
DESSINS AND DYNAMICS

Christopher Bishop, Stony Brook

Groups and Dynamics Seminar, Texas A&M
3-4pm, Wednesday February 23, 2022

www.math.sunysb.edu/~bishop/lectures



THE PLAN

• Harmonic measure

• Finite trees and Shabat polynomials

• Infinite trees and entire functions

• Wandering domains, dimensions of Julia sets

• Equilateral triangulations and critical orbits























200 step random walk.



1000 step random walk.



10,000 step random walk.



100,000 step random walk.



Harmonic measure = hitting distribution of Brownian motion

Suppose Ω is a planar Jordan domain.



Harmonic measure = hitting distribution of Brownian motion

Let E be a subset of the boundary, ∂Ω.



Harmonic measure = hitting distribution of Brownian motion

Choose a point z inside Ω.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 3/10



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 42/100.



Harmonic measure = hitting distribution of Brownian motion

Choose a new starting point z ∈ Ω.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.
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Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 0/10



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 8/100.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) is a harmonic function of z on Ω.
Boundary values are 1 on E and 0 elsewhere.
Easy to solve this PDE on the disk: Poisson kernel.



Riemann Mapping Theorem: If Ω ( R2 is simply connected and
z ∈ Ω, then there is a conformal map f : D→ Ω with f (0) = z.

conformal = 1-1, holomorphic= angle and orientation preserving



If ω is harmonic on Ω, then ω ◦ f is harmonic on D.

⇒ ω(z, E,Ω) = ω(0, f−1(E),D) = |E|/2π.

⇒ ω on ∂Ω = conformal image of (normalized) length on T



Harmonic measure ≈ .4515449



Harmonic measure ≈ .09877336



Harmonic measure ≈ .01545011



Harmonic measure ≈ .00278357



• different base points z ∈ Ω give different distributions on ∂Ω,

• but all points in Ω give mutually continuous distributions.

Both can fail for points on different sides of ∂Ω.



For a fractal curve, inside and outside harmonic measures are singular.

ω1 ⊥ ω2 iff tangents points have zero length.

(B. 1987, based on results of N.G. Makarov)



For which curves is ω1 = ω2? (inside measure = outside measure)

True for lines and circles.



For which curves is ω1 = ω2? (inside measure = outside measure)

True for lines and circles.

Converse is also true.



f

g

γ

Suppose ω1 = ω2 for a curve γ.

Conformally map two sides of circle to two sides of γ so f (1) = g(1).

ω1 = ω2 implies maps agree on whole boundary.



f

g

γ

Suppose ω1 = ω2 for a curve γ.

Conformally map two sides of circle to two sides of γ so f (1) = g(1).

ω1 = ω2 implies maps agree on whole boundary.

So f, g define homeomorphism h of plane holomorphic off circle.

Then h is entire by Morera’s theorem.

Entire and 1-1 implies h is linear (Liouville’s thm), so γ is a circle.



Circles are only closed curves with equal harmonic measures on both sides.

What about other kinds of 2-sided objects?



A planar graph is a finite set of points connected by non-crossing edges.

It is a tree if there are no closed loops.



A planar tree is conformally balanced if

• every edge has equal harmonic measure from ∞

• edge subsets have same measure from both sides



This is also called a “true tree”. A line segment is an example.



This is also called a “true tree”. A line segment is an example.



This is also called a “true tree”. A line segment is an example.



Trivially true by symmetry



Non-obvious true tree



Definition of critical value: if p = polynomial, then

CV(p) = {p(z) : p′(z) = 0} = critical values

If CV(p) = ±1, p is called generalized Chebyshev or Shabat.



Definition of critical value: if p = polynomial, then

CV(p) = {p(z) : p′(z) = 0} = critical values

If CV(p) = ±1, p is called generalized Chebyshev or Shabat.

Thm: T is balanced iff T = p−1([−1, 1]), p = Shabat.

Ω U

p

Ω = C \ T U = C \ [−1, 1]



T conformally balanced ⇔ p Shabat.

Ω U

zn

1
z

1

2
(z +    )

p

conformal τ

p is entire and n-to-1 ⇔ p = polynomial.

CV(p) 6∈ U ↔ p : Ω→ U is covering map.



Algebraic aside:

True trees are examples of Grothendieck’s dessins d’enfants on sphere.

Normalized polynomials are algebraic, so trees correspond to number fields.
Computing number field from tree is difficult.

Six graphs of type 5 1 1 1 1 1 - 3 3 2 1 1, two orbits.



Kochetkov (2009, 2014): cataloged all trees with 9 and 10 edges.

For example, the polynomial for this 9-edge tree is

p(z) = z4(z2 + az + b)2(z − 1),

where a is a root of ...



0 = 126105021875 a15 + 873367351500 a14

+2340460381665 a13 + 2877817869766 a12

+3181427453757 a11 − 68622755391456 a10

−680918281137097 a9 − 2851406436711330 a8

−7139130404618520 a7 − 12051656256571792 a6

−14350515598839120 a5 − 12058311779508768 a4

−6916678783373312 a3 − 2556853615656960 a2

−561846360735744 a− 65703906377728

I did not use this to draw tree on previous slide.



Don Marshall’s ZIPPER uses conformal mapping to draw true trees.



Don Marshall’s ZIPPER uses conformal mapping to draw true trees.

Conformal mapping can handle trees with thousands of edges.

Can obtain polynomial roots α with thousands of digits of accuracy.

Marshall and Rohde compute number field by finding integer relation
between 1, α, α2, . . . using Ferguson’s PSLQ algorithm.



Some true trees, courtesy of Marshall and Rohde



Which planar trees have a true form?

What can that true form look like?



Theorem: Every finite planar tree has a true form.

Unique up to similarities (Morera + Liouville).

Standard proof uses the uniformization theorem.

I will describe an alternate proof using quasiconformal maps.



Diffeomorphisms send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

K-quasiconformal = ellipses have eccentricity ≤ K almost everywhere



Diffeomorphisms send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

K-quasiconformal = ellipses have eccentricity ≤ K almost everywhere

Ellipses determined a.e. by measurable dilatation µ = fz/fz with

|µ| ≤ K − 1

K + 1
< 1.

Conversely, . . .



Diffeomorphisms send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .



Diffeomorphisms send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .

Cor: If f is holomorphic and g is QC, then there is a QC map h so that
F = g ◦ f ◦ h−1 is also holomorphic. (g ◦ f is called QR = quasiregular)

f gh

QCQC Holo

Holo

QR



QC proof that every finite tree has a true form:

Map Ω = C \ T to {|z| > 1} conformally.

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.

diffeo

conformal QC

Dilatation of QC map depends degree of “imbalance” of harmonic measure.



QC proof that every finite tree has a true form:

Map Ω = C \ T to {|z| > 1} conformally.

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.

diffeo

conformal

zn

1

z
(z+   )

2

1
QC

QR



QC proof that every finite tree has a true form:

Map Ω = C \ T to {|z| > 1} conformally.

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.

diffeo

conformal

polynomial

zn

1
z

(z+   )
2
1

QC

QC QR

Mapping theorem implies there is a QC ϕ so p = q ◦ ϕ is a polynomial.



Thus true trees can have any combinatorics.

Alex Eremenko: can they have any shape?



Thus true trees can have any combinatorics.

Alex Eremenko: can they have any shape?

Thm: Every planar continuum is Hausdorff limit of true trees.

Cor (B.-Pilgrim): Every planar continuum is Hausdorff limit of Julia
sets of PCF polynomials (PCF = all critical points have finite orbits).



For a set E and ε > 0 define ε-neighborhood of E:

E(ε) = {z : dist(z, E) < ε}.

Defn: Hausdorff distance between sets is

d(E,F ) = inf{ε > 0 : E ⊂ F (ε), F ⊂ E(ε)}.



Suffices to approximate subtrees of a grid.
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Suffices to approximate subtrees of a grid.



Suffices to approximate subtrees of a grid.



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

Vertical side has much larger harmonic measure from left.

Add edges (⇒ change combinatorics) to “balance” harmonic measure.



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

“Left” harmonic measure is reduced (roughly 3-to-1).

New edges are approximately balanced (universal constant).



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

“Left” harmonic measure is reduced (roughly 3-to-1).

New edges are approximately balanced (universal constant).

Mapping theorem gives exactly balanced.

QC correction map is near identity if “spikes” are short.

New tree approximates shape of old tree; different combinatorics.





Dessins d’adolescents

Finite planar trees ⇔ polynomials with 2 critical values.

What about infinite planar trees? Shabat entire functions?



Do infinite trees correspond to entire functions with 2 critical values?



Main difference:
C\ finite tree = one topological annulus
C\ infinite tree = many simply connected components



Recall finite case

Ω U

zn

1
z

1

2
(z +    )

p

conformal τ

T is true tree ⇔ p = 1
2(τn + 1/τn) is continuous across T .



Infinite case

UΩ

cosh 
1
z

1

2
(z +    )

exp

conformal τ

f

Infinite balanced tree ⇔ f = cosh ◦ τ is continuous across T .



Infinite 3-regular tree does not have a true form.

Sketch: Let G = ambient automorphisms of tree.

True form exists + Morera Thm + Liouville Thm
⇒ automorphisms extend to isometries of plane
⇒ G is discrete subgroup of isometries of R2

G has exponential growth, isometry group of R2 doesn’t. ⇒⇐



Are there enough “infinite true trees” to approximate any shape?

Thm: every “nice” infinite planar tree T is approximated by
f−1([−1, 1]) for some entire function f with CV = {±1}.

“nice” = two conditions that are automatic for finite trees.



(1) Bounded Geometry (local condition; easy to verify):
• edges are uniformly smooth.
• adjacent edges form bi-Lipschitz image of a star = {zn ∈ [0, r]}
• non-adjacent edges are well separated,

dist(e, f ) ≥ ε ·min(diam(e), diam(f )).



(2) τ-Lower Bound (global condition; harder to check):

Complementary components of tree are simply connected.

Each can be conformally mapped to right half-plane. Call map τ .

τ

Ω

We assume all images have length ≥ π.

Need positive lower bound; actual value usually not important.

Components are “thinner” than half-plane near ∞.



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.

T (r) for infinite tree replaces Hausdorff metric in finite case.



Thm: If T has bounded geometry and satisfies a τ -lower bound, then
there is a QR g and r > 0 with g = cosh ◦τ off T (r) and CV(g) = ±1.

Ω
U

cosh 

exp

(z+1/z)/2

F

τ

This is the “QC-Folding Theorem”.

F = cosh ◦τ is usually discontinuous across T .



Thm: If T has bounded geometry and satisfies a τ -lower bound, then
there is a QR g and r > 0 with g = cosh ◦τ off T (r) and CV(g) = ±1.

U
Ω

cosh 

exp

(z+1/z)/2QC

g

But g is continuous everywhere. Tree combinatorics are changed.



Thm: If T has bounded geometry and satisfies a τ -lower bound, then
there is a QR g and r > 0 with g = cosh ◦τ off T (r) and CV(g) = ±1.

U
ΩΩ

cosh 

exp

(z+1/z)/2

g

f

τ

φ

By MRMT there is QC φ so f = g ◦ φ is entire.

Often can prove φ(z) ≈ z, so T ≈ f−1([−1, 1])



More generally: replace tree by graph:

D

D

L

L

R

R

R

R

R

R

D

R = unbounded domains (F = eτ (z), previous case)

D = bounded Jordan domains (F = (z − a)n, high degree critical points)

L = unbounded Jordan domains (F = e−τ (z), finite asymptotic values)

Can specify singular values in last two cases exactly.



Transcendental = entire, not polynomial

Singular set = closure of critical values and finite asymptotic values

= smallest set so that f is a covering map onto C \ S

Eremenko-Lyubich class = bounded singular set = B

Speiser class = finite singular set = S ⊂ B

Generalized folding produces “all” functions in both classes.



Two applications of the folding theorem:

Entire functions
with wandering domains.

Transcendental Julia sets
with small dimension



Dimensions of transcendental Julia sets:

Given an entire function f ,

Fatou set = F(f ) = open set where iterates are normal family.

Julia set = J (f ) = complement of Fatou set.

Julia set is usually fractal. What is its (Hausdorff) dimension?

J ((ez − 1)/2), courtesy of Arnaud Chéritat



A short (and incomplete) history:

• Baker (1975): f transcendental⇒ J contains a continuum⇒ dim ≥ 1.

• Misiurewicz (1981): J (ex) = C.

• McMullen (1987): H-dim = 2, zero area.

• Stallard (1997, 2000): {dim(J (f )) : f ∈ B} = (1, 2].

• Albrecht-B (2020): 1 < H-dim < 2 in Speiser class (folding thm).

• B (2018): H-dim = 1 example exists (folding thm).

Transcendentals: easy to get dim = 2, hard to get dim ≈ 1.

Polynomials: dim = 2 is hard (Shishikura), area > 0 (Buff-Cheritat).



Speiser class Julia sets with dimension < 2.
Build explicit QR map with small Julia set.

Prove QC correction map is bi-Lipschitz near Julia set.



Given an entire function f ,

Fatou set = F(f ) = open set where iterates are normal family.

Julia set = J (f ) = complement of Fatou set.

f maps Fatou components into other Fatou components.

Wandering domain = Fatou component with infinite orbit.

• Entire functions can have wandering domains (Baker 1975).

• No wandering domains for rational functions (Sullivan 1985).

• Also none in Speiser class (Eremenko-Lyubich, Goldberg-Keen).

Wandering domains in Eremenko-Lyubich class? Open since 1985.



Graph giving EL wandering domain via folding (B 2015).
Symmetry ⇒ x = 1

2 iterates to +∞ on R.



Iterates of 1
2 + iε follow orbit of 1

2 for a time, eventually diverge.



Orbit lands in D-component. Critical point compresses.
Can specify that orbit lands very near 1

2.
Closer than before.



Follows 1
2-orbit longer, then diverges and returns near 1

2.



Compression ⇒ orbit in Fatou component.
Oscillation between 1

2 and ∞ ⇒ wandering domain.
(Schwarz lemma: iteration decreases hyperbolic metric.)



Alternate proof by Marti-Pete and Shishikura.
Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.



Dessins and equilateral triangulations

A graph (children’s drawing) on a surface induces a conformal structure.

Consider trees on the sphere.



• start with a finite tree.



• connect vertices of T to infinity; gives finite triangulation of sphere.

• Defines adjacencies between triangles.



• Glue equilateral triangles using adjacencies: get a conformal 2-sphere.

• works for graphs on compact surfaces

• graph on surface ⇒ triangulation of surface ⇒ conformal structure



Only countably many ways to glue together finitely many triangles.

Which compact Riemann surfaces occur in this way?



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values. Shabat polys are examples on sphere.

Theorem (Voevodsky-Shabat): A Riemann surface can constructed
from equilateral triangles iff it has a Belyi function.

U

Ω
p

Triangles are inverse images of upper and lower half-planes.



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values. Shabat polys are examples on sphere.

Theorem (Voevodsky-Shabat): A Riemann surface can constructed
from equilateral triangles iff it has a Belyi function.

U

Ω
p

Equilateral iff anti-holomorphic reflection between adjacent triangles.
⇒ whole triangulation is determined by a single triangle.



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values. Shabat polys are examples on sphere.

Theorem (Voevodsky-Shabat): A Riemann surface can constructed
from equilateral triangles iff it has a Belyi function.

U

Ω
p

Belyi’s Thm: A compact surface has a Belyi function iff it is algebraic.

(Zero set of P (z, w) with algebraic integers as coefficients).



What about non-compact Riemann surfaces?

Now we can use countably many triangles.

⇒ uncountably many way to glue them together.



The plane



The disk



The punctured disk (identify top and bottom sides)



The trice punctured sphere



Thm (B-Rempe): Every non-compact surface has a Belyi function.



Thm (B-Rempe): Every non-compact surface has a Belyi function.

Idea of proof:

• Translate “true trees are dense” proof to Riemann surface S.

• Compact pieces can be approximated by triangulated surfaces.

• Conformal structure is changed, but as little as we wish.

• Key fact: small perturbation ⇒ triangulated pieces re-embed in S.

• Triangulate a compact exhaustion of S. Take limit.



Thm (B-Rempe): Every non-compact surface has a Belyi function.

Idea of proof:

• Translate “true trees are dense” proof to Riemann surface S.

• Compact pieces can be approximated by triangulated surfaces.

• Conformal structure is changed, but as little as we wish.

• Key fact: small perturbation ⇒ triangulated pieces re-embed in S.

• Triangulate a compact exhaustion of S. Take limit.



Thm (B-Rempe): Every non-compact surface has a Belyi function.

Corollary: Every Riemann surface is a branched cover of the sphere,
branched over finitely many points.

• For compact surfaces, this is Riemann-Roch.

• Compact, genus g sometimes needs 3g branch points.

• 3 branch points suffice for all non-compact surfaces.



Corollary: Any open U ⊂ C is 3-branched cover of the sphere.

Adam Epstein: a holomorphic map X → Y is finite type if
• Y is compact,
• f is open with no isolated removable singularities,
• the set of singular values is finite.

If X ⊂ Y , map can be iterated while orbits stay in X , e.g.,
I Rational maps on X = Y = 2-sphere
I Speiser class on X = C, Y = 2-sphere



Corollary: Any open U ⊂ C is 3-branched cover of the sphere.

Gives many new dynamical systems of finite type.

Can have f : X → Y where X ⊂ Y open, Y compact, genus > 0.

Unknown which surfaces Y work.



Belyi functions have finite singular sets.

What about finite singular orbits?

Let P (f ) = union of orbits of singular points.

Mentioned earlier that Julia sets with P (f ) finite can take any “shape”.

Do all possible “combinatorics” occur?



Thm (DeMarco-Koch-McMullen): For any finite S ⊂ C and h :
S → S, there is a rational f and a bijection ψ : P (f )→ S so that

f = ψ−1 ◦ h ◦ ψ and |ψ(z)− z| ≤ ε.

“Any finite post-critical dynamics can occur for rational maps.”

Their proof uses iteration on Teichmüller space.



Lazebnik, Urbanski and I proved:

“Any discrete post-critical dynamics can occur for meromorphic maps.”

Discrete = infinite set, accumulating only at boundary.

Proof uses a result on equilateral triangulations:

Thm (B-Lazebnik-Urbanski): For any decreasing η : R → (0, 1),
and any domain Ω ⊂ S2 there is an equilateral triangulation of Ω with

diam(T ) ≤ η(dist(T, ∂Ω))



Thm: Given any discrete set S ⊂ C (|S| ≥ 3) and any map h : S → S,
there is a meromorphic f and a bijection ψ : P (f )→ S so that

(1) f = ψ−1 ◦ h ◦ ψ on P ,
(2) |ψ(z)− z| ≤ η(z) for all z ∈ P .



Idea of Meromorphic Proof:

• Take triangulation “finer” than S. Choose vertices approximating S.

• Perturb Belyi map to a QR map mimicking h on chosen vertices.



Idea of Meromorphic Proof:

• Take triangulation “finer” than S. Choose vertices approximating S.

• Perturb Belyi map to a QR map mimicking h on chosen vertices.

• But holomorphic correction does not map vertices to vertices.



Idea of Meromorphic Proof:

• Take triangulation “finer” than S. Choose vertices approximating S.

• Perturb Belyi map to a QR map mimicking h on chosen vertices.

• But holomorphic correction does not map vertices to vertices.

• If we move critical values, can show critical points move less.

• Infinite dimensional fixed point theorem gives desired meromorphic map.





True form of truncated finite 3-regular tree,
and limit set of reflected deltoid group.



Proved equal by Oleg Ivrii, Peter Lin, Steffen Rohde and Emanuel Sygal
Related to matings of Julia sets with Kleinian groups,

studied by Lee, Lyubich, Makarov and Mukherjee.



This is not the Julia set of z2 + c, c ≈ 0.288 + 1.115i.
(But it looks exactly like it.)



Tree approximating combinatorics of the Julia set.
Edges not all equal harmonic measure, but still identified by conformal map.

Rigidity: combinatorial data determines geometry.






