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A planar tree is conformally balanced if

• every edge has equal harmonic measure from ∞

• edge subsets have same measure from both sides

A line segment is an example. Are there others?













Balanced trees ↔ Shabat polynomials

CV(p) = {p(z) : p′(z) = 0}

T is balanced iff T = p−1([−1, 1]), CV(p) = ±1.

p is called generalized Chebyshev or Shabat.
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Ω = C \ T U = C \ [−1, 1]
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τ = conformal Ω → D
∗ = {|z| > 1}.
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T is balanced iff p = 1
2(τ

n + τ−n) is continuous.



What if the tree is not balanced?



What if the tree is not balanced?

Replace conformal map by quasiconformal map.

Tree is QC-balanced if there is a QC map of tree com-
plement to disk complement so that
(1) all edges map to equal length
(2) subsets of an edge map to two images of same length
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T is QC-balanced if this holds for a quasiconformal τ .
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Every “nice” finite tree is QC-balanced.



quasiconformal = bounded angle distortion.

dilatation= µf = fz/fz =measure of non-conformality

quasiregular g = f ◦ φ, where f is analytic, φ is QC.



T is QC-balanced iff T = g−1([−1, 1]) where g is quasi-
Shabat (QR, finite-to-1, CV(g) = ±1).

Thm: Any QC-balanced tree is the QC image of some
conformally balanced tree.

Proof: Measurable Riemann Mapping Theorem

gφ

Cor: Every planar tree has a true form.



In Grothendieck’s theory of dessins d’enfants, a finite
graph of a topological surface determines a conformal
structure and a Belyi function (a meromorphic function
to sphere branched over 3 values).

Shabat polynomial is special case of Belyi function.
(branch points = −1, 1,∞).

“conformally balanced tree” = “true form of a tree”.

Is the polynomial computable from the tree?



Kochetkov, Planar trees with nine edges: a catalogue,
2007. “The complete study of trees with 10 edges is a
difficult work, and probably no one will do it in the
foreseeable future”.

Marshall and Rohde have approximated true trees with
thousands of edges. They have catalogued all 95,640
true trees with 14 edges to 25 digits of accuracy. Can
obtain 1000’s of digits.
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Tree with dynamical combinatorics



Every planar tree has a true form.

In other words, all possible combinatorics occur.

What about all possible shapes?



Theorem: Every continuum is a limit of true trees.



Theorem: Every continuum is a limit of true trees.

Limit in Hausdorff metric: if E is compact,

Eǫ = {z : dist(z, E) < ǫ}.

dist(E,F ) = inf{ǫ : E ⊂ Fǫ, F ⊂ Eǫ}.



Theorem: Every continuum is a limit of true trees.

continuum = compact, connected set

Answers question of Alex Eremenko.

Enough to approximate certain finite trees by true trees.



Idea: reduce harmonic measure ratio by adding edges.

Suppose upper side has larger harmonic measure.

(more likely to be hit by Brownian motion)



Idea: reduce harmonic measure ratio by adding edges.

Harmonic measure of top side is reduced.

Roughly 3-to-1 reduction.

New edges are uniformly close to balanced.



Idea: reduce harmonic measure ratio by adding edges.

Higher spikes mean more reduction.

Need extra vertices to make edges have equal measure.

Roughly 5-to-1 reduction.



Idea: reduce harmonic measure ratio by adding edges.

Eccentricity k gives reduction ≈ exp(−πk).



Idea: reduce harmonic measure ratio by adding edges.

Any reduction can be achieved inside any neighborhood.



Adding edges to tree = adding “spikes” to circle.

τ



Adding edges to tree = adding “spikes” to circle.

τ

Spikes on circle are easier to deal with.



Start with a tree.



Subdivide edges (we will see why later).



Conformally map Ω to D
∗. Uneven distribution.



Let’s blow-up a small segment.
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Assume gap sizes are integer multiples of some unit.

Also assume adjacent gaps have adjacent or equal sizes.
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5 4 3 3 4 4

Add vertical spikes ( height ≈ log(gap multiple) ).



5 4 3 3 4 4

Connect spike tips (defines Lipschitz graph).



5 4 3 3 4 4

QC map D
∗ to shaded region.

Identity (hence conformal) above dashed line.



5 4 3 3 4 4

Choose box above region to be filled.



5 4 3 3 4 4

Triangulate box.



5 4 3 3 4 4

PL map is QC, linear on boundary, identity outside box.



5 4 3 3 4 4

Similar procedure to next region. Triangulate . . .



5 4 3 3 4 4

. . . and PL map.



5 4 3 3 4 4

Fill in all regions. Can get uniform QC bounds.



ψτ
Ω

D* W

τ is conformal map from Ω = C \ T to D
∗

ψ is a QC map from D
∗ to W = D

∗ \ “spikes”.

ψ is the “folding map”



T ′ = τ−1(ψ(τ (T ))) = τ−1(W ) is a tree containing T .

By construction, T ′ is QC-balanced.



New tree lies in neighborhood of original tree.

QC dilatation supported in same neighborhood.



Further subdivision gives smaller neighborhood.

QC bound, small area ⇒ MRMT correction ≈ identity.

Thus every tree is approximated by a true tree.



What about infinite trees?



What about infinite trees?

What does “balanced” mean now?

Harmonic measure from ∞ doesn’t make sense.



What about infinite trees?

Main difference:
C\ finite tree = one annulus
C\ infinite tree = ≥ 1 simply connected components
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Recall finite case. Infinite case is very similar.
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τ maps components of C \ T to right half-plane.
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Pullback length to tree. Every side gets τ -length π.
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Balanced tree ⇔ f = cosh ◦ τ is entire, CV(f) = ±1.
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Is every “nice” infinite tree QC-balanced?



Problem: Given an infinite tree T , build a quasi-
regular g with CV(g) = ±1 and T ≈ g−1([−1, 1]).

We make two assumptions about T .



Problem: Given an infinite tree T , build a quasi-
regular g with CV(g) = ±1 and T ≈ g−1([−1, 1]).

We make two assumptions about T .

1. Adjacent sides have comparable τ -length (local)

2. τ -lengths have positive lower bound (global)

τ



1. Adjacent sides have comparable τ -length.

This follows if T has bounded geometry:
• edges are uniformly C2

• angles are bounded away from 0
• adjacent edges have comparable lengths
• non-adjacent edges satisfy diam(e) ≤ Cdist(e, f ).

This is usually easy to check.



2. τ -lengths have positive lower bound.

Verifying this is usually straightforward.

e.g., read Garnett and Marshall Harmonic Measure.

Use standard estimates for hyperbolic metric, extremal
length, harmonic measure . . .



2. τ -lengths of sides have positive lower bound.

“inside” the τ -lengths grow exponentially. (good)



2. τ -lengths of sides have positive lower bound.

“inside” the τ -lengths grow exponentially. (good)

“outside” the τ -length decrease like n−1/2. (bad)

τ -lengths are not bounded below.



Bounded geometry and τ -bounded.



Also bounded geometry and τ -bounded.



This tree is “better” than last one. Why?



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.



We use QC maps with dilatations supported in T (r).
If T (r) is small, we get better control.



QC Folding Thm: Suppose T has bounded geometry
and all τ -lengths ≥ π. Then there is a quasiregular g
s.t. g = cosh ◦τ off T (r) and CV(g) = ±1.
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QC Folding Thm: Suppose T has bounded geometry
and all τ -lengths ≥ π. Then there is a quasiregular g
s.t. g = cosh ◦τ off T (r) and CV(g) = ±1.
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• ∃ QC-tree T ′ s.t. T ⊂ T ′ ⊂ T (r).



QC Folding Thm: Suppose T has bounded geometry
and all τ -lengths ≥ π. Then there is a quasiregular g
s.t. g = cosh ◦τ off T (r) and CV(g) = ±1.

• |µφ| ≤ K and supp(µφ) ⊂ T (r).

•K and r depend only on bounded geometry constants.

• Can shrink T (r) by subdividing T and rescaling τ .

Cor: There is an entire function f with CV(f ) = ±1
so that f−1([−1, 1]) approximates T .



Finite vs infinite case:
• The spikes in finite case could have large diameter,
but we “shrunk” them by subdividing tree.

• In infinite case we add trees that may have unbounded
complexity, but uniformly bounded diameter.



Finite vs infinite case:
• The spikes in finite case could have large diameter,
but we “shrunk” them by subdividing tree.

• In infinite case we add trees that may have unbounded
complexity, but uniformly bounded diameter.



Rest of proof is pretty much the same.

We use PL maps to send squares into polygonal regions.



Detail of one filling map.



Folding map:
• is uniformly QC.
• is conformal except in strip along boundary.
• maps integer points on line to vertices of trees.
• is linear on boundary segments between vertices.



Rest of talk will describe applications of QC folding.



Rapid increase

∃f ∈ S2 so f (x) ր ∞ as fast as we wish.

First such example due to Sergei Merenkov.



Fast spirals

∃f ∈ S2 so {|f | > 1} spirals as fast as we wish.



So far, QC-folding always gives critical values ±1.

All critical points have uniformly bounded degree.

A simple modification gives:
• high degree critical points
• critical values other than ±1
• finite asymptotic values.
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Replace tree by graph. Graph faces labeled D,L,R.

D = bounded Jordan domains (high degree critical points)

L = unbounded Jordan domains (asymptotic values)

D’s and L’s only touch R’s.
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σ

On R components σ = cosh or σ = exp on boundary
intervals depending on type of adjacent component.

Folding R-components gives QR map.



The area conjecture

One R-component, many D-components

∃f ∈ S s.t. area({z : |f (z)| > ǫ}) <∞ for all ǫ > 0.



Bounded type wandering domain:

Thm: ∃ f ∈ B that has a wandering domain.

wandering domain = non pre-periodic Fatou component

B = Eremenko-Lyubich class = bounded singular set

Sullivan’s non-wandering theorem extended to S (finite
singular set) by Eremenko-Lyubich, Goldberg-Keen.



Uses only D and R components. Symmetric.

Dots are orbit of 1/2.



Orbit just above 1/2 diverges from real line.

Can choose to land near center of a D-component.



D-component contains high degree critical point.

Critical value is just above 1/2.

But closer to 1/2 than previous starting point.



New orbit follows 1/2 longer before returning.

Orbit is unbounded, but not escaping.

Iterated disk has diam(Dn) → 0, so is in Fatou set.



Lemma: Dn’s are in different Fatou components:

Proof: If not, there are n < m so Dn, Dm are in same
Fatou component. Then kth iterates Dn+k, Dk+m al-
way always land in same component.

Iterate until Dk+m returns near 1/2; Dk+n is far away.
Contradicts Schwarz lemma (hyperbolic distances de-
crease under iteration).

Dn+k Dm+k



I will finish by mentioning some results that were in-
spired by QC folding, but don’t use it in their proofs.



Adam Epstein’s order conjecture

Order of growth:

ρ(f ) = lim sup
|z|→∞

log log |f (z)|

log |z|
.

f, g QC-equivalent if ∃ QC φ, ψ s.t. f ◦ φ = ψ ◦ g.

Question: f, g ∈ S QC-equivalent ⇒ ρ(f ) = ρ(g)?

False in B (Epstein-Rempe)



No



Same domain in logarithmic coordinates



Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim ≥ 1.
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Stallard (1997): examples with H-dimension ≤ 1 + ǫ.

Dim=1 Theorem: There is a transcendental entire
function f whose Julia set has dimension 1.



Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim ≥ 1.

McMullen (1987): examples with H-dimension 2.

Stallard (1997): examples with H-dimension ≤ 1 + ǫ.

Dim=1 Theorem: There is a transcendental entire
function f whose Julia set has dimension 1.

Also packing dimension = 1. First example P-dim < 2.
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If S(f ) ⊂ D, then Ω = {z : |f (z)| > 1} is a disjoint
union of unbounded analytic Jordan domains.

τ

f

exp



If S(f ) ⊂ D, then Ω = {z : |f (z)| > 1} is a disjoint
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If S(f ) ⊂ D, then Ω = {z : |f (z)| > 1} is a disjoint
union of unbounded analytic Jordan domains.

τ

f

exp

Any other restrictions? No.



Thm: Suppose Ω′ is a disjoint union of unbounded
Jordan regions and τ : Ω′ → {x > −ρ} is conformal on
each component. Then there is quasiregular g so that
g = exp ◦τ on Ω = τ−1({x > 0}) and |g| < 1 off Ω.



Thm: Suppose Ω′ is a disjoint union of unbounded
Jordan regions and τ : Ω′ → {x > −ρ} is conformal on
each component. Then there is quasiregular g so that
g = exp ◦τ on Ω = τ−1({x > 0}) and |g| < 1 off Ω.

Corollary: ∃f ∈ B and a QC φ so that f ◦ φ = g.

This is B-version of the S∗ folding theorem.

S-version has geometrical assumptions; this does not.

Some B-level-set approximates this. False for S .



Idea of proof of B-level-set theorem:

• W = int(C \ Ω) is simply connected.

• Let Ψ : W → D be Riemann map.

• Read Garnett’s Bounded Analytic Functions

• Build Blaschke product so B ◦ Ψ ≈ exp ◦τ on ∂Ω.

• Define g by “glueing” B ◦ Ψ to exp ◦τ across ∂Ω.



Thanks for listening. Questions?


