DIMENSIONS OF JULIA SETS: FROM MANDELBROT TO MODELS Christopher Bishop, Stony Brook

Open University, Nov 19, 2024

www.math.sunysb.edu/~bishop/lectures

THE IDEA

Fractal dimensions measures how "large" a set is.

What are the possible dimensions of Julia sets?

For polynomials, all dimensions in (0, 2] occur.

For non-polynomial entire functions, all values in [1, 2] occur.

Hausdorff and packing dimension

Dimension = count number of small boxes needed to cover a set.

Packing dimension \approx Minkowski dimension = covering by all ϵ -sized boxes

Hausdorff dimension = coverings using boxes $\leq \epsilon$ (more efficient)

Defn: α -dimensional Hausdorff content $\mathcal{H}^{\alpha}_{\infty}(K) = \inf\{\sum_{i} |U_{i}|^{\alpha}\},\$

 $\{U_i\}$ = cover of K, |E| = diameter of a set E. Decreasing function of α , = 0 for large α .

Felix Hausdorff

Defn: Hausdorff dimension $\dim(K) = \inf\{\alpha : \mathcal{H}^{\alpha}_{\infty}(K) = 0\}.$

Defn: Minkowski dimension. If K is a bounded set, let $N(K, \epsilon)$ be number of ϵ -cubes needed to cover K.

We expect $N(K, \epsilon) \approx \epsilon^{-d}$, where $d = \dim$. $d = \log N(k, \epsilon) / \log(1/\epsilon)$.

Hermann Minkowski

Upper Minkowski dimension:

$$\overline{\mathrm{Mdim}}(K) = \limsup_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon},$$

Two disadvantages:

- Not defined for unbounded sets
- Countable sets can have dimension > 0.

Upper Minkowski dimension:

$$\overline{\mathrm{Mdim}}(K) = \limsup_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon},$$

Two disadvantages:

- Not defined for unbounded sets
- Countable sets can have dimension > 0.

 $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ needs \sqrt{n} balls of size 1/n balls to cover.

This sequence has Minkowski dimension = 1/2.

Defn: packing dimension

$$\operatorname{Pdim}(A) = \inf \left\{ \sup_{j \ge 1} \overline{\operatorname{Mdim}}(A_j) : A \subset \bigcup_{j=1}^{\infty} A_j \right\},\$$

where the infimum is over all countable covers of A.

Packing dimension $\leq d$ if it is a countable union of set of $\overline{\text{Mdim}} \leq d$.

For today, we can think "Packing = Minkowski".

By definition, Hdim \leq Pdim \leq Mdim since

$$\operatorname{Hdim} \leq \operatorname{\underline{Mdim}} = \liminf_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon} \leq \limsup_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon} = \overline{\operatorname{Mdim}}$$

Equality holds for self-similar sets, but not in general.

By definition, Hdim \leq Pdim $\leq \overline{Mdim}$ since

$$\operatorname{Hdim} \leq \operatorname{\underline{Mdim}} = \liminf_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon} \leq \limsup_{\epsilon \to 0} \frac{\log N(K, \epsilon)}{\log 1/\epsilon} = \overline{\operatorname{Mdim}}$$

Equality holds for self-similar sets, but not in general.

McMullen Set Hdim = $\log_2(2^{\log_3 2} + 1) \approx 1.34968$ Pdim = $1 + \log_3 \frac{3}{2} \approx 1.36907$ **Polynomial Julia sets**

The Mandelbrot set

The Mandelbrot

The Brooks-Matelski set Robert Brooks

Who discovered the Mandelbrot set? Scientific American, 2009

Some terminology:

Entire = $f : \mathbb{C} \to \mathbb{C}$ is holomorphic on whole plane.

Polynomials = $a_0 + a_1 z + z^2 z^2 + ... a_n z^n$.

Transcendental = not polynomial.

The iterates $\{f^n\}$ are **normal** on a disk D if every subsequence has a subsequence converging uniformly on D to a holomorphic limit (or $\equiv \infty$). E.g., $\{z^2, z^4, z^8, \dots\}$ are normal on $\{|z| < 1\}$ and $\{|z| > 1\}$.

They are not normal on unit circle $\{|z| = 1\}$.

Fatou set = union of disks where iterates form a normal family

Julia set = complement of Fatou set = closure of repelling fixed points.

Pierre Fatou

Gaston Julia

Not to be confused with

LeFou

 $\begin{array}{l} \text{Mandelbrot set} \\ = \text{the set of } c \text{ so that Julia set of } z^2 + c \text{ is connected.} \\ = \text{the set of } c \text{ so that critical orbit is bounded.} \end{array}$

Outside Mandelbrot set, Packing dim = Hausdorff dim. Both dimensions vary continuously. $\operatorname{Dim}(\mathcal{J}_c) \to 0 \text{ as } |c| \to \infty.$

Julia set with dimension near zero.

Shishikura (1994): $\text{Dim}(\mathcal{J}_c) = 2 \text{ for ``most''} \ c \in \partial \mathcal{M}.$ $\text{Dim}(\mathcal{J}_c) \to 2 \text{ as } c \to \partial \mathcal{M} \text{ (most points)}.$

Corollary: quadratic Julia sets take all dimensions in (0,2].

Xavier Buff and Arnaud Cheritat (2005) found quadratic examples with positive area.

Hinkannen, '94: for polynomials, $\dim(\mathcal{J}) > 0$.

Thus (0, 2] is the set of possible dimensions for polynomial Julia sets.

In examples discussed so far, Hausdorff = Packing.

Can they ever differ for polynomial Julia sets?

Transcendental Julia sets

Julia set of $(e^z - 1)/2$ by Arnaud Chéritat

Transcendental Julia sets are closed, non-empty, unbounded.

Julia set = union of paths to infinity. How typical is this?

Thm (Baker, '75): A transcendental Julia set can't be totally disconnected.

Cor: Every transcendental Julia set contains a non-trivial continuum.

Cor: Hdim ≥ 1 for all transcendental entire functions.

I.N. Baker

Sketch of Proof: Let \mathcal{F} = Fatou set, \mathcal{J} = Julia set.

1. Assume \mathcal{F} is connected, unbounded, multiply connected.

2. Choose a loop $\gamma_0 \subset \mathcal{F}$ that surrounds a point of \mathcal{J} .

3. Fact: iterates $\gamma_n = f^n(\gamma_0)$ tend to infinity and "cover plane".

Sketch of Proof: Let \mathcal{F} = Fatou set, \mathcal{J} = Julia set.

- 1. Assume \mathcal{F} is connected, unbounded, multiply connected.
- 2. Choose a loop $\gamma_0 \subset \mathcal{F}$ that surrounds a point of \mathcal{J} .
- 3. Fact: iterates $\gamma_n = f^n(\gamma_0)$ tend to infinity and "cover plane".
- 4. Choose connected open neighborhood U of $\gamma_0 \cup \gamma_1$.

Sketch of Proof: Let \mathcal{F} = Fatou set, \mathcal{J} = Julia set.

5. $\log |f^n|$ is positive, harmonic on U. By Harnack's inequality $\sup_{\gamma_n} \log |f| = \sup_{\gamma_1} \log |f^n| \le C \cdot \inf_{\gamma_0} \log |f^n| = C \cdot \inf_{\gamma_n} \log |z|$ $\Rightarrow |f(z)| \le |z|^C \text{ for all } z \in \gamma_n$

6. This implies f is a polynomial.

Fact 3, part 1: Non-trivial loops escape

- Suppose curve γ in Fatou set surrounds a point of \mathcal{J} .
- If $\{f^n\}$ bounded on γ , also bounded on interior by max principle.
- Hence interior of γ in Fatou set, a contradiction.
- So a point in γ escapes. By normality all γ escapes.

Fact 3, part 2: Iterates of γ have non-zero index around 0

- Suppose not.
- Then minimum principle applies and interior of γ escapes.
- But γ surrounds \mathcal{J} and hence surrounds a pre-periodic point.
- Contradiction.
- \Rightarrow iterates of γ surround every compact set.

So for transcendental functions $\operatorname{Hdim}(\mathcal{J}) \in [1, 2]$.

Do all these values occur? Main cases are:

- $\operatorname{Hdim}(\mathcal{J}) = 2$
- $1 < \operatorname{Hdim}(\mathcal{J}) < 2$
- $\operatorname{Hdim}(\mathcal{J}) = 1$

Many transcendental functions have Hdim = Pdim = 2:

Misiurewicz, '81: $\operatorname{Hdim}(\mathcal{J}) = \mathbb{C} \text{ for } f(z) = e^{z}$. McMullen, '87: $\operatorname{Hdim}(\mathcal{J}) = 2$, $\operatorname{area}(\mathcal{J}) = 0$ for $f(z) = (.3)e^{z}$.

McMullen, '87: $\operatorname{area}(\mathcal{J}) > 0$ for $f(z) = (.7) \sinh(z)$.

Michał Misiurewicz

Curt McMullen

Much harder to get $\operatorname{Hdim}(\mathcal{J}) < 2$:

Thm (Stallard, '97): All dimensions 1 < Hdim < 2 occur.</p>
Her examples are in the Eremenko-Lyubich class (EL defined later).

Thm (Stallard, '96): For all $f \in EL$ we have $Hdim(\mathcal{J}) > 1$.

Gwyneth Stallard
Thm (Rippon-Stallard, '05): For $f \in EL \operatorname{Pdim}(\mathcal{J}) = 2$.

Cor: There are transcendental Julia sets with 1 < Hdim < Pdim = 2.

Thm (Rippon-Stallard, '05): For $f \in EL \operatorname{Pdim}(\mathcal{J}) = 2$.

Cor: There are transcendental Julia sets with 1 < Hdim < Pdim = 2.

Three great British analysts: Rippon, Stallard and Rippon-Stallard

Thm (Bishop, '18): Hdim = Pdim = 1 occurs.

Julia set has finite length on 2-sphere.

Julia set = union of C^1 loops and Cantor set with small dimension.

Sketch of typical Fatou component

In his 2021 Stony Brook PhD thesis, Jack Burkart proved:

Thm: For all $1 \le s < t \le 2$ we can have $s < \text{Hdim} \le \text{Pdim} < t$.

Jack Burkart

What is the Eremenko-Lyubich class?

More notation:

Critical value = image of a critical point.

Asymptotic value = limit of f along curve to infinity.

For example, 0 is an asymptotic value of e^z (along negative real axis).

Singular set = closure of critical values and finite asymptotic values = smallest set so that f is a covering map onto $\mathbb{C} \setminus S$

Alex Eremenko

Misha Lyubich

Andreas Speiser

Eremenko-Lyubich class = entire with bounded singular set

Speiser class = entire with finite singular set

We exclude polynomials from both classes.

Stallard's examples of Hdim $\in (1, 2)$ are in the Eremenko-Lyubich class. Can we take them in the smaller Speiser class?

Simon Albrecht and I proved in 2020 that

Thm: There are Speiser functions $\{f_n\}$ with $\operatorname{Hdim}(\mathcal{J}_n) \searrow 1$.

But we don't know if all dimensions occur in Speiser class.

Simon Albrecht

The structure of Eremenko-Lyubich functions

Suppose singular set is contained in $\mathbb{D} = \{|z| < 1\}$. Each component of $F^{-1}(\mathbb{D}^*)$ is called a **tract**.

These are all simply connected and unbounded.

F is a covering map from each tract to \mathbb{D}^* .

F is a conformal map to right half-plane, followed by e^{z} .

Conversely, given any disjoint collection of tracts, and conformal maps from the tracts into the right hand-plane:

Models Thm: there is an EL-class function that approximates this map.

Idea of proof: ("Models for the Eremenko-Lyubich class")

- 1. Replace tracts by smooth approximations.
- 2. Define $F = \exp(\tau) : \Omega \to \mathbb{D}^*$ using conformal maps τ .
- 3. Define holomorphic $W \to \mathbb{D}$ that "follows" F around \mathbb{T} .
- 4. Interpolate between maps on tract boundary. Get quasiregular map.
- 5. Solve Beltrami equation to get holomorphic map.

To prove Stallard's theorem consider one tract \approx half-strip:

Assume we have g in EL-class so that:

- g(0) = 0 and |g(z)| < 1 outside S = half-strip.
- $\{|z| < 1\}$ attracted to 0 (in Fatou set).

Definition of $\exp(z)$.

Inside $S, g(z) \approx \exp(\exp(z - K))$

This is conformal map of S to half-plane, followed by exp.

Fixed point g(0) = 0 attracts everything in complement of SIndeed, \mathcal{J} consists of points whose orbits stay in X forever:

$$\mathcal{J}(g) \subset \bigcap X_n,$$
$$X_n = \{ z : |g^k(z)| \ge K, k = 1, \dots, n \}$$

To prove dim $(\mathcal{J}) \leq 1 + \delta$, choose K large enough so that (1) $X_1 \subset \cup D_j$ where $\sum_j \operatorname{diam}(D_j)^{1+\delta} < \infty$, (2) each disk D has preimages W_k with $\sum_{W_k \in f^{-1}(D)} \operatorname{diam}(W_k)^{1+\delta} \leq \epsilon \cdot \operatorname{diam}(D)^{1+\delta}$.

Iterating proves Julia set has zero $(1 + \delta)$ -content.

This is what preimages of one disk look like (restricted to strip).

- First preimages: vertical stack on line $\{x = \log |w|\}$, diameters O(r/|w|).
- Second preimages: disk at height $2\pi k$ has preimage of size

$$O\left(\frac{r}{|w|(\log|w|+2\pi|k|)}\right).$$

These estimates only use $(\log z)' = 1/z$.

If K is large enough, preimages of D(w, r) satisfy

$$\sum_{\text{preimages}} \operatorname{diam}^{1+\delta} \lesssim \left(\frac{r}{|w|}\right)^{1+\delta} \sum_{k} \frac{1}{(\log|w| + 2\pi|k|)^{1+\delta}} \\ \lesssim \left|\frac{r}{w}\right|^{1+\delta} \frac{1}{\delta \log^{1+\delta}|w|} \ll \left|\frac{r}{w}\right|^{1+\delta} \ll r^{1+\delta}$$

This proves $\dim(\mathcal{J}(g)) \leq 1 + \delta$.

My attempt to draw the Julia set of the strip model.

Can you draw a better version?

Can we do the same thing in the Speiser class?

Can we do the same thing in the Speiser class?

Not quite

To get 1 < d < 2 in Speiser class, we want to repeat same argument.

Find g is Speiser class so that

- $g(z) \approx \exp(\exp(z K))$ in half-strip
- |g| < 1 outside the half-strip

To get 1 < d < 2 in Speiser class, we want to repeat same argument. Find g is Speiser class so that

- $g(z) \approx \exp(\exp(z K))$ in half-strip
- |g| < 1 outside the half-strip

Unfortunately, no such g exists (B. 2017, "Models for the Speiser class").

Instead, we use several strip-like tracts arranged in a "star".

As number of arms increases, dimension tends to 1.

Why do several strips work when one strip fails?

This requires explaining the folding theorem.

Grothendieck's theory of $dessins \ d'enfants$ associates a finite planar tree T to a polynomial P so that

- 1. p only has critical points at -1 and +1.
- 2. $T = p^{-1}([-1, 1]).$

This gives a preferred way to draw any finite tree: its "true form".

Quasiconformal Folding Theorem

Maps infinite planar trees to entire functions with critical values ± 1 .

A finite tree has:

- 1. A bounded number of edges meeting at any vertex,
- 2. A shortest edge.

These can fail for infinite trees. Need corresponding assumptions.

If e is an edge of T and r > 0 let

$$e(r) = \{z : \operatorname{dist}(z, e) \le r \cdot \operatorname{diam}(e)\}$$

Define neighborhood of $T: T(r) = \bigcup \{ e(r) : e \in T \}.$

(1) Bounded Geometry (local condition; easy to verify):

- edges are uniformly smooth.
- adjacent edges form bi-Lipschitz image of a star = $\{z^n \in [0, r]\}$
- non-adjacent edges are well separated,

 $\operatorname{dist}(e, f) \geq \epsilon \cdot \min(\operatorname{diam}(e), \operatorname{diam}(f)).$

(2) *τ*-Lower Bound (global condition; harder to check):
Complementary components of tree are simply connected.
Each can be conformally mapped to right half-plane. Call map *τ*.

We assume all images have length $\geq \pi$.

Need positive lower bound; actual value usually not important.

Components are "thinner" than half-plane near ∞ .

QC-Folding Theorem (B 2015): If T has bounded geometry and the τ -lower bound, then T can be approximated by a true tree in the following sense. Let $F = \cosh \circ \tau$. Then there is a K-quasiregular g and r > 0 such that g = F off T(r) (shaded) and $CV(g) = \pm 1$.

QC-Folding Theorem (B 2015): If T has bounded geometry and the τ -lower bound, then T can be approximated by a true tree in the following sense. Let $F = \cosh \circ \tau$. Then there is a K-quasiregular g and r > 0 such that g = F off T(r) (shaded) and $CV(g) = \pm 1$.

K and r only depend on the bounded geometry constants. q = F on light blue.

F may be discontinuous across T. g is continuous everywhere.

g has critical points at vertices of T, plus extras depending on " τ -imbalance".

The map of strip complement to half-plane is $\approx z^{1/2}$

The map of "star" complement to half-plane is $\approx z^{N/2}$

Folding theorem applies when exponent is ≥ 1 .

"Dim = 1" example has finite spherical Hausdorff 1-measure.

But it has infinite packing 1-measure.

 \Rightarrow Thus it is not subset of rectifiable curve on sphere.

Can a transcendental Julia set lie on a rectifiable curve?

For Dim = 1 example, boundaries of Fatou components are C^1 curves. Can they be better than C^1 ? C^2 ? C^{∞} ?

Open questions: Black = known, Green = unknown

Which pairs (Hdim, Pdim) can occur for a transcendental entire function? Can any pair (s, s), 1 < s < 2 occur? Can we have Hdim = 1, Pdim = 2? Hdim = 1, 1 < Pdim < 2? Does Hdim = Pdim hold for all polynomials?

Speiser class Julia sets take dimensions as close to 1 as desired.

Do they take all dimensions in (1, 2]?

Can we continuously deform examples so dimension sweeps out an interval?

Eremenko and Lyubich showed that for Speiser class f $M_f = \{g : g = \psi \circ f \circ \varphi \text{ for } \psi, \varphi \text{ QC } \}$ is a finite dimensional manifold.

 $D(g) = \operatorname{Hdim}(\mathcal{J}(g))$ is a continuous function on M_f .

Often this is the constant 2 (e.g., finite order of growth).

Otherwise is it always non-constant?

Is the supremum over M_f always 2? (analog of Shishikura result)

Transcendental Julia sets with dimension 1

Theorem: $\operatorname{Hdim}(\mathcal{J}) = \operatorname{Pdim}(\mathcal{J}) = 1$ is possible. I gave example using infinite products. Somewhat technical.

New, more geometric, proof by Burkart and Lazebnik ("folding-like").

Both proofs based on similar geometry.

Suppose we have annuli $\{r_k < |z| < r_{k+1}\}$.

maps $z \to C_k \cdot z^{2^k}$ from A_k to A_{k+1} .

Approximate this by placing 2^k zeros evenly around kth circle.

Approximate polynomial p near origin so there is some Julia set near origin.

Annuli escape, each corresponds to a different Fatou component.

The kth annulus looks rotationally invariant.

Other zeros are very, very close to 0 or ∞ .

Its inner and outer boundaries should be nearly circular.

Fatou component has a boundary around each zero.

Must surround pre-image of component at zero.

These boundaries and inner boundary map to outer boundary.

The kth annulus maps to (k+1)st annulus.

The (k + 1)st annulus also has ring of boundary components.

These have a preimage in the kth annulus; a second ring.

There is an infinite sequence of rings converging to outer boundary. Estimates show component boundary is countable union of C^1 curves. "Buried" points have small dimension $\Rightarrow \dim(\mathcal{J}) = 1$. **Defn:** Escaping set $I(f) = \{z : f^n(z) \to \infty\}.$

Fact: In general, $\mathcal{J}(f) = \partial I(f)$. For f in EL-class, $\mathcal{J}(f) = \overline{I(f)}$.

Definition of $\exp(z)$.

Definition of $\cosh(z)$.

$$\cosh(-x+iy) = \cosh(x+iy)$$

Proof that $\operatorname{area}(\mathcal{J}) > 0$ for cosh:

Let $S = 2\pi (n + im) + [0, 2\pi]^2$.

 $\cosh(S)$ approximately covers annulus A_n of area $\simeq 2^{2|n|}$. Annulus contains $\simeq e^{2|n|}$ disjoint translates of S. **Proof that** $\operatorname{area}(\mathcal{J}) > 0$ for cosh:

Omit $\simeq |n| \cdot e^{|n|}$ squares near *y*-axis, $\simeq e^{|n|}$ near ∂A_n . Remaining squares cover $1 - O(|n| \cdot e^{-|n|})$ area of annulus. $\sum_{n>0} ne^{-n} < \infty \Rightarrow$ positive area escapes (so is in \mathcal{J} .)