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“But Holmes, how did you know that any simple
n-gon has a quadrilateral mesh with O(n) pieces
and all angles between 60° and 120°7”

“Surely you recall from The Case of the Kleinian
Groups that the boundary of a hyperbolic 3-manifold
is bi-Lipschitz equivlent to the boundary of its
convex hull. I deduced that the Riemann map
from a polygon to the disk can be computed in

linear time and the rest is quite elementary my
dear Watson.”

(My talk, in the style of Arthur Connan Doyle.)



The dome of € is boundary of union of all hemi-
spheres with bases contained in ).

e
Equals boundary of hyperbolic convex hull of Q€.

Similar to Euclidean space where complement of
closed convex set is a union of half-spaces.
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A convex polygon:

A non-convex polygon:




Hyperbolic half-plane: Metric on RZ
dp = |dz|/dist(z, R?).

(Geodesics are circles or lines orthogonal to R.
Hyperbolic disk: Metric on D,

2
dp = |dz|/1 — |z|”.
Geodesics are circles or lines orthogonal to ODD.

The hyperbolic metric on a simply connected do-
main plane 2 is defined by transferring the metric
on the disk by the Riemann map.

Important Fact: p ~ p where
dz|
dist(z, 0Q)

is pseudo-hyperbolic metric.

dp =




Hyperbolic space: Metric on Ri,
dp = |dz|/dist(z, R?).

Geodesics are circles or lines orthogonal to R?.

The dome of €2 is boundary of hyperbolic convex

hull of €)°.

Sullivan-Epstein-Marden found bi-Lipschitz map
from base to dome, fixes boundary:.

Used to be hard; now is easy.
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Each point on Dome(€2) is on dome of a maximal
disk D in €. Must have |0D N 0| > 2. The

centers of these disks form the medial axis.

For polygons is a finite tree with 3 types of edges:
e point-point bisectors (straight)

e edge-edge bisectors (straight)

e point-edge bisector (parabolic arc)

For applications see:

www.ics.uci.edu/ eppstein/gina/medial.html+

In CS is attributed to Blum (1967), but Erdos
proved dim(MA) = 1 in 1945.

Goggle(”medial axis” )= 26,300
Goggle(” hyperbolic convex hull”)= 71



Medial axis is boundary of Voronoi cells:

Chin-Snoeyink-Wang (1998) gave O(n) algorithm.
Uses Chazelle” theorem (1991): an n-gon can be
triangulated in O(n) time.

They use this to divide polygon into almost con-
vex regions (“monotone histograms”); compute
for each piece (Aggarwal-Guibas-Saxe-Shor, 1989)
and merge results.

Merge Lemma: Suppose n sites S = 51U 59
are divided by a line. Then diagram for S can be
built from diagrams for S7, Sy in time O(n).



Finitely bent domain (= finite union of disks).
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and 00).
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Elliptic Mobius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation #. It identifies sides of a
crescent of angle #: think of flow along circles
orthogonal to boundary arcs.
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Visualize ¢ as a flow: Write finitely bent €2 as a
disk D and a union of crescents. Foliate crescents

by orthogonal circles. Following leaves of foliation
in Q\ D gives ¢ : 00 — 9D.
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Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

e ., can be evaluated at n points in time O(n).
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Theorem: | has a K-QC extension to interior.

Corollary (Sullivan, Epstein-Marden):
There is a K-QC map o : {2 — Dome so that
o =1Id on 0F) = 0S.

Result comes from hyperbolic 3-manifolds. If €2 is
invariant under Mobius group G, M = Ri /G is
hyperbolic manifold,

OocM =Q /G, 0C(M) = Dome(f2)/G.

Thurston conjectured K = 2 is possible. DBest
known upper bound is K < 7.82. Epstein and
Markovic showed K > 2.1 for some example.
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A mapping is K-quasiconformal if either:

Analytic definition: |f;| < KH\fz!

EaZmaydh
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fo=alfe—ify), fo=5lfo +ify).

Metric definition: For every x € ), ¢ > 0 and
small enough r > 0, there is s > 0 so that

D(f(x),s) C f(D(z,7)) C D(f(x),s(K+e€)).
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Notation for today: e-conformal = e®-quasiconformal.
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e The map is determined (up to Mobius maps) by

/Lf:fi/f,z’
For p with ||p]loo < 1, there is a f with u s = p.

o [1tlloo < ki, k = (K —1)/(K +1) iff f is K-QC.
e 1, = (0 iff f is conformal.

o K-QQC maps form a compact family.
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e { is a bi-Lipschitz it

P y) < (), f(9) < Aplay).

e { is a quasi-isometry if
1
“P@y) = B < p(f(z), fly)) < Apla,y) + B.

e QI=BL at “large scales”.

e On hyperbolic disk, BL = QC = QI.

Theorem: f : T — T has a QC-extension to
interior iff it has Ql-extension (hyperbolic metric)
iff it has a BL-extension.
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Nearest point retraction R : {2 — Dome({)):

Expand ball tangent at z € {2 until it hits a point
R(z) of the dome.

normal crescents = R~ (bending lines)
gaps = R~ (faces)

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasi-
isometry. This follows from three easy facts.
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Fact 1: If 2z € Q), 00 € (),
r ~ dist(z, 0Q) ~ dist(R(2), RZ) ~ |z — R(2)|.
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Fact 2: R is Lipschitz.

() simply connected =
dz|

dp ~

— dist(z,00)
ze€ D C Qand R(z) € Dome(D) =
dist(z, 0Q) /v2 < dist(z,0D) < dist(z, 99)

= pa(z) = pp(z) = ppome(F(2)).
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Fact 3: pg(R(z), R(w)) <1 = po(z,w) < C.

Suppose dist(R(z),R?) = r and v is geodesic
from z to w.

=
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Moreover, g = 1o o : {) — D is locally Lipschitz.
Standard estimates show

_ dist(g(z),0D)
9(z)] = dist(z, 092)

Use Fact 1
dist(z, 9Q) ~ dist(o(z),R?)
~ exp(—pps (0(2), 20))
2, exp(—pg(o(z), 20))
= exp(—pp(9(2),0))
~ dist(g(z),0D)
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Fast Almost Riemann Mapping Theorem:
Can construct a K-QC map from n-gon {2 to disk
in O(n) time, and K independent of n and (2.
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e Has simple geometric definition

e Only requires a “tree-ot-disks” to define.

e [s stable; limit exists as disks fill in polygon.

e Fast to compute using medial axis.

e [s uniformly close to Riemann map.

e Can be used to compute Riemann map quickly.
e Definition motivated by hyperbolic 3-manifolds.

e Fixtends to Lipschitz map of interiors.
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Riemann Mapping Theorem: If () is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : {2 — D.

The Schwarz-Christoffel formula gives the
Riemann map onto a polygonal:

flz)=A+C / i []a- ;“—k)%—ldw.
k=1

a’s are known (interior angles) but z’s are not
(preimages of vertices).
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If we plug in (-images of vertices we almost get the
correct polygon (center). Using uniformly spaced
points is clearly worse (right).
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Theorem: If 0} is an n-gon we can compute a
(1 4+ €)-quasiconformal map between €2 and ID in
- 1 1

time O(nlog ¢ loglog ).

Maps are stored as O(n) power series. Need p =
O(|loge|) terms to get accuracy €. Need time
O(plog p) to multiply, p-long series.

Theorem allows O(1) such operations per vertex
of polygon.
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Proof of theorem is in two steps:

Step 1: Given € < ¢gand e-QC f;, : €2 — DD con-
struct C'e>-QC map fna1: Q2 — . Construction
takes time C'(e) = C' + C'log? % log log %

Step 2: Build domains and finite boundary sets

(Q0,V0), - -+, (N, Vi)
so that
e ()g =D,
o iy =0, Vy =V,
o 0-QC maps gp. : Q. — Q1. Vie — Vo

[f 6 < €p/2 then find conformal maps by induc-
tion (use previous map as starting point of Step 1
to find next map).
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Amazing Fact 1: Can take ¢y independent of
() and n.

Amazing Fact 2: Can take NV independent of
() and n.

Consequence: Get ey approximation in time
O(n) (independent of ). Then just repeat Step
1 until get desired accuracy :

k
€0, Ce%, . C’keg .

About log log € iterations suffice and time for kth
iteration is O(k2%%), so work dominated by final
step.
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Idea for Step 1: Suppose
f H — €, g:H — H, L= lig.
Then fog~!:H — Q is conformal.

- - - -

Can’t solve Beltrami equation g = ug, exactly
in finite time, but can quickly solve

gz = (1 + O(||ul*))g-
Then fogtis (1+Clu|?)-QC.
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Cut H into O(n) pieces on which f, f¢ or log f
has nice series representation. Need p = O(]log€|)

terms on each piece to get € accuracy.

| T
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Idea for step 2: Use angle scaling.

There are at least two ways to decompose a finite
union of disks using crescents.

We call these tangential and normal crescents.
A finitely bent domain can be decomposed with
either kind of crescent.
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Another idea inspired by hyperbolic ge-
ometry: Thick/Thin decompositions.

Standard technique in hyperbolic manifolds is to
partition the manifold based on the size of the in-
jectivity radius. Thin parts often cause problems,
there are only a few possible types and each has
a well understood shape.

M = interesting thick parts + annoying thin parts

42



There is analogous decomposition of polygons.

An e-thin part corresponds to two edges whose
extremal distance in ) is < €.

Parabolic thin parts occur at every vertex.
Hyperbolic thins parts correspond to non-adjacent
edges.

N
%
b= ¢
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e At most O(n) thin parts.

e Can be located in linear time using iota map.

)

e Conformal maps onto thin parts “explicitly known” .

e Remaining thick components have good approx-
imations by O(n) disks.

e Can mesh thick part into O(n) pieces Q; so
map 18 conformal on 100Q);. Hence small angle
distortion on thick parts.
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Application to meshing:

Marshall Bern and David Eppstein showed any n-
gon has quadrilateral mesh with all angles < 120
which can be found in time O(nlogn).

They asked if lower bound on angles is possible.
Fast Riemann mapping theorem implies

Theorem: Any n-gon has quadrilateral mesh
with all new angles between 60° and 120° which
can be found in time O(n).

Both angle bounds are sharp.
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Idea of proof
e Decompose polygon into thick and thin parts.
e ['ind explicit meshes in thin parts (known shapes).

e ['ind preimages on unit circle of vertices under
conformal map.

e Remove disks around prevertices, tile remainder
by hyperbolic pentagons, quadrilaterals, triangles.

e Mesh each hyperbolic polygon using angles in
60, 120

e Map mesh forward to {2 by conformal map.
Straighten sides.

e Gives 60 — ¢, 120+ €. Extra work to remove =e.
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If you understand the figures, you understand
the book.
John Garnett,
Bounded Analytic
Functions, 1981

“Ah!”  replied Pooh. He’d found that pre-
tending a thing was understood was sometimes
very close to actually understanding it. Then
it could easily be forgotton with no one the

wiser...
Winnie-the-Pooh

I wouldn’t even think of playing music if I
was born in these times... I'd probably turn to
something like mathematics. That would in-
terest me.

Bob Dylan, 2005
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