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Riemann Mapping Theorem: If () is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : 2 — D.

e conformal = 1-1, onto, homomorphic.

e Usual proof is to first show there is some 1-1
from € into D, then show that maximizing | f/(z()]
at some point 2y € {2 gives onto map.

e There are various numerical methods to com-
pute f in practice: Schwarz-Christoffel, integral
equations, circle packing, “zipper”.



e What is the complexity of computing f7?

e Assume () is given by n parameters, e.g., 0 is
an n-gon.

e What is an e-approximation of a conformal map?
Define a metric on maps.

e Bound the time < C(n,€) need to find an -
approximation onto any n-gon.

e My interest was sparked by a 1998 paper of
T Driscoll and S. Vavasis, “Numerical conformal
mappings using cross-ratios and Delaunay trian-
gulation”.



The Schwarz-Christoffel formula gives the
Riemann map onto a polygonal:

f(z) = A+ C’/ H(l — g)O‘k_lalw.

y
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Must solve nonlinear system

f(Zk)Z”Uk, kzla---an



Davis’s algorithm: Suppose P has edge lengths
e={e,...,enr € C"
and we guess the SC-parameter gaps
I={L,....I,} €[0,2x]",) Iy =2r

Plug these into SC-formula and get polygon P’
with edges €’. Define new parameter gaps by

where A is a normalizing factor. This sometimes
works, but ...




Theorem: Supppose 0€) = P is an n-gon and
z = f~!(v) are conformal prevertices. We can
construct points w = {wy, ..., wy} C T so that:

1. w can be computed in at most C'(€)n steps.
2. dQO(W,Z) < €.
doc(w,z) = inf{log K : 3h € QCg, h(w) = z}.

QCk = K-quasiconformal maps.
Can take C'(e) = C' + C’log2 % log 10g%

Theorem: If 0f) is an n-gon we can compute a
(1 + €)-quasiconformal map between 2 and D in
time O(n log? % log log %)



A mapping is K-quasiconformal if either:
Analytic definition: |fz| < K+1|f?«’|
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fo=3lfa = ify), fz = 3(fu +ify).

Metric definition: For every x € (), ¢ > 0 and
small enough r > 0, there is s > 0 so that

D(f(z),s) C f(D(z,7)) C D(f(z), s(K+e)).
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e The map is determined (up to Mobius maps) by

Mf — fZ/fZ)
For p with [|u|lcc < 1, thereis a f with pup = p.

e 1, =0 1iff f is conformal.

o K-(QC maps form a compact family.

e f is a quasi-isometry (or rough isometry) if
%p(x, y) — B < p(f(z), fly) < Ap(x,y) + B.

Theorem: f : T — T has a QC-extension to
interior iff it has QI-extension (hyperbolic metric).



e Time estimate is clearly optimal in n.

e If given power series for f, we need p = O(log %)
terms to get accuracy e.

e (Given such series we can invert using Newton’s
method. Error squares each iteration, so need
O(log p) iterations to reach accuracy €; takes work
p per iteration. Work to invert at n points is
O(nplogp) = O(n log%log log %) Our estimate
1s only slightly worse.



Proof of theorem is in three steps:

Step 1: Find wy so that dgo(wg,z) < K.
Takes O(n) time and is motivated by 3-D hyper-
bolic geometry and computational geometry.

Step 2: If dgpo(wn,z) < € < ¢ then con-
struct wy, 11 so that dgo(Wy11,2) < Ce?. Takes

O(nlog? % log log %) per step. Uses fast multipole
method to approximate solutions of Beltrami equa-
tion. Is a version of Newton’s method.

If K < €y then done. Otherwise need to bridge
gap between wq and ball of convergence for New-
ton’s method.
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Step 3: Construct a chain of domains connecting
disk to €2,
D=Qqy,....0y =0

and explicit QC maps 2, — 1 with QC con-
stant < 14 ¢y/2.

Define vertex sets V}. that correspond under these
maps. Find preimages of V. under conformal map

fr :D— Q. k=0istrival, k = N is problem
we want to solve.

Use fog = Id as starting point in Step 2, to iterate
to fi. When within €y/2 of fi, start iterating to
fo. Continue until reach eg-ball around fy.
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First step comes from two theorems that seem
unrelated to conformal mappings:

Theorem (Sullivan ’81, Epstein-Marden
’85): If M is a hyperbolic 3-manifold and C'(M )
is the convex core of M, then there is a biLipschitz
map between Jso M and 0C (M

Iﬁ)

Theorem (Chazelle ’91): A simple n-gon can
be triangulated in time O(n).
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Hyperbolic space: Metric on RS .
dp = |dz|/dist(z, R?).

Ceodesics are circles or lines orthogonal to R

The hyperbolic metric on the disk or ball is
dp = 2/dz|/(1 — |2]2).

The hyperbolic metric on a simply connected do-
main plane € is defined by transferring the metric
on the disk by the Riemann map.
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The dome of () is boundary of union of all hemi-
spheres with bases contained in ).

=
Equals boundary of hyperbolic convex hull of €2¢.

Similar to Euclidean space where complement of
closed convex set is a union of half-spaces.

k2




Each point on Dome(2) is on dome of a maximal
disk D in €. Must have |0D N 09| > 2. The
centers of these disks form the medial axis.

For polygons the medial axis is a finite tree.
Three type of edges:
e point-point bisctors (straight)
e edge-edge bisectors (straight)
e point-edge bisector (parabolic arc)
For general simply connected domains it is R-tree.

The intersection Dome(D)NDome(2) is either an
infinite geodesic (bending line) or a geodesic
face bounded by geodesics.
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A convex polygon:
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A non-convex polygon:




Applications of the medial axis:

e Analysis of chromosones

e Designs of type fonts

e Describe statisical features of porus materials
e Shape recognition

e Time critical collision detection

e Robotic motion

e Biological description of shape

e Mesh generation

e Computer vision

e Radiosurgery
http://www.ics.uci.edu/"eppstein/gina/medial.html

But medial axis is unstable, e.g., perturb disk to
regular n-gon.
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Finitely bent domain (= finite union of disks).
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and oo)

T
e e

The map ¢ : 92 — 0D gives Step 1 of our proof.
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Elliptic Mobius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation 6. It identifies sides of a
crescent of angle 6: think of flow along circles
orthogonal to boundary arcs.
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Visualize : as a flow: For a finitely bent do-
main, write {2 as a disk D and a union of crescents.
Foliate crescents by orthogonal circles. Following
leaves of foliation in Q2 \ D gives ¢ : 92 — 9D.

i
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Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

e ; has K-QC extension to interior.
e . can be evaluated at n points in time O(n).

22



If we plug these parameters in Schwarz-Christoftel
formula we almost get the correct polygon (cen-
ter). Using uniformly spaced points is clearly worse

(right).
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There are at least two ways to decompose a finite
union of disks using crescents (with same angles
and vertices in both cases).
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Decomposition with tangential crescents

Decomposition with normal crescents
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We can visualize the map ¢ by deforming 2 into
D by angle scaling. Multiply the angle of each
crescent by a factor ¢ € [0,1] and apply Mobius
transtformations on gaps. Then ¢ = 1 gives {2 and
t = 0 is disk (every crescent collapsed to an arc).

Discretizing this one-parameter family gives chain
of domains needed in Step 3 of algorithm. Can
show each domain is QC-close to adjacent ones.
Hard part is to construct angle scaling map (or
approximation) in linear time.

One can also angle scale with complex parame-
ters, but we don’t need this in current problem.
Angle scaling is an example of a holomorphic
motion of 0f). Can that theory be applied to
computational problems?
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Example of complex angle scaling.
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Theorem: Collapsing normal crescents gives hy-
perbolic quasi-isometry R : 2 — .

Corollary: ¢ has a K-QQC extension to interior.

Corollary (Sullivan, Epstein-Marden):
Thereisa K-QC map o : {2 — Sq so that o = Id
on 0€) = 08S.

If ) is invariant under Mobius group G, M =
R? /G is hyperbolic manifold,
OcoM =Q /G, O0C(M) = Dome/G.

This gives theorem about hyperbolic 3-manifolds
mentioned earlier. Best current bounds are K <

7.82 (B) and K > 2.1 (Epstein-Markovic).
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Nearest point retraction R : {2 — Dome((2):
Expand ball tangent at z € {2 until it hits a point

R(z) of the dome.

Sy
Sa
=

DA
P

normal crescents = R~ '(bending lines)
gaps = R~ (faces)

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasi-
isometry. This follows from three easy facts.
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Fact 1: If z € (),
dist(z, 90) ~ dist(R(z), R?)

- -

39




Fact 2: R is Lipschitz. () simply connected =
dz|

dp ~

dist(z, 0Q)
z€ D C Qand R(z) € Dome(D) =
dist(z, 0Q2) < dist(z,0D) < dist(z, 02)

= pa(z) = pp(z) = ppome(F(2)).
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Fact 3: pg(R(z), R(w)) <1 = po(z,w) <C.

Suppose dist(R(z),R?) = r and ~ is geodesic
from z to w.

=
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The medial axis: recall MA is the set of points
which are equidistant from two or more boundary
points. For polygons = centers of maximal disks.

Medial axis is a type of Voronoi diagram:

)

Given medial axis we can compute ¢ in time O(n).
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In 1998, Chin-Snoeyink-Wang gave O(n) algo-
rithm to compute the medial axis. There are much
simplier O(nlogn) methods which are faster in
practice. Key step 1s:

Merge Lemma: Suppose n sites S are divided
into S1 and S9 by a line and that the Voronoi di-
agrams of S7 and Sy are given. Then the Voronoi
diagram of S can be found in at most O(n) addi-
tional time.

Sort z-coordinates of vertices and group into ver-
tical slabs. Recursively dividing P into two almost
equal sized pieces gives a O(nlogn) algorithim
(Yap 1993).
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The O(n) estimate is more involved.
e Cut interior of P into trapedzoids with vertical

sides. Possible in O(n) time (Chazelle, 1991).

e Use trapezoids to divide P into pseudo-normal
histograms (Klein and Lingas, 1993).

A0
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e Cut each pseudo-normal histogram into mono-
tone histograms.

e Compute Voronoi diagrams of monotone his-
tograms (Aggarwal, Guibas, Saxe, Shor, 1989 and
Djidev, Lingas 1991)

e Merge monotone diagrams into diagrams for
pseudo-normal histograms and merge the results
into diagram for P.
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Idea for Step 2: Suppose fz/f, = pp = g
and
fH — (), g: H — H.

Then fo gt :H — Q is conformal.

% QW

e | b - -

Given u can’t solve g; = ug, exactly in finite
time, but can quickly solve

gz = (+ O(||ul”))g--
Then fog™tis (1+ Clu|?)-QC.
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Cut H into O(n) pieces on which f, f¢ or log f
has nice series representation. Need p = O(] log€|)
terms on each piece to get € accuracy.

[ T

Use partition of unity supported near partition
edges to combine expansions. Can compute 4 ex-
plicitly.
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It pris small and f fixes oo, then f, is close to
constant. Hence Beltrami equation is similar to
fz = Cu. Solve this by convolving p with 1/z.

o) = [,

<z — W

where p is piecewise defined on each of O(n) squares.

We can’t evaluate integral exactly in finite time.
But we can approximate it quickly using the fast
multipole method of Greengard and Rohklin.
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Idea of Multipole method: Suppose we are
given n points x;. € |—1, 1] with weights wy. such
that ) . wp = 1 and n points y; € [2,4]. How
long does it take to evaluate

n

Fly) =Y —*_,

— X
g=17 Tk

at all n points {yz.}?
Exact evaluation takes &~ n? steps.

Fast multipole method gives approximate evalua-
tion in O(n) steps!
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=Y, el <1, [yl > 2
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n D n _ .
> =Y (Y w0 )
k=17 "R 520 k=
— )= 0

Work required is O(pn) = O(n log %)

General method groups points into clusters and
computes interactions between clusters as above.

Named one of top ten algorithms of 20th century.
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1. Monte Carlo method,

2. Simplex method,

3. Krylov Subspace Iteration method,

4. Householder matrix decomposition,

5. Fortran compiler,

6. QR algorithm for eigenvalue calculation,

7. Quicksort algorithm,

8. Fast Fourier Transform,

9. Integer Relation Detection Algorithm,
10. Fast Multipole algorithm,

http://orion.math.iastate.edu/burkardt/misc/algorithms_dongarra.html

SIAM News, Volume 33, Number 4, May 2000.
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I wouldn’t even think of playing music if I
was born in these times... I'd probably turn to
something ltke mathematics. That would in-
terest me.

Bob Dylan

“Ah!”  replied Pooh. He’d found that pre-
tending a thing was understood was sometimes
very close to actually understanding 1t. Then
it could easily be forgotton with no one the
wiser...

Winnie-the-Pooh
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