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A tree is conformally balanced if
e cvery edge has equal harmonic measure

e subsets of edges have equal measure from both sides

A line segment is an example. Are there others?





















Critical values: CV(p) = {p(2) : p(z) = 0}
If CV(p) = £1, p~([-1,1]) = balanced tree.

p is called generalized Chebyshev or Shabat.

QO=C\T U=C\[-1,1].



p(z) = 1st type Chebyshev p(z) =2"+1

P(z)=(z+1)%z—1)



In Grothendieck’s theory of dessins d’enfants,
“conformally balanced tree” = “true form of a tree”.

Kochetkov, Planar trees with nine edges: a catalogue,
2007. “The complete study of trees with 10 edges is a
difficult work, and probably no one will do it in the
foreseeable future”.

Marshall and Rohde have approximated true trees with
thousands of edges. They have catalogued all 95,640
true trees with 14 edges to 30 digits of accuracy:.
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1 1
conformal T s(2+3)

7 = conformal 2 — D* = {|z] > 1}.
T is balanced iff p = %(T” + 77 ™) is continuous.



1 1
conformal T s(2+3)

T is QC-balanced if this holds for a quasiconformal 7.



1 1
conformal T s(2+3)

Every “nice” finite tree is QC-balanced.
(nice = smooth edges, equal angles)



quasiconformal = bounded angle distortion.

dilatation=pr = fz / f» = measure of non-conformality

quasiregular g = f o ¢, where f is analytic, ¢ is QC.

Measurable Riemann Mapping Theorem:
If ||pl|oo < 1 then 3 QC f so that = p.

MRMT = QC-tree is QC image of conformal tree.



Corollary: All planar trees have a true form.
This says all possible combinatorics occur.

What about all possible shapes”



Theorem: Every continuum is a limit of true trees.



Theorem: Every continuum is a limit of true trees.

Limit in Hausdorff metric: if E is compact,
Ee ={z:dist(z, F) < €}.
dist(E, F') =inf{e: E C F¢, F C E¢}.

/1

_—



Theorem: Every continuum is a limit of true trees.

continuum = compact, connected set
Answers question of Alex Eremenko.

Enough to consider finite trees.
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Idea: reduce harmonic measure ratio by adding edges.

Suppose upper side has larger harmonic measure.

(more likely to be hit by Brownian motion)



Idea: reduce harmonic measure ratio by adding edges.

LD

Harmonic measure of top side is reduced.
Roughly 3-to-1 reduction.

New edges are uniformly close to balanced.



Idea: reduce harmonic measure ratio by adding edges.

EENEE

Higher spikes mean more reduction.
Need extra vertices to make edges have equal measure.

Roughly 5-to-1 reduction.



Idea: reduce harmonic measure ratio by adding edges.

Eccentricity k gives reduction = exp(—mk).



Idea: reduce harmonic measure ratio by adding edges.

Any reduction can be achieved inside any neighborhood.



Adding edges to tree = adding “spikes” to circle.




Adding edges to tree = adding “spikes” to circle.

Spikes on circle are easier to deal with.



Start with a tree.




Subdivide edges (we will see why later).



Conformally map €2 to D*. Uneven distribution.



Let’s blow-up a small segment.
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Assume gap sizes are integer multiples of some unit.

Also assume adjacent gaps have adjacent or equal sizes.






- > < > < > < > < > < >

S) 4 3 3 4 4

Add vertical spikes ( height ~ log(gap multiple) ).



- > < > < > < > < > < >

S) 4 3 3 4 4

Connect spike tips (defines Lipschitz graph).



- > < > < > < > < > < >

S) 4 3 3 4 4

QC map D* to shaded region.

Identity (hence conformal) above dashed line.



- > < > < > < > < > < >

S) 4 3 3 4 4

Choose box above region to be filled.



S) 4 3 3 4 4

Triangulate box.



S) 4 3 3 4 4

PL map is QC, linear on boundary, identity outside box.



S) 4 3 3 4 4

Similar procedure to next region. Triangulate . ..



- > < > < > < > < > < >

S) 4 3 3 4 4

...and PL map.



- > < > < > < > < > < >

S) 4 3 3 4 4

Fill in all regions. Can get uniform QC bounds.



Global picture of spikes on circle.



Conformally map spikes to new tree edges.

T =11 w(r(1)).

By construction, 7" is QC-balanced.



New tree lies in neighborhood of original tree.

Size depends on original tree edges and size of spikes.

QC dilatation supported in same neighborhood.



Further subdivision gives smaller neighborhood.

QC bound, small area = MRMT correction ~~ identity.

Thus every tree is approximated by a true tree.



What about infinite trees?”
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What about infinite trees?”
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What does “balanced” mean now?

Harmonic measure from oo doesn’t make sense.



What about infinite trees?”
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Main difference:
C\ finite tree = one annulus
C\ infinite tree = > 1 simply connected components



conformal T

Recall finite case. Infinite case is very similar.



exp

1
conformal T (z+ % )

7 maps components of C \ T to right half-plane.



exp

1 1
conformal T >(2+3)

Length on line defines 7-length on sides of tree.

Every side has length .



exp
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conformal COSh

Balanced tree = f = cosh o7 is entire, CV(f) = +1.

f
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Is every “nice” infinite tree QC-balanced?



Problem: Given an infinite tree T', build f with CV(f) =

41 and whose balanced tree approximates 1'.

We make two assumptions about 7.



1. Adjacent sides have comparable 7-length.




1. Adjacent sides have comparable 7-length.

This follows if 7" has bounded geometry:
e edges are uniformly C?
e angles are bounded away from 0
e adjacent edges have comparable lengths
e non-adjacent edges satisfy diam(e) < Cdist(e, f).



2. T-lengths of sides have positive lower bound.



2. 1-lengths of sides have positive lower bound.

“inside” the 7-lengths grow exponentially. (good)



2. 1-lengths of sides have positive lower bound.

“inside” the 7-lengths grow exponentially. (good)
“outside” the 7-length decrease like nl/2. (bad)

T-lengths are not bounded below.



Bounded geometry and 7-bounded.



Also bounded geometry and 7-bounded.



If e is an edge of T" and r > 0 let
e(r) ={z: dist(z,e) < r-diam(e)}




If e is an edge of T" and r > 0 let
e(r) ={z: dist(z,e) < r-diam(e)}

Define neighborhood of T T'(r) = U{e(r) : e € T'}.




We use QC maps with dilatations supported in T'(r).
If T'(r) is small, we get better control.




QC Folding Thm: Suppose 1" has bounded geometry

and all 7-lengths > 7. Then there is a quasiregular g
s.t. g = coshor off T'(r) and CV(g) = £1.

cosh




QC Folding Thm: Suppose 7" has bounded geometry

and all 7-lengths > 7. Then there is a quasiregular g
s.t. g = coshor off T'(r) and CV(g) = +1.

e 3 QC-tree T"st. T CT' C T(r).
e ¢ has dilatation bounded by K and supported in T'(r).
e K and r depend only on bounded geometry constants.

e Can shrink T'(r) by subdividing T" and rescaling 7.
Cor: df and QC ¢ s.t. CV(f) =+l and fop =g.



Finite vs infinite case:

e The spikes in finite case could have large diameter,
but we “shrunk” them by subdividing tree.

e In infinite case we add trees that may have unbounded
complexity, but uniformly bounded diameter.




Finite vs infinite case:
e The spikes in finite case could have large diameter,
but we “shrunk” them by subdividing tree.

e In infinite case we add trees that may have unbounded
complexity, but uniformly bounded diameter.
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Rest of proot is pretty much the same.

We use PL maps to send squares into polygonal regions.
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Detail of one filling map.




Folding map:

e is uniformly QC.

e is conformal except in strip along boundary.

e maps integer points on line to vertices of trees.

e is linear on boundary segments between vertices.



Rest of talk will describe applications of QC folding.

Main idea:
e Draw a picture of desired tree.
e Verify bounded geometry (easy).

e Verify 7-bounded (usually straightforward).



Rest of talk will describe applications of QC folding.

Main idea:
e Draw a picture of desired tree.
e Verify bounded geometry (easy).
e Verify 7-bounded (usually straightforward).
e Read Garnett and Marshall Harmonic Measure.

Use hyperbolic metric, extremal length, distortion



Conformally map component to half-plane.



Label boundary arcs {1, }>°.



Choose a “base” point near I.



Suffices to show w(Ip) = w(l, U, 1 U...)?

In many cases, w(Ip) ~ w(l, Ul 1 U...)



Rapid increase

1f € Sy so f(x) /oo as fast as we wish.

First such example due to Sergei Merenkov.



Fast spirals

Af € Sy s0 {|f| > 1} spirals as fast as we wish.



Non-normal functions

feSD)so{|f| > 1} spirals to circle rapidly.

Folded half-plane gives disk. Other surfaces possible.



Folding a pair-of-pants

There are finite type maps (a la Adam Epstein) from
some pair-of-pants Y onto any compact surface X.



Folding a pair-of-pants

There are finite type maps (a la Adam Epstein) from
some pair-of-pants Y onto any compact surface X.
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So tar, QC-tolding always gives critical values 1.

All critical points have uniformly bounded degree.

A simple modification gives:
e high degree critical points
e critical values other than +1
e finite asymptotic values.



Replace tree by graph. Graph faces labeled D.L.R.
D = bounded Jordan domains (high degree critical points)

L = unbounded Jordan domains (asymptotic values)

D’s and L’s only touch R's.



o =exp




On R components ¢ = cosh or 0 = exp on boundary
intervals depending on type of adjacent component.

Folding R-components gives QR map. Fixed by MRMT.



Eremenko-Lyubich Area conjecture

One R-component, many D-components

1f € S s.t. area({z : |f(2)| > €}) < oo for all € > 0.



Eremenko-Lyubich wandering domain:

Thm: 4 f € B that has a wandering domain.
wandering = not pre-periodic

B = Eremenko-Lyubich class = bounded singular set

Sullivan’s non-wandering theorem extended to S (finite
singular set) by Eremenko-Lyubich, Goldberg-Keen.



Uses only D and R components. Symmetric.

Dots are orbit of 1/2.
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9000000

Orbit just above 1/2 diverges from real line.

Can choose to land near center of a D-component.



0000000

9000000

D-component contains high degree critical point.
Critical value is just above 1/2.

But closer to 1/2 than previous starting point.
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New orbit follows 1/2 longer before returning.

Orbit is unbounded, but not escaping.

[terated disk has diam (D) — 0, so is in Fatou set.



Lemma: D,,’s are in different Fatou components:

Proof: If not, there are n < m so D,,, Dy, are in same
Fatou component. Then kth iterates D, ., Dpypy, al-
way always land in same component.

[terate until Dy, returns near 1/2; D}, is far away.
Contradicts Schwarz lemma (hyperbolic distances de-

crease under iteration).
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[ will finish by mentioning some results that were in-
spired by QQC folding, but don’t use it in their proofs.



Adam Epstein’s order conjecture

Order of growth:

log log | f(2)]
log |z|

p(f) = limsup

| 2| =00

f, g QC-equivalent if 3 QC ¢, st. fop =1 og.
Question: f,g € S QC-equivalent = p(f) = p(g)?

False in B (Epstein-Rempe)






Same domain in logarithmic coordinates
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Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim > 1.



Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim > 1.

McMullen (1987): examples with H-dimension 2.
Stallard (1997): examples with H-dimension < 1 + €.



Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim > 1.

McMullen (1987): examples with H-dimension 2.
Stallard (1997): examples with H-dimension < 1 + €.

Dim=1 Theorem: There is a transcendental entire
function f whose Julia set has dimension 1.



Baker (1975): if f is transcendental, then its Julia set
contains a continuum, so dim > 1.

McMullen (1987): examples with H-dimension 2.
Stallard (1997): examples with H-dimension < 1 + €.

Dim=1 Theorem: There is a transcendental entire
function f whose Julia set has dimension 1.

Also packing dimension = 1. First example P-dim < 2.

2 @m———————
pairs of (Hdim,Pdim) | i

gray = possible

Packing

black = known

1 Hausdorff 2



If S(f) € D, then Q = {z : |f(z)| > 1} is a disjoint

union of unbounded analytic Jordan domains.




If S(f) € D, then Q = {z : |f(z)| > 1} is a disjoint

union of unbounded analytic Jordan domains.

Any other restrictions”



If S(f) € D, then Q = {z : |f(z)| > 1} is a disjoint

union of unbounded analytic Jordan domains.

Any other restrictions? No.



Thm: Suppose § is a disjoint union of unbounded
Jordan regions and 7 : ' — {x > —p} is conformal on
ecach component. Then there is quasiregular g so that
g=-exporon Q=7"1{x >0})and |g| <1 off Q.
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Thm: Suppose § is a disjoint union of unbounded
Jordan regions and 7 : ' — {x > —p} is conformal on
ecach component. Then there is quasiregular g so that
g=-exporon Q=7"1{x >0})and |g| <1 off Q.

Corollary: df € 5 and a QC ¢ so that fo¢p = g.
This is B-version of the S* folding theorem.

S-version has geometrical assumptions; this does not.

Some B-level-set approximates this. False for S.



Idea of proof of B-level-set theorem:

o W =int(C\ ) is simply connected.

o Let V: W — D be Riemann map.

e Read Garnett’s Bounded Analytic Functions
e Build Blaschke product so B oV &~ exp o7 on 0.

e Define g by “glueing” B o W to exp o7 across 0f).



Thanks for listening. Questions?



