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Riemann Mapping Theorem: If Ω ( R2 is simply
connected, then there is a conformal map f : D → Ω.

Conformal = angle preserving

f
θθ



Georg Friedrich Bernhard Riemann
Stated RMT in 1851



William Fogg Osgood
First proof of RMT

Transactions of AMS, vol. 1, 1900



The proof of Osgood represented, in my opinion, the

“coming of age” of mathematics in America. Until

then, . . . the mathematical productivity in this coun-

try in quality lagged behind that of Europe, and no

American before 1900 had reached the heights that

Osgood then reached.

J.L. Walsh, “History of the Riemann mapping theorem”,
Amer. Math. Monthly, 1973.











Schwarz-Christoffel formula (1867):

f (z) = A + C

∫ z n∏
k=1
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α’s known

z’s unknown (= SC-parameters = pre-vertices)



Schwarz-Christoffel formula (1867):

f (z) = A + C

∫ z n∏
k=1

(1− w

zk
)αk−1dw,

Christoffel Schwarz



Fact: Conformal map to a polygon is determined by
the points on circle that map to the vertices.

Problem: given n-gon, compute these n points.

How fast can we do this?



Theorem: Can compute SC-parameters in time Cǫ ·n.



Theorem: Can compute SC-parameters in time Cǫ ·n.

ǫ = error in quasiconformal sense.

Cǫ = O(log 1
ǫ log log

1
ǫ).



Quasiconformal maps: bounded angle distortion

Roughly, a K-QC map multiplies angles by ≤ K.

More precisely: tangent map sends circles to ellipses a.e.

K1

1-QC = conformal

dQC(z, w) = inf logK s.t. ∃ K-QC map h(z) = w.

QC approximation implies Euclidean approximation.



Measurable Riemann Mapping Theorem:
Given QC map g : D → Ω, there is a QC f : D → D

so that g ◦ f is conformal.

gf
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QCQC



Measurable Riemann Mapping Theorem:
Given QC map g : D → Ω, there is a QC f : D → D

so that g ◦ f is conformal.

gf

conformal 

QCQC

• Find initial QC map g to polygon.

• Solve a PDE for f : D → D.

This talk is about finding a good g.





Need initial guess that is fast to compute and guaran-
teed close to correct answer.



Need initial guess that is fast to compute and guaran-
teed close to correct answer.

• fast comes from computational geometry.

• close comes from hyperbolic geometry.



Medial axis:
centers of disks that hit boundary in at least two points.



Medial axis:
centers of disks that hit boundary in at least two points.

Medial axis of a polygon is a finite tree.

Computable in O(n), Chin-Snoeyink-Wang (1999).

Related to Voronoi diagrams: medial axis divides poly-
gon interior according to nearest edge.



Medial axis:
centers of disks that hit boundary in at least two points.

Claim: there is a “natural” choice of conformal map
between any two medial axis disks.



A Möbius transformation is a map of the form

z → az + b

cz + d
.

Conformally maps disks to disks (or half-planes).

Form a group under composition.

Uniquely determined by images of 3 distinct points.



Intersecting circles:

b

a

d c

Fix intersection points a, b and map c → d as shown.

Determines unique Möbius map between disks.

Part of 1-parameter symmetric family fixing a, b.















Points follow circular paths, perpendicular to boundary.



How does this give a map from polygon P to a circle?



• Fix a “root” MA disk D.



• For any z ∈ P , take MA disk Dz touching z.



• Connect Dz to D on MA.



















We discretize only to draw picture.

Limiting map has formula in terms of medial axis.



Similar flow for any simply connected domain.















Theorem: Mapping all n vertices takes O(n) time.

Uses linear time computation of MA (Chin-Snoeyink-
Wang) and book-keeping with cross ratios.



How close is medial axis map to conformal map?



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoffel formula.

Target Polygon MA Parameters



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoffel formula.

Target Polygon MA Parameters

Looks pretty close. How do we measure error?



How close is medial axis map to conformal map?

Use “MA-parameters” in Schwarz-Christoffel formula.

Target Polygon MA Parameters

Looks pretty close. How do we measure error?

By minimal K-QC map mapping vertices to vertices.

Any example gives upper bound, e.g., piecewise linear.



Upper bound for QC-distance:
• Find compatible triangulation
• Compute affine map between triangles
• Take largest K.

The most distorted triangle is shaded. Here K = 1.24.



Upper bound for QC-distance:
• Find compatible triangulation
• Compute affine map between triangles
• Take largest K.

The most distorted triangle is shaded. Here K = 1.24.

Bounds QC-error of guessed parameters with-
out needing to know the true SC-parameters.



Theorem: Medial axis map gives QC-error < 8.



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?

Short answer: hyperbolic 3-manifold theory



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?

Longer answer: because MA-map has conformal ex-
tension to different region with same boundary.



Theorem: Medial axis map gives QC-error < 8.

Why is this theorem true?

Longer answer: because MA-map has conformal ex-
tension to different region with same boundary.

• Other region is a surface in upper 3-space.

• The surface can be mapped conformally to disk.

• Medial axis map = boundary values of this map.



The dome of a domain is upper envelope of all hemi-
spheres whose base disk is in Ω.

Suffices to take medial axis disks (= maximal disks).













Every dome has conformal map to disk by “flattening”.



Medial axis map = boundary of flattening map (iota)

= boundary of conformal map of dome to hemisphere



Map dome to hemisphere by makings sides flush.



Planar version of previous figure.



How are these connected?



How are these connected? By projection.



Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Nearest point map in Rn is Lipschitz.



Region below dome is union of hemispheres

Hemispheres = hyperbolic half-spaces.

Region above dome is hyperbolically convex.

Consider nearest point retraction onto this convex set.



















Need not be a homeomorphism, but . . .



Need not be a homeomorphism, but it is a quasi-isometry

1

A
≤ ρ(R(x), R(y))

ρ(x, y)
≤ A, if ρ(x, y) ≥ B.

i.e., R is bi-Lipschitz on large scales.

Metrics are hyperbolic metrics on Ω and S.



“Smoothing” gives K-QC map fixing boundary points.

Sullivan’s theorem: K is independent of domain.

Dennis Sullivan, David Epstein and Al Marden, C.B.

Best value unknown, 2.1 < K < 7.82.



Dennis Sullivan David Epstein Al Marden



Riemann =
        conformal 

        conformal 

iota = conformal

QC

Iota = conformal from dome to disk.

Medial axis flow = boundary values of iota

Riemann map = conformal from base to disk

Sullivan’s thm ⇒ MA-map has K-QC extension



Sketch of proof that R is quasi-isometry

One direction: R is Lipschitz.

Other direction: R−1 is Lipschitz at distances ≤ 1.



Fact 1: If z ∈ Ω, ∞ 6∈ Ω,

r ≃ dist(z, ∂Ω) ≃ dist(R(z),R2) ≃ |z −R(z)|.

r

z

R(z)



Fact 2: R is Lipschitz.

• Ω simply connected ⇒ dρ ≃ |dz|/dist(z, ∂Ω).
• z ∈ D ⊂ Ω and R(z) ∈ Dome(D) ⇒ z in hyperbolic
convex hull of ∂Ω ∩ ∂D in D.

⇒ dist(z, ∂Ω)/
√
2 ≤ dist(z, ∂D) ≤ dist(z, ∂Ω)

⇒ ρΩ(z) ≃ ρD(z) = ρDome(R(z)).



Fact 3: ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ C.

Suppose dist(R(z),R2) = r.

Suppose γ is geodesic on dome from R(z) to R(w).

⇒ dist(γ,R2) ≃ r

⇒ dist(R−1(γ), ∂Ω) ≃ r, R−1(γ) ⊂ D(z, Cr)

⇒ ρΩ(z, w) ≤ C



Moreover, g = ι ◦ σ : Ω → D is locally Lipschitz.
Standard estimates show

|g′(z)| ≃ dist(g(z), ∂D)

dist(z, ∂Ω)
.

Use Fact 1

dist(z, ∂Ω) ≃ dist(R(z),R2)

≃ exp(−ρ
R3
+
(R(z), z0))

& exp(−ρS(R(z), z0))

= exp(−ρD(g(z), 0))

≃ dist(g(z), ∂D)



The factorization theorem: Riemann map can be
factored as f = h ◦ g where
• g : Ω → D is Lipschitz in Euclidean path metrics,
• h : D → D is biLipschitz in hyperbolic metric

Euclidean
Lipschitz

Hyperbolic
biLipschitz

conformal 

Cor: Any s.c. domain can be mapped 1-1, onto a disk
by a contraction for the internal path metric.



Crescents in base can map to geodesics on surface.

Gray collapses to bending lines, “width = angle”.

White maps isometrically to dome.



Angle scaling family - crescent angles decrease







Application to computational geometry:
Quadrilateral meshes



Marshall Bern and David Eppstein, 2000.

• n-gons have O(n) quad mesh with angles ≤ 120◦.

• O(n log n) work.

• Regular hexagon shows 120◦ is sharp.



Marshal Bern David Eppstein



David Epstein David Eppstein

P = hyperbolic geometry, University of Warwick

P 2 = computational geometry, UC Irvine



Bern asked: can we bound angles from below?



Bern asked: can we bound angles from below?

Theorem: Every n-gon has O(n) quad mesh with all
angles ≤ 120◦ and new angles ≥ 60◦. O(n) work.



Bern asked: can we bound angles from below?

Theorem: Every n-gon has O(n) quad mesh with all
angles ≤ 120◦ and new angles ≥ 60◦. O(n) work.

Original angles < 60◦ remain unchanged. 60◦ is sharp.

Proof uses conformal mapping, plus an idea from hyper-
bolic manifolds: thick/thin decompositions.



Surface thin part is union of short non-trivial loops.

parabolic = puncture, hyperbolic = handle



Thick and Thin parts of a polygon

Thin part is union of short curves between edges.

Parabolic = adjacent, Hyperbolic = non-adjacent

Rough idea: sides I, J so dist(I, J) ≪ min(|I|, |J |).

Thick parts = remaining components (white)



More examples of hyperbolic thin parts.

Inside thick regions (white) conformal pre-vertices are
well separated on circle (no clusters).

Implies good estimates for conformal map.



Find thick parts in O(n) by conformal mapping.

Pre-vertices of thick parts form clusters on unit circle.

Clusters can be found in O(n) using medial axis.



Idea for quad mesh theorem:

• Decompose polygon into O(n) thick and thin parts.

• Mesh thin parts “by hand”.

• Conformally map mesh on disk to thick parts.



Thin parts are meshed by explicit construction (easy).

v

γ



Thick parts: transfer mesh from disk





Conformal map from polygon to disk takes thick and
thin parts to disk as shown.
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Draw (hyperbolic) convex hull of thin regions.
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Conformal map from polygon to disk takes thick and
thin parts to disk as shown.

Draw (hyperbolic) convex hull of thin regions.
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Conformal map from polygon to disk takes thick and
thin parts to disk as shown.

Draw (hyperbolic) convex hull of thin regions.

Take pentagons from tesselation hitting convex hull but
missing thin parts. Extend pentagon edges to boundary.

Analog of Whitney or quadtreee construction.



Conformal map from polygon to disk takes thick and
thin parts to disk as shown.

Draw (hyperbolic) convex hull of thin regions.

Take pentagons from tesselation hitting convex hull but
missing thin parts. Extend pentagon edges to boundary.

Pentagons, quadrilaterals, triangles and half-annuli.



Meshes designed to match along common edges.



A Planar Straight Line Graph (PSLG) is a finite
point set plus a set of disjoint edges between them.

A triangulation is a maximal set of disjoint edges.



A Planar Straight Line Graph (PSLG) is a finite
point set plus a set of disjoint edges between them.

Size = number of vertices = n.



A Planar Straight Line Graph (PSLG) is a finite
point set plus a set of disjoint edges between them.

Mesh convex hull conforming to PSLG.



More PSLGs



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Angles and complexity sharp.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



The O(n2) is sharp because any mesh with maximum
angle ≤ θ < 180◦ sometimes requires n2 elements.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Idea of proof:

• Add edges until every complementary component
(face) is a simple polygon.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Idea of proof:

• Apply the simple polygon quad-mesh theorem to
each face. Meshes might not agree across boundaries.

quad−mesh of each face quad−mesh of PSLG PSLG with two faces



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Idea of proof:

• Merge meshes using ‘sinks’.

A sink is a polygon so that whenever an even number of
vertices is added to its edges, there is a ‘nice’ quad-mesh
of the interior with only the given boundary vertices.

Nice = angles between 60◦ and 120◦.



Nice quad-mesh of regular 11-gon with 9 extra points.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Idea of proof:

Some work is needed to prove sinks exists. Any nice
quadrilateral can be made into a sink by adding some
extra vertices to its edges (number needed depends on
eccentricity).

If theorem for simple polygons gave bounded eccentric-
ity elements, this would be all. However, sometimes it
uses long, narrow pieces. (A lot) of extra work needed
in this case.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Convert quadrilaterals to triangles by adding diagonals.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Convert quadrilaterals to triangles by adding diagonals.

Corollary: Every PSLG has a O(n2) triangulation
with maximum angle ≤ 120◦.



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Convert quadrilaterals to triangles by adding diagonals.

Corollary: Every PSLG has a O(n2) triangulation
with maximum angle ≤ 120◦.

Previous: S. Mitchell 1993 (157.5◦), Tan 1996 (132◦).

Can we improve the 120◦ upper bound?

Can we get a positive lower bound on angles?



Theorem: Every PSLG of size n hasO(n2) quad mesh
with all angles ≤ 120◦ and all new angles ≥ 60◦.

Convert quadrilaterals to triangles by adding diagonals.

Corollary: Every PSLG has a O(n2) triangulation
with maximum angle ≤ 120◦.

Previous: S. Mitchell 1993 (157.5◦), Tan 1996 (132◦).

Can we improve the 120◦ upper bound? Yes

Can we get a positive lower bound on angles? No



No lower angle bound. For 1×R rectangle

number of triangles & R× (smallest angle)

So, bounded complexity ⇒ no lower angle bound.



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.

So 90◦ is best uniform upper bound we can hope for.

right obtuse
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Is NOT=“non-obtuse triangulation” possible?



Upper bound < 90◦ implies lower bound > 0:

α

β

γ

α, β < (90◦ − ǫ) ⇒ γ = 180◦ − α− β ≥ 2ǫ.

So 90◦ is best uniform upper bound we can hope for.

right obtuse

nonobtuse

acute

Is NOT=“non-obtuse triangulation” possible? Yes



Brief history of NOTs:

• Always possible: Burago, Zalgaller 1960.

• Rediscovered: Baker, Grosse, Rafferty, 1988.

• O(n) for points sets: Bern, Eppstein, Gilbert 1990

• O(n2) for polygons: Bern, Eppstein, 1991

• O(n) for polygons: Bern, Mitchell, Ruppert, 1994

• PSLG’s: exist, n2 lower bound

Do a polynomial number of triangles suffice?



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

O(n2) is best known lower bound, so a gap remains.

Cǫ · n2 is true if angles ≤ 90◦ + ǫ.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

Equivalent: Every planar triangulation has O(n2.5)
non-obtuse refinement.



NOT-Theorem: Every PSLG has an O(n2.5)-NOT.

Equivalent: Every planar triangulation has O(n2.5)
non-obtuse refinement.



The segment [v, w] is a Gabriel edge if it is the diam-
eter of a disk containing no other points of V .

Gabriel edge.



The segment [v, w] is a Gabriel edge if it is the diam-
eter of a disk containing no other points of V .

Not a Gabriel edge.



The segment [v, w] is a Gabriel edge if it is the diam-
eter of a disk containing no other points of V .

Gabriel graph contains the minimal spanning tree.



Gabriel edge is a special case of a Delaunay edge:
[v, w] is a chord of an open disk not hitting V .



Gabriel edge is a special case of a Delaunay edge:
[v, w] is a chord of an open disk not hitting V .

Delaunay edges triangulate.

DT minimizes the maximum angle.

Thus, if a point set has a NOT, then DT = NOT.



A triangulation conforms to a PSLG if it covers the
PSLG. The NOT-theorem says:

Thm: Any PSLG has O(n2.5) conforming NOT-DT.



A triangulation conforms to a PSLG if it covers the
PSLG. The NOT-theorem says:

Thm: Any PSLG has O(n2.5) conforming NOT-DT.

If we forget the angle bound we get:

Cor: Any PSLG has O(n2.5) conforming DT.



A triangulation conforms to a PSLG if it covers the
PSLG. The NOT-theorem says:

Thm: Any PSLG has O(n2.5) conforming NOT-DT.

If we forget the angle bound we get:

Cor: Any PSLG has O(n2.5) conforming DT.

Edelsbrunner, Tan (1993) proved this with O(n3).

Is O(n2) possible?

Easier proof giving conforming DT, but no angle bound?



Known: If we can add N points to a triangulation of
n points so that every edge becomes Gabriel, then there
is a O(n +N) conforming NOT-DT.

Follows from work of Bern, Mitchell, Ruppert (1994).
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Known: If we can add N points to a triangulation of
n points so that every edge becomes Gabriel, then there
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Known: If we can add N points to a triangulation of
n points so that every edge becomes Gabriel, then there
is a O(n +N) conforming NOT-DT.



Known: If we can add N points to a triangulation of
n points so that every edge becomes Gabriel, then there
is a O(n +N) conforming NOT-DT.

Theorem: Given a triangulation, we can add O(n2.5)
points to the edges so that every new edge is Gabriel.



Construct Gabriel points:

Divide triangle into thick and thin parts.

Thick sides are base of half-disk inside triangle.



Construct Gabriel points:

Then vertices of thick part give Gabriel edges.



Construct Gabriel points:

But, adjacent triangle can make Gabriel condition fail.



Construct Gabriel points:

Idea: “Push” vertices across the thin parts.



Construct Gabriel points:

Thin parts foliated by circles centered at vertices.

Push vertices along foliation paths.



• Start with any triangulation.



• Start with any triangulation.
• Make thick/thin parts.



• Start with any triangulation.
• Make thick/thin parts.
• Propagate vertices until they leave thin parts.
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• Start with any triangulation.
• Make thick/thin parts.
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• Start with any triangulation.
• Make thick/thin parts.
• Propagate vertices until they leave thin parts.



• Start with any triangulation.
• Make thick/thin parts.
• Propagate vertices until they leave thin parts.
• Intersections satisfy Gabriel condition. Why?



Tube is “swept out” by fixed diameter disk.

Disk lies inside tube or thick part or outside convex hull.



In triangulation of a n-gon, adjacent triangles form tree.



In triangulation of a n-gon, adjacent triangles form tree.



In triangulation of a n-gon, adjacent triangles form tree.

Hence foliation paths never revisit a triangle.

O(n) starting points, so O(n2) points are created.

Thm: Triangulation of a n-gon has a O(n2) NOT.

Improves O(n4) by Bern and Eppstein (1992).











General case has “spiraling paths” that revisit triangles.

Idea: perturb paths to terminate sooner.



If a path returns to same thin edge at least 3 times it
has a sub-path that looks like one of these:

C-curve, S-curve, G-curves



Return region consists of paths “parallel” to one of these.



Return region consists of paths “parallel” to one of these.

There are O(n) return regions and every propagation
path enters one after crossing at most O(n) thin parts.



Return region consists of paths “parallel” to one of these.

There are O(n) return regions and every propagation
path enters one after crossing at most O(n) thin parts.

IDEA: bend paths to terminate before they exit.

Gives O(n2) if it works.





If path bends too fast, Gabriel condition can fail.



Bend slowly enough to satisfy Gabriel condition.



Bend slowly enough to satisfy Gabriel condition.



x∆

y∆

r

r2

1

∆y ≈ (∆x/r)2r = (∆x)2/r.

r = max(r1, r2).



1

k

k × 1 region crossing n (equally spaced) thin parts,

r ≈ 1, ∆x ≈ k/n, ⇒ ∆y ≈ k2/n2

Need 1 ≤ ∑
∆y = n∆y = k2/n.

Bent path hits side of region if k ≫ √
n.



Easy case: return region length > width.

• Show there are O(n) return regions.
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Easy case: return region length > width.

• Show there are O(n) return regions.
• Divide each region into O(
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• Entering paths can be bent and terminated.
Total vertices created = O(n2), but . . .



Easy case: return region length > width.

• Show there are O(n) return regions.
• Divide each region into O(

√
n) long parallel tubes.

• Entering paths can be bent and terminated.
Total vertices created = O(n2), but . . .

• Each region has O(
√
n) new vertices to propagate.

Vertices created is O(
√
n · n2) = O(n2.5).



Hard case is spirals:



Hard case is spirals:

Curves may spiral arbitrarily often.

No curve can be allowed to pass all the way through the
spiral. We stop them in a multi-stage construction.



Questions:

• Implementable?

• Average versus worst case bounds?

• Improve 2.5 to 2?

• Relation to closing lemma for vector fields?

• 3-D meshes? The eightfold way? Ricci flow?

• Other applications for thick/thin pieces?

• Applications of Mumford-Bers compactness?

• Best K for medial axis map? (2.1 < k < 7.82)

• Can we do better than medial axis map?


