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Dear Chris,

Perhaps I could get you more interested in the WP metric

if I put it in the following way. What T & T do is to take

the usual universal Teichmuller space (UTS) and foliate it

strata that are Hilbert manifolds. Via welding, we may view

UTS as plane curves mod rotations and translations. Now all

smooth plane curves belong to the leaf through the unit circle.

This leaf is really the essential object for the WP metric:

it is so marvelous, a homogeneous einstein-kahler manifold.

BUT WHAT ARE THE CURVES IN IT? How irregular can they be?

...

I’m not sure I am remembering things right but I think this set

of plane curves has not been characterized.

cheers, David



Dec 2017 email from
David Mumford

“Riemannian geometries on spaces of plane curves, Michor and Mumford,
J. Eur. Math. Soc. (JEMS), 2006.

“2D-Shape analysis using conformal mapping”, Sharon and Mumford, Int.
J. Comput. Vis., 2006.

“Metric spaces of shapes and applications: compression, curve match-
ing and low-dimensional representation”, Feiszli, Kushnarev and Leonard,
Geom. Imaging Comput., 2014.





“In this memoir, we prove that the universal Teichmüller space T (1) carries a new struc-

ture of a complex Hilbert manifold and show that the connected component of the identity

of T (1) — the Hilbert submanifold T0(1) — is a topological group. ...”



T (1) = Universal Teichmüller Space = quasicircles modulo similarities.

Takhtajan and Teo metric makes this a (disconnected) Hilbert manifold.

T0(1) = Weil-Petersson class = component containing the circle.

= closure of smooth closed curves.

What non-smooth curves are in T0(1)?



Chris,

In old physics papers [BR87a,BR87b] by Bowick and Rajeev an

attempt was made to define a non-perturbative bosonic string

theory. Configuration space for closed strings is loop space

-- the space of all smooth maps from S^1 to R^d, d-dimensional

Minkowski space. The space of loops passing starting at the

origin is a complex manifold with a complex structure given

by Fourier series. However, Diff(S^1) acts on the loops and

M=Diff(S^1)/S^1 is the space of all complex structures on the

loop space.... These papers, as well as the work of A.A. Kirillov

in 1980s, serve as our motivation.

...

I hope this puts the things in perspective.

Best wishes, Leon



Jan 2019 IPAM workshop
“Analysis and Geometry of Random Sets”.



So the Weil-Petersson class is linked to:
• Pattern recognition
• Infinite dimensional Kähler-Einstein manifolds
• Teichmüller theory
• String theory
• Brownian motion, SLE, Gaussian free fields, . . .



So the Weil-Petersson class is linked to:
• Pattern recognition
• Infinite dimensional Kähler-Einstein manifolds
• Teichmüller theory
• String theory
• Brownian motion, SLE, Gaussian free fields, . . .

In today’s talk I will discuss further connections to:
• Geometric function theory
• Sobolev spaces
• Knot theory
• Geometric measure theorem (Peter Jones’s TST)
• Convex hulls in hyperbolic space
• Minimal surfaces
• Isoperimetric inequalities
• Renormalized area



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

Definition Description

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

26 characterizations of Weil-Petersson curves.



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K

Ellipses determined a.e. by measurable dilatation µ = fz/fz with

|µ| ≤ K − 1

K + 1
< 1.



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K

A special case of QC maps are biLipschitz maps (all we need):

1

C
≤ |f (x)− f (y)|

|x− y|
≤ C.



A quasicircle is the image of circle under a quasiconformal map of R2.

Any smooth curve is a quasicircle.

.



A quasicircle is the image of circle under a quasiconformal map of R2.

Some fractals are quasicircles.

.



A quasicircle is the image of circle under a quasiconformal map of R2.

Γ is a quasicircle iff diam(γ) = O(crd(γ)) for all γ ⊂ Γ.

Γ

γ

crd(γ) = |z − w|, z, w, endpoints of γ.



A quasicircle is the image of circle under a quasiconformal map of R2.

Γ is a chord-arc iff `(γ) = O(crd(γ)) for all γ ⊂ Γ.

Γ

γ

Chord-arc curves = biLipschitz images of circle.



A quasicircle is the image of circle under a quasiconformal map of R2.

T (1) = Universal Teichmüller space
= quasicircles (modulo similarities).



A Weil-Petersson curve is Γ = f (T) where f is quasiconformal on
the plane, conformal outside D, and µ ∈ L2(dAρ).

dAρ = dxdy
(1−|z|2)2 = hyperbolic area.

Ω

Γ

f

Quasicircles correspond to µ in open unit ball of L∞.

WP corresponds to L2 intersected with open unit ball of L∞



A Weil-Petersson curve is Γ = f (T) where f is quasiconformal on
the plane, conformal outside D, and |µ| ∈ L2(dAρ).

⇔ Γ is fixed by QC involution with µ ∈ L2 for hyperbolic area on S2\Γ.

This extends to higher dimensions using biLipschitz involutions.



A Weil-Petersson curve is Γ = f (T) where f is quasiconformal on
the plane, conformal outside D, and |µ| ∈ L2(dAρ).

Every smooth curve is Weil-Petersson. Every WP curve is chord-arc.

Weil-Petersson curves are almost C1 (but not quite).

WP ⇒ Asymptotically smooth = γ ⊂ Γ, `(γ)→ 0 implies
`(γ)

crd(γ)
→ 1.



Weil-Petersson curves need not be C1.
z(t) = exp(−t + i log t), infinite spiral.



Not Weil-Petersson



In their memoir, Takhtajan and Teo prove:

Theorem: Γ is Weil-Petersson iff Γ = f (T) where f is conformal map
on D so that u = log f ′ is in the Dirichlet class.

Dirichlet class = {u : |∇u| ∈ L2(dxdy)} = {u ∈ W 1,2(D)}.

Ω

Γ

f



In their memoir, Takhtajan and Teo prove:

Theorem: Γ is Weil-Petersson iff Γ = f (T) where f is conformal map
on D so that u = log f ′ is in the Dirichlet class.

Dirichlet class = {u : |∇u| ∈ L2(dxdy)} = {u ∈ W 1,2(D)}.

Yilin Wang proved the Dirichlet norm is finite iff Loewner energy of
Γ is finite (defined by her and Steffen Rohde). This gives connections
to large deviation theory of SLE (Schramm-Loewner evolutions) and the
Brownian Loop Soup of Lawler and Werner.



In their memoir, Takhtajan and Teo prove:

Theorem: Γ is Weil-Petersson iff Γ = f (T) where f is conformal map
on D so that u = log f ′ is in the Dirichlet class.

Dirichlet class = {u : |∇u| ∈ L2(dxdy)} = {u ∈ W 1,2(D)}.

In 1990’s Astala, Zinsmeister
invented “BMO-Teichmüller theory.”

P. Jones and I characterized curves
where log f ′ ∈ BMO.



In their memoir, Takhtajan and Teo prove:

Theorem: Γ is Weil-Petersson iff Γ = f (T) where f is conformal map
on D so that u = log f ′ is in the Dirichlet class.

Dirichlet class = {u : |∇u| ∈ L2(dxdy)} = {u ∈ W 1,2(D)}.

Corollary: Γ is WP iff u = log f ′ ∈ H1/2(T) (Sobolev trace thm).

H1/2 = Sobolev space = half a derivative in L2.∫
T

∫
T

|u(z)− u(w)|2

|z − w|2
|dz||dw| <∞.



In their memoir, Takhtajan and Teo prove:

Theorem: Γ is Weil-Petersson iff Γ = f (T) where f is conformal map
on D so that u = log f ′ is in the Dirichlet class.

Dirichlet class = {u : |∇u| ∈ L2(dxdy)} = {u ∈ W 1,2(D)}.

Corollary: Γ is WP iff u = log f ′ ∈ H1/2(T) (Sobolev trace thm).

Easy to show:

log f ′ ∈ H1/2⇒ arg f ′ ∈ H1/2

⇒ exp(i arg f ′) ∈ H1/2

⇒ f ′/|f ′| ∈ H1/2



Theorem: Γ is WP iff the arc-length parameterization is in H3/2(T).



Theorem: Γ is WP iff the arc-length parameterization is in H3/2.

This was proven implicitly in early version of my paper, but I didn’t notice.
David Mumford pointed out it follows from other characterizations.

H3/2 curves arise in other areas, e.g., knot theory.



x y

|x−y|

l(x,y) 

x=y

The Möbius energy of a curve Γ ∈ Rn is

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|x− y|2
− 1

`(x, y)2

)
dxdy.

Blows up if curve self-intersects. Represents renormalized “self-repelling”
force.



Möbius energy is one of several “knot energies” due to Jun O’Hara.

Studied by Freedman, He and Wang. They showed:
• Möb(Γ) is Möbius invariant (hence the name),
• that finite energy curves are chord-arc,
• and in R3 they are topologically tame.



Möbius energy is one of several “knot energies” due to Jun O’Hara.

Studied by Freedman, He and Wang. They showed:
• Möb(Γ) is Möbius invariant (hence the name),
• that finite energy curves are chord-arc,
• and in R3 they are topologically tame.

Theorem (Blatt): Möb(Γ) <∞ iff arclength

parameterization is H3/2.

Thus WP curve = finite Möbius energy.



Dyadic decomposition. Choose a base point z0
1 ∈ Γ and forenrch

n ≥ 1, let {znj }, j = 1, . . . , 2n be the unique set of ordered points with

zn1 = z0
1 that divides Γ into 2n equal length intervals (called the nth

generation dyadic subintervals of Γ).



Let Γn be the inscribed 2n-gon with these vertices. Clearly `(Γn)↗ `(Γ).



Let Γn be the inscribed 2n-gon with these vertices. Clearly `(Γn)↗ `(Γ).

Theorem: Γ is Weil-Petersson if and only if
∞∑
n=1

2n [`(Γ)− `(Γn)] <∞

with a bound that is independent of the choice of the base point.



Peter Jones’s β-numbers:

βΓ(Q) = inf
L

sup{dist(z, L)

diam(Q)
: z ∈ 3Q ∩ Γ},

where the infimum is over all lines L that hit 3Q.

Q

3Q

Q

3Q



Jones invented the β-numbers as part of his traveling salesman theorem:

`(Γ) ' diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),

where the sum is over all dyadic cubes Q in Rn.



Jones invented the β-numbers as part of his traveling salesman theorem:

`(Γ) ' diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),

where the sum is over all dyadic cubes Q in Rn.

Theorem: Γ is Weil-Petersson iff∑
Q

βΓ(Q)2 <∞,

where the sum is over all dyadic cubes.

WP curves have “curvature in L2, integrated over all positions and scales”.



Jones invented the β-numbers as part of his traveling salesman theorem:

`(Γ) ' diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),

where the sum is over all dyadic cubes Q in Rn.

Theorem: Γ is Weil-Petersson iff∑
Q

βΓ(Q)2 <∞,

where the sum is over all dyadic cubes.

Proof requires improvement of TST for curves:

`(Γ)− crd(Γ) '
∑
Q

βΓ(Q)2diam(Q),



Easy to see
∑
β2 <∞ implies Weil-Petersson.

• Triangulate one side of Γ (e.g., triangulate Whitney squares).



Easy to see
∑
β2 <∞ implies Weil-Petersson.

T

v*

v

Γ

• Triangulate one side of Γ (e.g., triangulate Whitney squares).
• Use approximating lines to reflect vertices.



Easy to see
∑
β2 <∞ implies Weil-Petersson.

T

v*

v

T*

Γ

• Triangulate one side of Γ (e.g., triangulate Whitney squares).
• Use approximating lines to reflect vertices.
• Define piecewise linear map.
• |µ| = O(β).
• Get involution fixing Γ with |µ| ∈ L2(dAρ) ⇒ Weil-Petersson.



The Weil-Petersson class is Möbius invariant.

The β-numbers are not.

What is a Möbius invariant version of the β-numbers?



For a dyadic square Q let εΓ(Q) be the infimum of the ε ∈ (0, 1] so
that there are disks D,D′ of radius `(Q)/ε on opposite sides of Γ so that
dist(Q ∩D,Q ∩D′) ≤ ε`(Q).

Q
diam(Q)/ ε

ε diam(Q)

Γ

Easy to check β(Q) . ε(Q). Converse can fail, but

Theorem:
∑
Q ε

2(Q) <∞ iff
∑
Q β

2(Q) <∞.



Each disk is the base of a hemisphere in the upper half-space H3 = R3
+.

The hyperbolic distance between these hemispheres is . ε(Q).

ε

1/ε

ρ ∼ ε



The hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D
or in the n-dimensional ball Bn is given by integrating

dρ =
ds

1− |z|2
,

along the curve. In the upper half-space Hn we integrate dρ = ds/2t.

Geodesics are circles (or lines) perpendicular to boundary.

Convex hull of boundary set



The hyperbolic convex hull of Γ ⊂ R2, denoted CH(Γ), is the smallest
convex set in R3

+ that contains all (infinite) hyperbolic geodesics with
both endpoints in Γ.

For a circle in plane, hyperbolic convex hull is a hemisphere.

In general, CH(Γ) has non-empty interior.



Suppose Ω is Jordan domain with boundary Γ.

The dome of Ω is upper envelope of all hemispheres with base disk in Ω.

Region above dome is intersection of half-spaces, hence convex.

CH(Γ) is region between domes of “inside” and “outside” of Γ.













The medial axis. Equidistant from at least two boundary points.
Corresponding hemispheres give the dome.













We define δ(z) to be the maximum of the hyperbolic distances from z to
the two boundary components of CH(Γ).

δ(  )z

CH(   )Γ
z

Theorem: Γ is Weil-Petersson iff
∫
∂CH(Γ) δ

2(z)dAρ <∞.



Let S be a surface in H3 that has asymptotic boundary Γ.

We let K(z) denote the Gauss curvature of S at z.

Gauss equation says K(z) = −1 + κ1(z)κ2(z) (principle curvatures).

S is a minimal surface if κ1 = −κ2 (the mean curvature is zero).



Theorem (Anderson, 1983): Every closed Jordan curve Γ ⊂ R2

bounds a minimal disk S ⊂ CH(Γ) ⊂ H3.



Theorem (Anderson, 1983): Every closed Jordan curve Γ ⊂ R2

bounds a minimal disk S ⊂ CH(Γ) ⊂ H3.
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Theorem (Anderson, 1983): Every closed Jordan curve Γ ⊂ R2

bounds a minimal disk S ⊂ CH(Γ) ⊂ H3.



Theorem (Anderson, 1983): Every closed Jordan curve Γ ⊂ R2

bounds a minimal disk S ⊂ CH(Γ) ⊂ H3.

Theorem (Seppi, 2016): Principle curvatures satisfies κ(z) = O(δ(z)).

sinh(dist(z, P )) satisfies ∆Su− 2u = 0. Use Schauder estimate ‖∇2u‖∞ ≤ C‖u‖∞.



Theorem (Anderson, 1983): Every closed Jordan curve Γ ⊂ R2

bounds a minimal disk S ⊂ CH(Γ) ⊂ H3.

Theorem (Seppi, 2016): Principle curvatures satisfies κ(z) = O(δ(z)).

Theorem: Γ is WP iff it bounds a minimal disk with finite total curvature∫
S

(−K − 1)dAρ =

∫
S
κ2(z)dAρ <∞.



Theorem (C. Epstein, 1986): If S is a surface with |K| < 1, then
the Gauss maps Gj, j = 1, 2 define a quasiconformal reflection across Γ
with dilatation |µ(G(z))| = O(|κ1|(z) + |κ2|(z)).

S

If S is has finite total curvature, then
∫
C\Γ |µ|

2dAρ <∞.

⇒ Γ is fixed by a QC involution with µ ∈ L2(dAρ) ⇒ Weil-Petersson.



Isoperimetric inequality:

For a domain Ω ⊂ R2 of area A and boundary length L:

L2 ≥ 4πA,



Isoperimetric inequality:

For a domain Ω ⊂ R2 of area A and boundary length L:

L2 ≥ 4πA,

In a space of Gauss curvature ≤ −1,

L2 ≥ 4πAχ + A2,

where χ= Euler characteristic of Ω.



Isoperimetric inequality:

For a domain Ω ⊂ R2 of area A and boundary length L:

L2 ≥ 4πA,

In a space of Gauss curvature ≤ −1,

L2 ≥ 4πAχ + A2,

where χ= Euler characteristic of Ω.

L2 − A2 ≥ 4πχA

L− A ≥ 4πχA

L + A
> 4πχ

When do we have L− A = O(1)?



Theorem: Suppose S ⊂ H3 with finite Euler characteristic and asymp-
totic boundary a Jordan curve Γ ⊂ R2. Then Γ is Weil-Petersson iff S
can be exhausted by compact Jordan domains Ω1 ⊂ Ω2 ⊂ · · · so that

lim sup
n↗∞

[L(Ωn)− A(Ωn)] <∞.



For surface in upper half-space with boundary on R2, we can form sub-
domains by cutting at a certain height.

t

Truncate S ⊂ R3
+ at a fixed height above the boundary, i.e.,

St = S ∩ {(x, y, s) ∈ R3
+ : s > t}, ∂St = S ∩ {(x, y, s) ∈ R3

+ : s = t}



For surface in upper half-space with boundary on R2, we can form sub-
domains by cutting at a certain height.

t

Define the renormalized area: AR(S) = limt↘0

[
Aρ(St)− `ρ(∂St)

]
.

Due to Graham and Witten.
Related to quantum entanglement, ...
we already know:
AR(S) <∞⇒ Weil-Petersson.



Theorem: S has finite renormalized area iff Γ is Weil-Petersson.

I know two proofs of Weil-Petersson ⇒ AR(S) <∞.

• Use Gauss-Bonnet, Seppi’s estimate and
∫
δ2 <∞.

• Use “dyadic cylinder”, a discrete version of minimal surface S.



Using the Gauss-Bonnet theorem

Aρ(St)− `ρ(∂St) =

∫
St

1dAρ −
∫
∂St

1d`ρ

=

∫
St

(1 + κ2)dAρ −
∫
St

κ2dAρ −
∫
∂St

1d`ρ

= −
∫
St

KdAρ −
∫
St

κ2dAρ −
∫
∂St

1d`ρ

= −2πχ(St) +

∫
∂St

κgd`ρ −
∫
St

κ2dAρ −
∫
∂St

1d`ρ

= −2πχ(St)−
∫
St

κ2dAρ +

∫
∂St

(κg − 1)d`ρ

Can prove κg(z) = 1 + O(δ2(z)), so WP implies last term → 0.



Theorem: For any closed curve Γ ⊂ R2 and for any minimal surface
S ⊂ R3

+ with finite Euler characteristic and asymptotic boundary Γ,

AR(S) = −2πχ(S)−
∫
S
κ2(z)dAρ,

Both sides are −∞ iff Γ is not Weil-Petersson.



Theorem: For any closed curve Γ ⊂ R2 and for any minimal surface
S ⊂ R3

+ with finite Euler characteristic and asymptotic boundary Γ,

AR(S) = −2πχ(S)−
∫
S
κ2(z)dAρ,

Both sides are −∞ iff Γ is not Weil-Petersson.

This formula is due to Alexakis and Mazzeo in the setting of n-dimensional
Poincaré-Einstein manifolds (that formula also contains a term involving
the Weyl curvature), assuming that Γ is C3,α. My result was inspired by
trying to understand their theorem and remove smoothness.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

Weil-Petersson curves

André Weil

Hans Petersson
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THANKS FOR LISTENING. QUESTIONS?



An idea connecting Euclidean and hyperbolic results.

Define a dyadic cylinder in the upper half-space:

X =

∞⋃
n=1

Γn × [2−n, 2−n+1),

where {Γn} are inscribed dyadic polygons in Γ.

Discrete analog of minimal surface with boundary Γ.













Our earlier estimate ∑
n

2n(`(Γ)− `(Γn)) <∞

is equivalent to the dyadic cylinder having finite renormalized area.



Our earlier estimate ∑
n

2n(`(Γ)− `(Γn)) <∞

is equivalent to the dyadic cylinder having finite renormalized area.

Obvious “normal projection” from the dyadic cylinder to minimal surface,
distorts length and area each by a bounded additive error.

We can deduce finite renormalized area for the minimal surface from the
same result for the dyadic cylinder.



F (z) =
∑∞

1 anz
n is Dirichlet class iff

∑
n|an|2 <∞.

If log f ′ =
∑√

bk
λk
zλ

k
then Γ = f (T) is WP iff

∑
bk <∞.

∑ 1
k log2 k

<∞
∑ 1

k log k =∞
∑

1 =∞












