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“But Holmes, how did you know that any simple
n-gon has a quadrilateral mesh with O(n) pieces
and all angles between 60◦ and 120◦?”

“Surely you recall from The Case of the Kleinian

Groups that the boundary of a hyperbolic 3-manifold
is bi-Lipschitz equivlent to the boundary of its
convex hull. I deduced that the Riemann map
from a polygon to the disk can be computed in
linear time and the rest is quite elementary my
dear Watson.”

(My talk, in the style of Arthur Connan Doyle.)
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The dome of Ω is boundary of union of all hemi-
spheres with bases contained in Ω.

Equals boundary of hyperbolic convex hull of Ωc.
Similar to Euclidean space where complement of
closed convex set is a union of half-spaces.
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A convex polygon:

A non-convex polygon:
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Hyperbolic half-plane: Metric on R
2
+,

dρ = |dz|/dist(z, R2).

Geodesics are circles or lines orthogonal to R.
Hyperbolic disk: Metric on D,

dρ = |dz|/1 − |z|2.
Geodesics are circles or lines orthogonal to ∂D.

The hyperbolic metric on a simply connected do-
main plane Ω is defined by transferring the metric
on the disk by the Riemann map.

Important Fact: ρ ' ρ̃ where

dρ̃ =
|dz|

dist(z, ∂Ω)
,

is pseudo-hyperbolic metric.
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Hyperbolic space: Metric on R
3
+,

dρ = |dz|/dist(z, R2).

Geodesics are circles or lines orthogonal to R
2.

The dome of Ω is boundary of hyperbolic convex
hull of Ωc.

Sullivan-Epstein-Marden found bi-Lipschitz map
from base to dome, fixes boundary.

Used to be hard; now is easy.
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Each point on Dome(Ω) is on dome of a maximal
disk D in Ω. Must have |∂D ∩ ∂Ω| ≥ 2. The
centers of these disks form the medial axis.

For polygons is a finite tree with 3 types of edges:
• point-point bisectors (straight)
• edge-edge bisectors (straight)
• point-edge bisector (parabolic arc)

For applications see:
www.ics.uci.edu/ eppstein/gina/medial.html+

In CS is attributed to Blum (1967), but Erdös
proved dim(MA) = 1 in 1945.

Goggle(”medial axis”)= 26,300
Goggle(”hyperbolic convex hull”)= 71
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Medial axis is boundary of Voronoi cells:

Chin-Snoeyink-Wang (1998) gave O(n) algorithm.
Uses Chazelle’ theorem (1991): an n-gon can be
triangulated in O(n) time.

They use this to divide polygon into almost con-
vex regions (“monotone histograms”); compute
for each piece (Aggarwal-Guibas-Saxe-Shor, 1989)
and merge results.

Merge Lemma: Suppose n sites S = S1 ∪ S2
are divided by a line. Then diagram for S can be
built from diagrams for S1, S2 in time O(n).
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Finitely bent domain (= finite union of disks).
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Let ρS be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ι
from (S, ρS) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and ∞).
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Elliptic Möbius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation θ. It identifies sides of a
crescent of angle θ: think of flow along circles
orthogonal to boundary arcs.
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Visualize ι as a flow: Write finitely bent Ω as a
disk D and a union of crescents. Foliate crescents
by orthogonal circles. Following leaves of foliation
in Ω \ D gives ι : ∂Ω → ∂D.

Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

• ι can be evaluated at n points in time O(n).
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Theorem: ι has a K-QC extension to interior.

Corollary (Sullivan, Epstein-Marden):
There is a K-QC map σ : Ω → Dome so that
σ = Id on ∂Ω = ∂S.

Result comes from hyperbolic 3-manifolds. If Ω is
invariant under Möbius group G, M = R

3
+/G is

hyperbolic manifold,

∂∞M = Ω/G, ∂C(M) = Dome(Ω)/G.

Thurston conjectured K = 2 is possible. Best
known upper bound is K < 7.82. Epstein and
Markovic showed K > 2.1 for some example.
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A mapping is K-quasiconformal if either:

Analytic definition: |fz̄| ≤ K−1
K+1|fz|

fz = 1
2(fx − ify), fz̄ = 1

2(fx + ify).

Metric definition: For every x ∈ Ω, ε > 0 and
small enough r > 0, there is s > 0 so that

D(f (x), s) ⊂ f (D(x, r)) ⊂ D(f (x), s(K+ε)).

Notation for today: ε-conformal = eε-quasiconformal.
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• The map is determined (up to Möbius maps) by

µf = fz̄/fz,

For µ with ‖µ‖∞ < 1, there is a f with µf = µ.

• ‖µ‖∞ ≤ k, k = (K−1)/(K +1) iff f is K-QC.

• µ = 0 iff f is conformal.

• K-QC maps form a compact family.
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• f is a bi-Lipschitz if

1

A
ρ(x, y) ≤ ρ(f (x), f (y)) ≤ Aρ(x, y).

• f is a quasi-isometry if

1

A
ρ(x, y) − B ≤ ρ(f (x), f (y)) ≤ Aρ(x, y) + B.

• QI=BL at “large scales”.

• On hyperbolic disk, BL ⇒ QC ⇒ QI.

Theorem: f : T → T has a QC-extension to
interior iff it has QI-extension (hyperbolic metric)
iff it has a BL-extension.
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Nearest point retraction R : Ω → Dome(Ω):
Expand ball tangent at z ∈ Ω until it hits a point
R(z) of the dome.

z u v

R(z)
R(u)=R(v)

normal crescents = R−1(bending lines)

gaps = R−1(faces)

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasi-
isometry. This follows from three easy facts.
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Fact 1: If z ∈ Ω, ∞ 6∈ Ω,

r ' dist(z, ∂Ω) ' dist(R(z), R2) ' |z − R(z)|.

r

z

R(z)
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Fact 2: R is Lipschitz.

Ω simply connected ⇒

dρ ' |dz|
dist(z, ∂Ω)

.

z ∈ D ⊂ Ω and R(z) ∈ Dome(D) ⇒
dist(z, ∂Ω)/

√
2 ≤ dist(z, ∂D) ≤ dist(z, ∂Ω)

⇒ ρΩ(z) ' ρD(z) = ρDome(R(z)).
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Fact 3: ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ C.

Suppose dist(R(z), R2) = r and γ is geodesic
from z to w.

⇒ dist(γ, R2) ' r

⇒ dist(R−1(γ), ∂Ω) ' r,

R−1(γ) ⊂ D(z, Cr)

⇒ ρΩ(z, w) ≤ C
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Moreover, g = ι ◦ σ : Ω → D is locally Lipschitz.
Standard estimates show

|g′(z)| ' dist(g(z), ∂D)

dist(z, ∂Ω)
.

Use Fact 1

dist(z, ∂Ω) ' dist(σ(z), R2)

' exp(−ρ
R

3
+
(σ(z), z0))

& exp(−ρS(σ(z), z0))

= exp(−ρD(g(z), 0))

' dist(g(z), ∂D)

•

•

•

•
•
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Fast Almost Riemann Mapping Theorem:
Can construct a K-QC map from n-gon Ω to disk
in O(n) time, and K independent of n and Ω.
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• Has simple geometric definition

• Only requires a “tree-of-disks” to define.

• Is stable; limit exists as disks fill in polygon.

• Fast to compute using medial axis.

• Is uniformly close to Riemann map.

• Can be used to compute Riemann map quickly.

• Definition motivated by hyperbolic 3-manifolds.

• Extends to Lipschitz map of interiors.
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Riemann Mapping Theorem: If Ω is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : Ω → D.

The Schwarz-Christoffel formula gives the
Riemann map onto a polygonal:

f (z) = A + C

∫ z n∏
k=1

(1 − w

zk
)αk−1dw.

α’s are known (interior angles) but z’s are not
(preimages of vertices).
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If we plug in ι-images of vertices we almost get the
correct polygon (center). Using uniformly spaced
points is clearly worse (right).
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Theorem: If ∂Ω is an n-gon we can compute a
(1 + ε)-quasiconformal map between Ω and D in
time O(n log 1

ε log log 1
ε).

Maps are stored as O(n) power series. Need p =
O(| log ε|) terms to get accuracy ε. Need time
O(p log p) to multiply, p-long series.

Theorem allows O(1) such operations per vertex
of polygon.
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Proof of theorem is in two steps:

Step 1: Given ε < ε0 and ε-QC fn : Ω → D con-
struct Cε2-QC map fn+1 : Ω → D. Construction
takes time C(ε) = C + C log2 1

ε log log 1
ε .

Step 2: Build domains and finite boundary sets

(Ω0, V0), . . . , (ΩN , VN )

so that
• Ω0 = D,
• ΩN = Ω, VN = V ,
• δ-QC maps gk : Ωk → Ωk+1, Vk → Vk+1.

If δ < ε0/2 then find conformal maps by induc-
tion (use previous map as starting point of Step 1
to find next map).
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Amazing Fact 1: Can take ε0 independent of
Ω and n.

Amazing Fact 2: Can take N independent of
Ω and n.

Consequence: Get ε0 approximation in time
O(n) (independent of Ω). Then just repeat Step
1 until get desired accuracy :

ε0, Cε20, . . . C
kε2

k

0 .

About log log ε iterations suffice and time for kth
iteration is O(k22k), so work dominated by final
step.
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Idea for Step 1: Suppose

f : H → Ω, g : H → H, µf = µg.

Then f ◦ g−1 : H → Ω is conformal.

g

f

Can’t solve Beltrami equation gz̄ = µgz exactly
in finite time, but can quickly solve

gz̄ = (µ + O(‖µ‖2))gz.

Then f ◦ g−1 is (1 + C‖µ‖2)-QC.
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Cut H into O(n) pieces on which f , fα or log f
has nice series representation. Need p = O(| log ε|)
terms on each piece to get ε accuracy.

1

2

3

4

5

6
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Idea for step 2: Use angle scaling.

There are at least two ways to decompose a finite
union of disks using crescents.

We call these tangential and normal crescents.
A finitely bent domain can be decomposed with
either kind of crescent.
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Another idea inspired by hyperbolic ge-
ometry: Thick/Thin decompositions.

Standard technique in hyperbolic manifolds is to
partition the manifold based on the size of the in-
jectivity radius. Thin parts often cause problems,
there are only a few possible types and each has
a well understood shape.

M = interesting thick parts + annoying thin parts
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There is analogous decomposition of polygons.

An ε-thin part corresponds to two edges whose
extremal distance in Ω is < ε.

Parabolic thin parts occur at every vertex.
Hyperbolic thins parts correspond to non-adjacent
edges.
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• At most O(n) thin parts.

• Can be located in linear time using iota map.

•Conformal maps onto thin parts “explicitly known”.

• Remaining thick components have good approx-
imations by O(n) disks.

• Can mesh thick part into O(n) pieces Qj so
map is conformal on 100Qj. Hence small angle
distortion on thick parts.
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Application to meshing:
Marshall Bern and David Eppstein showed any n-
gon has quadrilateral mesh with all angles ≤ 120
which can be found in time O(n log n).

They asked if lower bound on angles is possible.
Fast Riemann mapping theorem implies

Theorem: Any n-gon has quadrilateral mesh
with all new angles between 60◦ and 120◦ which
can be found in time O(n).

Both angle bounds are sharp.
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Idea of proof

• Decompose polygon into thick and thin parts.

• Find explicit meshes in thin parts (known shapes).

• Find preimages on unit circle of vertices under
conformal map.

• Remove disks around prevertices, tile remainder
by hyperbolic pentagons, quadrilaterals, triangles.

• Mesh each hyperbolic polygon using angles in
[60, 120].

• Map mesh forward to Ω by conformal map.
Straighten sides.

• Gives 60−ε, 120+ε. Extra work to remove ±ε.
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If you understand the figures, you understand

the book.

John Garnett,
Bounded Analytic

Functions, 1981

“Ah!” replied Pooh. He’d found that pre-

tending a thing was understood was sometimes

very close to actually understanding it. Then

it could easily be forgotton with no one the

wiser...

Winnie-the-Pooh

I wouldn’t even think of playing music if I

was born in these times... I’d probably turn to

something like mathematics. That would in-

terest me.

Bob Dylan, 2005
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