; S(f) is a finite set.

How to construct such functions?



The basic idea is to construct a quasiregular function
g with the desired property and singular set and then
use the measurable Riemann mapping theorem to find
a quasiconformal map ¢ so that f = g o ¢ is entire.

Since ¢ is a homeomorphism, the singular values of f
are the same as for g and the tracts of f are quasicon-
formal images of the tracts for g; often we can get good
estimates for ¢ and deduce f and g have very similar
geometry.
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We have a tree T with marked vertices (-1, +1).

(Z+

7 is QC from components to half-plane.
Vertices of tree map to miZ.

T 1s not continuous across tree edges, but cosh o7 is.



Given an edge e of T and r» > 0 we define
e(r) ={z : dist(z, e) < rdiam(e)},
Take union over all edges to get T'(r).




A conformal map 7 : 2 — H, maps each edge e of
T = 0f) to an interval of OH,-.

These intervals partition OHl,.. Denote partition Z.

For each I € Z, let ()7 C H, be the open square with 1
as one side. Let V7 C H be the union of these squares.

Lemma 71 (Vz) C T(r) for some fized r > 0.




A homeomorphism 7 between rectifiable curves v, 9
respects length if it is absolutely continuous with
respect to arclength and |7/ is a.e. constant, i.e.,

UT(E)) = LE)(y2)/t(11),
for every E/ C 1.

Generalizes linear map between line segments.



Theorem:  Suppose T s an unbounded, locally
finite tree in C with rectifiable edges, and suppose
each of its complementary components {Qj} has a
K -quasiconformal map 7; = ); — H, that respects
length on each edge and such that (“the integer im-
ages condition”):

K(Tj(e)) = 21N (1)
for some odd integer n; assume adjacent intervals

have lengths within a fived factor M of each other.

Then there is a f € S and a quasiconformal ¢ so
that f o ¢ = coshor off T(r). The quasiconstant of
¢ depends only on K and M .
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For each complementary component of 7', we build a
QC map ¢ of H, into a subdomain W C Hi,.



leltl

Let Z be the partition consisting of 7-images of edges in
T'. We may assume each element of Z consists of a odd
number of elements of Z.



Our map v will be linear on each element of Z and
hence length respecting on these intervals. It will also
be the identity oftf V7. For each I € Z, it will map
exactly one subinterval of I in Z to an element of Z.
The remaining subintervals of Z in I are mapped to
segments with interiors inside Hi,.



We also require that if the ¢ images of two open Z in-
tervals intersect, then they have the same image and are
traversed in opposite directions by 1 (iy) as y increases.
Moreover, every interval of Z that is mapped into H, is
paired with another interval of Z in this way:.



Thus OW N H, consists of finite trees rooted at the
points Z = iwZ. If two points are identified by 1), then
the values of cosh at these points must be the same, i.e.,
cosh o¢_1 is continuous on H,-.



Here is a simple fold for n = 3. One interval is expanded
and the othe two are folded to form opposite sides of a
one edge tree rooted on the boundary.

In general we do this for large n, but uniform QC bounds
on the folding map (this is hard part).



Lemma [If 7 is QC from €) to H, so that
((t(e)) > 2m (2)

and adjacent intervals have comparable lengths, then
there is a QC v - Hy — H, so that Yot satisfies (1)
(integer images). ¥ =1d on {z : R(7(2)) > 1} and
has uniformly bounded ()C-constant.

Fasy to prove.



Lemma Suppose I = {1;} is a bounded geometry
partition of the real numbers (i.e., adjacent intervals
have comparable lengths) so that every interval has
length > 1. Then there is second partition J = {J;}
so that

1. Every endpoint of J is an integer.

2. The length of J; is an odd integer.

3. 1; and J; have lengths differing by < 2.

4. The left endpoints of I; and J; are within 2.5.

Let Jy be the maximal interval in Iy with (1) and (2).
For 7 > 0, let the lett endpoint of J; be the right end-

point of J;_1. Choose its right endpoint so J; is maxi-
mal satisfying (1), (2). Then (3) and (4) follow.



We can interpolate between the two partitions in a biLip-
schitz way on a unit width strip and take 1) the identity
elsewhere.



A locally finite graph 1" has “bounded geometry” if:
1. every edge is twice differentiable with uniform bounds.

2. edges meet at angles bounded away from zero.

3. non-adjacent edges e, f satlsfy T ist(e <f>) > c > 0.

The only consequence of bounded geometry we really
need is that if 7 maps two edges on 02 to adjacent in-
tervals of OHl,-, then the images have comparable length
(with a constant independent of the edges and 7.) In this
case we say the induced partition of OHl,- has “bounded
geometry’ .



Theorem: Suppose 1" has bounded geometry with
conformal maps 7 : () — Hl,- associated to each com-
plementary component and suppose

inf /(7(e)) > 0,

where the infimum 1s over all edges of T and both
possible T 1mages of e. Then there exists f € S and

a K-quasiconformal ¢ so that fop =¢e” off T(r). K
only depends on the bounded geometry constants.

The “big images” condition is usually easy to check.



For each integer j, let x; € oo be the point that is
closest (in the hyperbolic geometry of Hy) to 7, = VI,

Then £(1;) > £(1p) if
p(j, ) < plxj, x).



In many examples, we can verify stronger estimates

p(v5,25) < Ap(xj, o).
for some 0 < A < 1 or

p(vj, 1) < C,

These imply exponential growth of partition intervals.
This means we can insert more vertices and decrease
size of T'(r) exponentially.






To allow finite asymptotic values or critical points with
arbitrarily high degree, the tree T is replaced by a con-
nected graph whose complementary components are each
mapped to one of three possible standard domains:

1. a disk
2. a left halt-plane
3. a right halt-plane

So far have seen only right half-planes.



A disk or left half-plane can only share an edge with a
right half-plane. A right half-plane can share edges with
any of the three types.




Disk components: () is bounded and 0f2 is a closed
Jordan curve that is the union of a finite number of
edges of T, say d.

We are given a length respecting quasiconformal map
7: 0 — D. Themapa:ID—>]DiSZ—>zdfoHowed
by a quasiconformal map p : D — D, to place critical
value where we want.

[f a critical value a is desired, then p is chosen so p(0) =
a. If |a] < 1/2, then p can be chosen to be conformal
on {|z| < 3/4}, so, in this case, the dilatation of p is
supported on {z : % < |z] < 1}. The dilatation of o is
bounded by O(|a|) and is supported on

1

] —
{2 ¥

logd < |z| < 1}



Left half-plane components: Here () is an un-
bounded Jordan domain and we are given a length re-
specting, quasiconformal 7 : {2 — Hj.

The map o : 2 — D\ {0} is just 2 — exp(z). This
gives a component with finite asymptotic value 0.

If a different asymptotic value a with |a| < 1/2 is de-
sired, we post-compose this map with quasiconformal
map p : D — D such that p(0) = a and p is the iden-
tity on OID.



Right half-plane components: Here () is simply
connected and unbounded and we are given a length re-
specting, quasiconformal map 7 : {2 — H,.. The bound-
ary may be a tree instead of a Jordan curve.

After folding, intervals I € Z will be identified either
with another arc on the boundary of a right half-plane
component (type I) or a disk or left half-plane (type II).

On the type 1 intervals we let o(iy) = cosh(iy) and on
the type 2 intervals we let o(iy) = exp(ity). We then
extend o to be quasiregular on all of H, and equal to

cosh on {z : R(z) > 27}









Theorem: Suppose 1" s a bounded geometry graph
and T 1is conformal from each complementary com-
ponent to its standard version. Assume T maps

e the vertices of disk comps. to roots of unity,

e the vertices of LHP comps. to {2miZ}

e the edges of RHP comps. to length > ¢ > 0.

Then there 1s an entire function f and a quasicon-
formal map ¢ of the plane so that fo¢p = e off T'(r).
The only singular values of f are 1 (critical values
coming from the vertices of T') and the critical val-
ues and singular values assigned by the disk and left
half-plane components.
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Theorem: There is an f € B whose Fatou set
contains a wandering domain.
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Lemma: There is an f € B, a disk Dy and an

increasing sequence of integers {ny} /* 0o so that if
we set Dy = f(D,,—1) forn > 1, then

1. The diameter of D,, tends to zero.

2. dist(0, Dp,) " oo, but dist(0, Dy, y1) < 1 for all
k=12, ..




(1) implies every subsequence has a subsequence that
either approaches oo or converges to a finite constant.
Thus Dy and all its images are in the Fatou set.

Suppose n < m and D,, and D,, were in the same
component 2 of F(f). The hyperbolic distance between
D,, and D,, cannot increase under iteration.

[terate nj + 1 —m times; then Dy, maps to Dy, 1 near
the origin, but Dy, maps to Dy, 1+1—m4pn Whose distance
from 0 grows to oo with k.

But then hyperbolic distance between the iterates of D,
and D, increases to oo with k. By contradiction, all
Dy,’s are in different components of the Fatou set.
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Proof of Lemma:

Use g = coshosinh in horizontal strip Sy and g =
o1.(z — z;)% in disks Dy. Use folding construction in
vertical strips to get f = go ¢, where ¢ is QC and close
to identity.

Verify 1/2 iterates to oo along real axis.
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Proof of Lemma:

Let Dy, be disk nearest kth iterate of 1/2.
Let Uy, be component of f~¥(Dj.) near 1/2.

Choose dj. so large that f (%Dk) is small compared to
Uj. 1. Check this is not circular.

Adjust oy so that f(%Dk) C Ugyq. Check does not
effect earlier containments.



Proof of folding theorem

The proot is an explicit construction of piecewise linear
map of a half-plane into a subset of itself.

The data is a partition of the boundary into odd, integer
length intervals.

The result is a piecewise linear map of the half-plane
into a subset of itself that expands one unit interval
from each partition interval to the whole interval, and
maps all others to edges of a finite tree in the halt-plane,
rooted on the boundary.
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