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Goals for today:
(1) Define Weil-Petersson class of curves.

(2) Give some motivation and connections to various areas.

(3) State half a theorem, sketch parts of the proof.



(1) String theory studies spaces of loops.
(2) Computation is easier in Hilbert spaces.

= We want the space of loops to look like a Hilbert space.



(1) T'(1) = universal Teichmiiller space = quasicircles

(2) Usual Teichmiiller metric based on L (supremum norm).
= T'(1) is Banach manifold, not Hilbert manifold.

= not so good for physics or computations.
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“Weil-Petersson class boundary parameterizations provide the correct analytic setting
for conformal field theory.” — Radnell, Schippers and Staubach, 2017



Cartoon of universal Teichmiiller space
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Takhtajan and Teo make T'(1) a (disconnected) Hilbert manifold.

To(1) = Weil-Petersson class
= connected component containing the circle
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= closure of smooth curves
= oo-dim Kahler-Einstein manifold.



In Dec 2017 email David Mumford asked me which
non-smooth curves are in WP? Motivated by com-
puter vision and pattern recognition.

“Riemannian geometries on spaces of plane curves,
Michor and Mumford, JEM.S, 2006.



In Dec 2017 email David Mumford asked me which
non-smooth curves are in WP? Motivated by com-
puter vision and pattern recognition.

“Riemannian geometries on spaces of plane curves,
Michor and Mumford, JEM.S, 2006.

There are, however, manifolds in which the fiz-
ing of position requires not a finite number but
either an infinite series or a continuous mani-
fold of determinations of quantity. Such mani-
folds are constituted for example by the possible
shapes of a figure in space, ...

Bernhard Riemann, Habilitatsionschrift



In Dec 2017 email David Mumford asked me which
non-smooth curves are in WP? Motivated by com-
puter vision and pattern recognition.

“Riemannian geometries on spaces of plane curves,
Michor and Mumford, JEM.S, 2006.

Jan 2019 IPAM workshop: Analysis and Geometry
of Random Sets.

Lecture by Yilin Wang:

“Loewner energy via Brownian loop measure and
action functional analogs of SLE/GFF couplings”




So the Weil-Petersson class (undefined so far) is linked to:
e String theory
e Kahler-Einstein manifolds
e Teichmuller theory
e Pattern recognition
e Brownian loops, SLE., Gaussian free fields, ...



So the Weil-Petersson class (undefined so far) is linked to:
e String theory
e Kahler-Einstein manifolds
e Teichmuller theory
e Pattern recognition
e Brownian loops, SLE., Gaussian free fields, ...

In today’s talk I will discuss further connections to:
e Geometric function theory
e Sobolev spaces
e Knot theory
e The traveling salesman theorem
e Convex hulls in hyperbolic space
e Minimal surfaces
e Renormalized area



We start with a quick review of quasiconformal maps.



Diffeomorphisms send infinitesimal ellipses to circles.
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Eccentricity = ratio of major to minor axis of ellipse.

K-quasiconformal = ellipses have eccentricity < K almost everywhere



Diffeomorphisms send infinitesimal ellipses to circles.
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NODoop) O0O000O0

Eccentricity = ratio of major to minor axis of ellipse.

K-quasiconformal = ellipses have eccentricity < K almost everywhere

Ellipses determined by dilatation p = fz/ f, with fz, f, = %(f r T ify).
K -1
K+1

| = < 1, arg(p) gives major axis.

fis QC < ||p]loo < 1. f is conformal = 1-1 holomorphic < p = 0.



Diffeomorphisms send infinitesimal ellipses to circles.

S o OO O0000O0
SN E=to 000000
Qo002 —~ 000000
SO0 00 000000

NODoop) O0O000O0

Eccentricity = ratio of major to minor axis of ellipse.
K-quasiconformal = ellipses have eccentricity < K almost everywhere

Special case of QC are biLipschitz maps

L | f(z) = fy)]
CS oy C




QC maps preserve “shape” up to bounded factor. Scales may change.

BiLipschitz maps preserve both shape and scale up to bounded factor.



Riemann Mapping Thm: any Jordan domain is conformal image of ID.

Liouville’s Theorem = any conformal map C — C is linear.

= map above can’t be extended to be conformal in whole plane.



Color distortion = angle distortion

Teichmuller metric = maximum dilatation

Weil-Petersson metric = 3 (dilatation)?
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Distortion decreases near boundary (for smooth domains)

Teichmuller metric = maximum dilatation

Weil-Petersson metric = 3 (dilatation)?



Teichmuller metric = maximum dilatation

Weil-Petersson metric = sum > (dilatation)?

For smooth domains Weil-Petersson sum converges



Corners cause distortion on all scales.

)

a

suggested by Martin Chuaqui Farr

)

(Plot of Nehari function



Infinitely many triangles with large distortion

WP sum = 3 (distortion)? = oo



A quasicircle is the image of circle under a quasiconformal map of RZ.

T(1) = Universal Teichmiiller space = quasicircles modulo similarities.

All smooth closed curves are quasicircles.



Defn: I' = f(T) is Weil-Petersson if i € L*(dA)).

Here dA, = (1d_a‘jg‘y2)2 = hyperbolic area on C \ T.

I

Informally: WP is to L?, as QC is to L.

The Weil-Petersson class is Mobius invariant.



Triangles are (approximately) unit hyperbolic size.

f|ﬂ‘2(1ﬁa|jjig2)2 ~ Y (distortions)?.



Circle reflection: R : z — 1/Z. Triangles reflect across circle.

fo Ro f~1is biLipschitz reflection over T, L? dilatation.



Theorem: ' = f(T) is Weil-Petersson if I' is pointwise fixed for
biLipschitz involution of S? with NS L? for hyperbolic area on S? \ T

We will use this later. Generalizes to dimensions d > 4.



Some quasicircles are fractals.

Quasicircles have a simple geometric characterization due to Ahlfors.



Some quasicircles are fractals.

["is a quasicircle iff  diam(v) = O(crd(y))  forall v C T

crd(y) = |z — w|, z, w, endpoints of ~.



Weil-Petersson curves are never fractal.

WP-curves are rectifiable (= finite length), in fact, are chord-arc.

['is a chord-arc iff /(y)=O(|lzr —y|) forally CT.
x,y = endpoints of 7.




Even stronger: Weil-Petersson = Asymptotically smooth

Asymptotically smooth means that v C I', £(v) — 0 implies

()
[z —y]

M

> 1,  or equivalently,

Weil-Petersson curves are almost C'! (but not quite).



Weil-Petersson curves need not be C1L.

2(t) = exp(—t + ilogt), infinite spiral.



Not Weil-Petersson (corners)



I’

For a conformal map f : D — 2, ' is never zero.

= log ' is well defined and holomorphic.



I’

Suppose X is a space of holomorphic functions on D,

e.g., L. VMO, BMO, Hardy spaces, Bergman, Bloch, Sobolev, ...

Problem: Characterize I' = f(T) so that log f/ € X



Kari Astala and Michel Zinsmeister
invented “BMO-Teichmuller theory”

where log f* € BMO (1990’s).

(BMO = Bounded Mean Oscillati
recall L°° € BMO C LP, p < o0)

on,

Peter Jones and I characterized
curves with log f € BMO.

(roughly speaking, I' has “good”
approximations by chord-arc curves)



In their memoir, Takhtajan and Teo prove:

Theorem: T is Weil-Petersson iff u = log f/ € W2(ID).

Wh2(D) = {u: |Vu| € L*(dzdy)} = one derivative in L?

Hence T is WP iff [iy |(log f/)/|*dzdy < .



[ learned this in the IPAM lecture of Yilin Wang.

She and Rohde proved log f/ € W12 iff T has finite Loewner energy.

She connects WP to large deviations of Schramm-Loewner evolutions and
the Brownian loop soup of Lawler and Werner.

SLE = random Jordan curves (no self-intersections)

Johansson and Viklund have connected WP curves to Coulomb gas.



Previous work on BMO suggests log f € W2 is same as:

Jones Conjecture (B, 2020): I is Weil-Petersson iff

// |ZC3_ y‘dsdt < 00
\a? — ¥

M

{(x,y) = arclength distance between x, y along curve

Stronger version of “asymptotically smooth”

s this an L? condition? Note [ |f| = [(\/]f])?



If

k(x,y) _ \/24 €($7y) B "T o y|

|z — y|?

then I is WP ift
[ [ HwwPldalidy] < o
I'JI
Moreover,

li£>n k(x,y) = usual Euclidean curvature of I" at y.
LY




For a chord-arc curve, |z — y| < l(x,y) < Clx — yl, so

lzy) =z —yl Lty —|z—y| lz,y)+|z -y

x — y|? =yl Uz, y) Uz, y)
Mz, ) — e —y]?
|CIj o y‘Q €<ZE7 y>2

o 1
’x_y‘Q g('xay)Q

The last term has been considered in knot theory.



The Mobius energy of a curve I' € R" is

Mob(T // (Iﬂf—yl2 ﬁ(fvly) >d8dt

Theorem: I'is WP iff Mob(I') < oo.




The Mobius energy of a curve I' € R" is

von(r) = [ ] <|a: T z(x,lyﬂ) det

x-y|

X=y

Mobius energy blows up if curve self-intersects.
= deforming I' to lower energy doesn’t change topology.

= minimizing should give canonical representation of a knot.



Mobius energy is one of several “knot energies” due to Jun O’Hara.

Studied by Freedman, He and Wang in 1990’s. They showed:
e Moh(I') is Mobius invariant (hence the name),

e that finite energy curves are chord-arc,

e in R3 they are topologically tame (isotopic to smooth curve).

R




Theorem (Blatt, 2012): Mob(I') < oo iff
arclength parameterization is A 3/2

H3/2 = Sobolev space = 3_derivative in L2

Cor: I'is WP iff arclength parameterization is in H 3/2

For s > 3/2, is known that H® = CL. so WP curves are “almost” C1.



Quasiconformal maps and H 3/2 and are pretty sophisticated.

How can you describe WP curves to a calculus student?



Dyadic decomposition.
e Divide I' into nested families of 2" equal length arcs.

e Inscribe a polygon Fn at these points.

o Clearly ¢(T'y,) /(T

A
3 W3 I




Theorem: I' is Weil-Petersson if and only if

D 2" [UT) — ()] < oo
n=1

with a bound that is independent of the dyadic family:.

AR~ IR ¥
3 W3 I




Peter Jones’s S-numbers:

. dist(z, L)
6F(Q) — l%f Sup{ dl&Hl(Q)

where the infimum is over all lines L that hit 3Q). |

2 €3QNTY,

3Q




Jones invented the S-numbers for his traveling salesman theorem:

((T") ~ diam(T") + Z Br(Q)*diam(Q),

where the sum is over all dyadic cubes () in R" hitting I.




Jones invented the S-numbers for his traveling salesman theorem:

((T") ~ diam(T") + Z Br(Q)*diam(Q),
where the sum is over all dyadic cubes () in R" hitting I.

Idea of proof is just the Pythagorean theorem:

™~




Jones invented the S-numbers for his traveling salesman theorem:

((T") ~ diam(T") + Z Br(Q)*diam(Q),
where the sum is over all dyadic cubes () in R" hitting I.

Theorem: I'is Weil-Petersson iff » Br(Q)? < oo.

7

| E—

WP = “curvature in L?, summed over all positions and scales”.
= “rectifiable in scale invariant way’ .



The Weil-Petersson class is Mobius invariant.

B-numbers are not: lines (6 = 0) can map to circles (6 > 0).

e

What is a Mobius invariant version of the S-numbers?

az+b _
cz+d

Mobius = linear fractional =

/

N

conformal self-maps of sphere



Mobius transformations preserve lines/circles.

S-numbers trap curve between lines. Trap curve between disks instead.

- -~

-~ -



Mobius transformations preserve lines/circles.

S-numbers trap curve between lines. Trap curve between disks instead.

/’v

-~ -



Mobius transformations preserve lines/circles.

S-numbers trap curve between lines. Trap curve between disks instead.




Fach disk 1s the base of a hemisphere in the upper halt-space H* = R..

The hyperbolic distance between these hemispheres is < £(Q).

These Euclidean hemispheres are hyperbolic halt-spaces.

Mobius transformation of plane extends to isometry of upper half-space.



Hyperbolic metric on disk given by
ds ds

dp = ~ .
PZI 122 dist(z, 0D)

Geodesics are circles perpendicular to boundary (or diameters).




In the upper half-space R = {(z,y,t) : t > 0}, metric is dp = ds/2t.
A

(Geodesics in R‘i are vertical rays or semi-circles perpendicular to R2.




Usual definition of convex: contains geodesic between any two points.




More useful for us: complement is a union of half-spaces.




l.

Convex set in hyperbolic disk

Complement = union of half-spaces



/

In Ri a hyperbolic halt-space = hemisphere.
CH(I") = complement of all open half-spaces that miss I

In general, CH(I") has non-empty interior and 2 boundary components.



A hyperbolic half-space missing CH(I") has boundary disk missing I".

This disk is inside or outside I'. Dome(£2) is union over “inside” disks.

Region above dome is intersection of halt-spaces, hence convex.

CH(I") is region between domes for “inside” and “outside” of I".









The medial axis of square.
= points equidistant from at least two boundary points.
Corresponding hemispheres give the dome.












The medial axis. Equidistant from at least two boundary points.
Corresponding hemispheres give the dome.
Well studied in computational geometry. Fast to compute.












Let 6(z) be the maximum distance from z to the components of OCH(I").
Can show 0(z) < ep(Q), for @ “near” z.

A
\

Theorem: I is Weil-Petersson implies | OCH(T) 0%(2)dA, < oo.
0 = “conformally invariant 3"

OCH(I") has two components. Nicer to have single surface with 905 =T".



Let S be a surface in H? that has asymptotic boundary T.

K (z) = Gauss curvature of S at z.

K1, ko = principle curvatures.

Gauss equation: K(z) = —1 4 k1(2)ka(2).

S is a minimal surface if k| = —k9 (the mean curvature is zero).

In that case, K(2) = —1 — k%(2) < —1.




Theorem (Anderson, 1983): Every closed Jordan curve I' ¢ R?
bounds a minimal disk S ¢ CH(T') c H?,

Minimal surface with boundary I' is contained in convex hull of T'.



Theorem (Anderson, 1983): Every closed Jordan curve I' ¢ R?
bounds a minimal disk S ¢ CH(T') c H?,

Minimal surface with boundary I' is contained in convex hull of T'.

Minimal surface with boundary I' need not be unique.



Hyperbolic minimal surface with boundary curve a square
Drawn with Surface Evolver by Kenneth Brakke



The surface cut in half.



Minimal surface compared to convex hull boundaries.



Theorem (Seppi, 2016): Principle curvatures satisfies k(z) = O(d(z2)).

u(z) = sinh(dist(z, P)) satisfies Agu — 2u = 0.

Use Schauder estimate ||V?u||oo < Cllt]|oo = O(6).



Seppi’s estimate + [ 02 < 00" =

Theorem: If [' is WP then it bounds a minimal disk with
/ K +1|dA, = / /{2(2)6114/) < 00.
S S

We say such a surface has finite total curvature.

Cor: Boundary of surface of finite total curvature need not be C1.



Gauss map: follow normal geodesic from surface S to R? = 9H?.

T'wo directions. Defines reflection across I'.




Gauss map: follow normal geodesic from surface S to R? = 9H?.

T'wo directions. Defines reflection across I'.

Theorem (C. Epstein, 1986): If |x{|, |ka| < 1, then the Gauss maps
define a quasiconformal reflection across I'. Moreover, if S has finite total
curvature, then fC\F |,u\2dAp < 00.

= [ is fixed by a QC involution with p € L2(dAp) = Weil-Petersson.



Weil-Petersson
= log f’ in W12
= finite Mobius energy
= parameterization in H 3/2
= inscribed polygons
= 3 6% < o0
= | g 52dAp < 00
= | g ,%QdAp < 0
= fixed by “nice” involution of 52

= Weil-Petersson



/

Truncate S C Ri at a fixed height above the boundary, i.e.,
Sy =8Nn{(x,y,s) R : 5>t}

Boundary length £(05%) and interior area A(S¢) both grow to oo.



/

Truncate S C Ri at a fixed height above the boundary, i.e.,
Sy =8Nn{(x,y,s) R : 5>t}

[soperimetric inequality: if K(z) < —1, then
((0St) = A(St) + 4mx(St).

Does the gap £(0S;) — A(Sy) stay bounded or grow to 0o?



/

Renormalized area: Ag(S) = limp g (Ap(Sy) — €,(0Sy)] -

Graham and Witten proved well defined.

Related to quantum entanglement,
AdS/CFT correspondence.




Theorem: S has finite renormalized area iff I' is Well-Petersson.



Theorem: S has finite renormalized area iff I' is Well-Petersson.

Hard direction: use isoperimetric inequalities to show

Ap(S) <o = /nQdAp <oo = WP
S

Easier converse uses Seppi’s estimate and the Gauss-Bonnet formula:

/ KdA+/ rgds = 2mx(M).
M oM



Using the Gauss-Bonnet theorem

ASt—f(‘)St_/ldA—/ 1d¢
p(>p<>stpastp

= (1+/~£2)dA —/ K2dA —/ Ld¢
»/St g St g @St g
— — | KdA —/ K2dA —/ 1d¢

Sy P St P 0S¢ P

= —2mx (S5t +/ Kqgdl —/ K2dA —/ 1d/¢
( ) 0S¢ I St g 0S¢ g

——27rxSt—//<;2dA +/ kg — 1)dl
(St) 5, A ast(g Jde,

Prove kg(z) = 1 + O(6°(2)).

Then WP implies last term — 0.



Theorem: For any closed curve I' € R? and for any minimal surface
S C Ri with finite Euler characteristic and asymptotic boundary I’

AR(S) = —2mx(S) — /S W2(2)dA,,



Theorem: For any closed curve I' € R? and for any minimal surface
S C Ri with finite Euler characteristic and asymptotic boundary I’

AR(S) = —27x(S) — /S W2(2)dA,,

Due to Alexakis and Mazzeo (2010) assuming that T is C3<.

Their work valid in Poincaré-Einstein manifolds.



Definition

Description

1 log f’ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L?

4 conformal welding midpoints

5 exp(ilog f') in H'/?

6 arclength parameterization in H*/2
7 tangents in H'/?

8 finite M6bius energy

9 Jones conjecture

10 good polygonal approximations
11 [32-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature
18 additive isoperimetric bound
19 finite renormalized area

20 dyadic cylinder

Weil-Petersson curves

Hans Petersson



THE THEOREM
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THANKS FOR LISTENING. QUESTIONS?



So far, we have seen conformally invariant energies on the sphere and
hyperbolic invariants in 3-space that are finite iff WP.

Are some of these “the same”, i.e., is there a “holographic principle”?



April 2023 preprint of Bridgeman-Bromberg-Pallete-Wang relates Loewner
energy of I' to volume between Epstein-Poincaré surfaces associated to I'.

EP surfaces are similar to convex hull boundaries, but defined using horoballs
instead of hemispheres.

They give explicit formula for C*% curves. True in general?



The dyadic dome.

Polyhedral approximation to minimal surtace.
Intermediary between Euclidean and hyperbolic regimes.



An idea connecting Euclidean and hyperbolic results.

Define a dyadic cylinder in the upper halt-space:

where {I"),} are inscribed dyadlc polygons in I

Discrete analog of minimal surface with boundary I'.



















Our earlier estimate

> 2M(UT) = £(Ty)) < oo

is equivalent to the dyadic cylinder having finite renormalized area.



Our earlier estimate

> 2M(UT) = £(Ty)) < oo

is equivalent to the dyadic cylinder having finite renormalized area.

Obvious “normal projection” from the dyadic cylinder to minimal surface,
distorts length and area each by a bounded additive error.

We can deduce finite renormalized area for the minimal surface from the
same result for the dyadic cylinder.












