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Harmonic measure = hitting distribution of Brownian motion

Suppose Ω is a planar Jordan domain.
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Let E be a subset of the boundary, ∂Ω.
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Choose an interior point z ∈ Ω.
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ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) ≈ 64/100. What if we move starting point z?



Harmonic measure = hitting distribution of Brownian motion

Different z gives ω(z, E,Ω) ≈ 12/100.
ω is harmonic in z with boundary values ω = 1 on E, ω = 0 off E.



Harmonic measure ↔ solution of Dirichlet problem:

∆u = 0, u|∂Ω = f, u(z) =

∫
∂Ω
f (x)dωz(x).



Conformal map = holomorphic and 1-1,

= angle preserving and orientation preserving

= sends infinitesimal circles to circles



Riemann mapping theorem:
Any Jordan domain is a conformal image of the unit disk.

Harmonic measure = image of normalized length measure.



Conformal mapping often fastest way to compute harmonic measure.

Many practical methods (Zipper, CirclePack, SC-Toolbox,...)

Theoretical linear time computation for polygons (B 2010).

Best geometric understanding of harmonic measure in d = 2.



Thm (F & M Riesz 1916):
For rectifiable boundaries, ω(E) = 0 iff E has zero length.

rectifiable = finite length

length = ℓ(E) = Hausdorff 1-measure = inf{
∑
rj : E ⊂ ∪D(xj, rj)}



Thm (F & M Riesz 1916):
For rectifiable boundaries, ω(E) = 0 iff E has zero length.

“Inside” and “outside” harmonic measures have same null sets.

Measures are mutually absolutely continuous. Same measure class.



Thm (Makarov 1985):
For fractal domains, ω gives full measure to a set of zero length.

First such examples due to Lavrentiev (1936).



Thm (Makarov 1985):
For fractal domains, ω gives full measure to a set of zero length.

ω1 ≪ ω2 ≪ ω1 on tangent points.

ω1 ⊥ ω2 iff tangents points have zero length (B 1987).



Images of radial lines for conformal maps to inside and outside.



Thm (B.-Jones 1990):
Off tangent points, no finite length curve hits positive harmonic measure.

On fractals, ω has zero length, but is unrectifiable.
Uses “Analyst’s traveling salesman theorem”.

Generalized toRn by Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa, Volberg (2016). Uses singular integrals, geometric measure theory.



For which curves is ω1 = ω2?
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For which curves is ω1 = ω2? True for lines:

Also for circles ( = lines conformally).

Converse? If ω1 = ω2 must Γ be a circle/line? Yes



f

g

γ

Suppose ω1 = ω2 for a curve γ.

Conformally map two sides of circle to two sides of γ so f (1) = g(1).

ω1 = ω2 implies maps agree on whole boundary.

So f, g define homeomorphism h of plane holomorphic off circle.

Then h is entire by Morera’s theorem.

Entire and 1-1 implies h is linear (Liouville’s thm), so γ is a circle.



What happens if we replace the closed curve by a tree?

Can we make harmonic measure the same on “both sides” of every edge?



A planar tree is conformally balanced if

• every edge has equal harmonic measure from ∞

• edge subsets have same measure from both sides
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A planar tree is conformally balanced if

• every edge has equal harmonic measure from ∞

• edge subsets have same measure from both sides

This is also called a “true tree”. A line segment is an example.



Trivially true by symmetry



Non-obvious true tree



Definition of critical value: if p = polynomial, then

CV(p) = {p(z) : p′(z) = 0} = critical values

If CV(p) = ±1, p is called generalized Chebyshev or Shabat.

10 classical Chebyshev polynomials



Balanced trees ↔ Shabat polynomials

Fact: T is balanced iff T = p−1([−1, 1]), p = Shabat.

Ω U

p

Ω = C \ T U = C \ [−1, 1]



T balanced ⇔ p Shabat.

Ω U

zn

1
z

1
2 (z +    )

p

conformal τ

p is entire and n-to-1 ⇔ p = polynomial.

CV(p) 6∈ U ↔ p : Ω → U is covering map.



Theorem: Every finite tree has a true form.

Standard proof uses the uniformization theorem.

I will sketch a proof using quasiconformal homeomorphisms.



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K

Ellipses determined a.e. by measurable dilatation µ = fz/fz with

|µ| ≤
K − 1

K + 1
< 1.

Conversely, . . .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .

Cor: If f is holomorphic and ψ is QC, then there is a QC map ϕ so that
g = ψ ◦ f ◦ ϕ is also holomorphic.



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .

Cor: If f is holomorphic and ψ is QC, then there is a QC map ϕ so that
g = ψ ◦ f ◦ ϕ is also holomorphic.

Two such holomorphic functions, f, g are called QC-equivalent.

In general, ψ ◦ f ◦ ϕ is not holomorphic, but is quasiregular (QR).



Proof that every finite tree has a true form:

Map Ω = C \ T to {|z| > 1} conformally.

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.

diffeoconformal

τ = quasiconformal



Proof that every finite tree has a true form:

Map Ω = C \ T to {|z| > 1} conformally.

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.

diffeoconformal

zn

1
z(z+   )

2
1

τ = quasiconformal

quasiregular



Mapping theorem implies there is a QC ϕ so p = q ◦ ϕ is a polynomial.

QRQC

polynomial

Only possible critical points are vertices of tree; these map to ±1.

Thus every planar tree has a true form.



Algebraic aside:

True trees are examples of Grothendieck’s dessins d’enfants on sphere.

Normalized polynomials are algebraic, so planar trees correspond to num-
ber fields. Absolute Galois group acts on trees, but orbits unknown.

Six graphs of type 5 1 1 1 1 1 - 3 3 2 1 1, two orbits.



Even computing number field from tree is difficult.

Kochetkov (2009, 2014): did all trees with 9 and 10 edges.

For example, the polynomial for this 9-edge tree is

p(z) = z4(z2 + az + b)2(z − 1),

where a is a root of ...



0 = 126105021875 a15 + 873367351500 a14

+2340460381665 a13 + 2877817869766 a12

+3181427453757 a11 − 68622755391456 a10

−680918281137097 a9 − 2851406436711330 a8

−7139130404618520 a7 − 12051656256571792 a6

−14350515598839120 a5 − 12058311779508768 a4

−6916678783373312 a3 − 2556853615656960 a2

−561846360735744 a− 65703906377728

This is not the most complicated formula in Kochetkov’s paper.

However, true form can be drawn without knowing the polynomial.



Don Marshall’s ZIPPER uses conformal mapping to draw true trees.



Don Marshall’s ZIPPER uses conformal mapping to draw true trees.

Marshall and Rohde approximated all true trees with ≤ 14 edges.

They can compute vertices to 1000’s of digits of accuracy.

One can test if α ∈ C is algebraic by looking for integer relationships
between 1, α, α2, . . . using lattice reduction or Ferguson’s PSLQ.



Some true trees, courtesy of Marshall and Rohde



Every planar tree has a true form.

In other words, all possible combinatorics occur (countably many).

What about all possible shapes?



Every planar tree has a true form.

In other words, all possible combinatorics occur (countably many).

What about all possible shapes?

Hausdorff metric: if E is compact,

Eǫ = {z : dist(z, E) < ǫ} = ǫ-neighborhood of E

dist(E,F ) = inf{ǫ : E ⊂ Fǫ, F ⊂ Eǫ}.



Different combinatorics, similar shapes

Close in Hausdorff metric



Do true trees approximate all possible shapes?



Do true trees approximate all possible shapes?



Do true trees approximate all possible shapes?

Thm: (B 2013) Every planar continuum is Hausdorff limit of true trees.

Answers question of Alex Eremenko. “True trees are dense”.



Suffices to approximate subtrees of a grid.
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Suffices to approximate subtrees of a grid.



Suffices to approximate subtrees of a grid.



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

Vertical side has much larger harmonic measure from left.
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Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

“Left” harmonic measure is reduced (roughly 3-to-1).

New edges are approximately balanced (universal constant).

Mapping theorem gives exactly balanced.

QC correction map is near identity if “spikes” are short.

New tree approximates shape of old tree; different combinatorics.



Can replace trees by meshes. Get rational or meromorphic functions.

Random “true triangulations” related to Liouville quantum gravity.

We will go in a different direction: infinite trees.



Do infinite trees correspond to entire functions with 2 critical values?



Main difference:
C\ finite tree = one topological annulus
C\ infinite tree = many simply connected components



Finite case

Ω U

zn

1
z

1
2 (z +    )

p

conformal τ

T is true tree ⇔ p = 1
2(τ

n + 1/τn) is continuous across T .



Infinite case

UΩ

cosh 
1
z

1
2 (z +    )

exp

conformal τ

f

Infinite balanced tree ⇔ f = cosh ◦ τ is continuous across T .



Do all infinite planar trees have true forms?

Do infinite true trees approximate any shape?



Do all infinite planar trees have true forms? No.

Do infinite true trees approximate any shape? Yes (sort of).



The infinite 3-regular tree has no true form in plane.

Automorphisms are induced by linear maps. Group is “too large” to fit
inside isometries of plane. There is a true form in the hyperbolic disk.



Which infinite planar trees can be approximated by true trees?

We need two assumptions that substitute for finiteness.

First we define a neighborhood T (r) of an infinite tree.

(Replaces Hausdorff ǫ-neighborhood in finite case.)



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.



If e is an edge of T and r > 0 let

e(r) = {z : dist(z, e) ≤ r · diam(e)}

Define neighborhood of T : T (r) = ∪{e(r) : e ∈ T}.

Adding vertices reduces T (r). Useful scaling property.



(1) Bounded Geometry (local condition; easy to verify):
• edges are uniformly smooth.
• adjacent edges form bi-Lipschitz image of a star = {zn ∈ [0, r]}
• non-adjacent edges are well separated,

dist(e, f ) ≥ ǫ ·min(diam(e), diam(f )).



(2) τ-Lower Bound (global condition; harder to check):

Complementary components of tree are simply connected.

Each can be conformally mapped to right half-plane. Call map τ .

τ

Ω

We assume all images have length ≥ π.

Need positive lower bound; actual value usually not important.



QC-Folding Theorem (B 2015): If T has bounded geometry and
the τ -lower bound, then T can be approximated by a true tree in the
following sense. Let F = cosh ◦τ . Then there is a K-quasiregular g and
r > 0 such that g = F off T (r) (shaded) and CV(g) = ±1.

Ω
U

cosh 

F

τ

K and r only depend on the bounded geometry constants.

g = F on light blue.

F may be discontinuous across T . g is continuous everywhere.



QC-Folding Theorem (B 2015): If T has bounded geometry and
the τ -lower bound, then T can be approximated by a true tree in the
following sense. Let F = cosh ◦τ . Then there is a K-quasiregular g and
r > 0 such that g = F off T (r) (shaded) and CV(g) = ±1.

Ω
U

cosh 

F

τ

K and r only depend on the bounded geometry constants.

Cor: Any T as above is approximated by ϕ(T ′) where T ′ = f−1([−1, 1]),
f is entire with CV(f ) = ±1, ϕ is QC and conformal off T (r).
(In many applications, ϕ is close to identity, so T ≈ T ′.)



Proof of Folding Theorem: similar to finite case: add finite trees
(instead of spikes) to sides of T , in order make two sides almost balanced.



More bells and whistles: Replace tree by graph, faces labeled D,L,R.

D

D

L

L

R

R

R

R

R
R

D

D = bounded Jordan domains (high degree critical points)

L = unbounded Jordan domains (finite asymptotic values)

Original version uses only R-components.



Transcendental entire functions = non-polynomials.

Singular set = closure of critical values and asymptotic values
= points where not all branches of f−1 are defined.

Speiser class = S = finite singular set

Eremenko-Lyubich class = B = compact singular set



Transcendental entire functions = non-polynomials.

Singular set = closure of critical values and asymptotic values
= points where not all branches of f−1 are defined.

Speiser class = S = finite singular set

Eremenko-Lyubich class = B = compact singular set

• Many previous examples based on formulas, e.g., sin(z), ez, ...

• QC-Folding is a geometric alternative that is simple and flexible.

• Gives precise control of singular values; good for dynamics.

• Many applications, such as ...



Rapid increase Spirals Order Conjecture

Area Conjecture Wiman’s Conjecture Eremenko Conjecture

Wandering domain Folding a pair-of-pants Dimension near 1





Rapid increase in Speiser class

f has 2 singular values, f (x) ր ∞ as fast as we wish.

Similar examples due to Sergei Merenkov 2008 (3 singular values).



Speiser example with single tract; rapid growth and spiraling.



Order of growth of entire function:

ρ(f ) = lim sup
|z|→∞

log log |f (z)|

log |z|
, ρ(ez

d
) = d.

QC-equivalent: f ∼ g if g = ψ ◦ f ◦ φ for quasiconformal ψ, φ.

Speiser class QC-equivalence classes Mf are finite dimensional.

Order conjecture: Is ρ constant on Mf?

Adam Epstein observed this holds in many cases where order is determined
by “combinatorial data”. He and Rempe-Gillen gave EL counterexample.



Speiser class counterexample with 3 singular values.



Same tree in logarithmic coordinates.



Speiser function that is “statistically zero”: for all ǫ > 0,

area({|f | > ǫ}) <∞.

Counterexample to Eremenko-Lyubich area conjecture.



Wiman’s conjecture:

Define m(r) = min|z|=r |f (z)|, M(r) = max|z|=r |f (z)|.

Wiman (1916) conjectured that for all entire functions

lim sup
rր∞

logm(r, f )

logM(r, f )
≥ −1.

Sharp for f (z) = exp(z).

True in special cases, e.g., |f (r)| = m(r) (Beurling, 1949).

False in general (Hayman, 1952).



Speiser class counterexample to Wiman’s conjecture
logm(r,f )
logM(r,f )

≤ −C · log log logM(r, f )



Given an entire function f ,

Fatou set = F(f ) = open set where iterates are normal family.

Julia set = J (f ) = complement of Fatou set.

Julia set is usually fractal. What is its (Hausdorff) dimension?

J ((ez − 1)/2), courtesy of Arnaud Chéritat



Given an entire function f ,

Fatou set = F(f ) = open set where iterates are normal family.

Julia set = J (f ) = complement of Fatou set.

Julia set is usually fractal. What is its (Hausdorff) dimension?

• Baker (1975): f transcendental ⇒ J contains a continuum ⇒ dim ≥ 1.

• Misiurewicz (1981), McMullen (1987) dim =2 occurs (is common)

• Stallard (1997, 2000): {dim(J (f )) : f ∈ B} = (1, 2].

• B (2018) dim = 1 can occur (example outside B).

Is dimension< 2 possible in Speiser class?



inf{dim(J (f )) : f ∈ S} = 1 (B.-Albrecht, 2018).



Given an entire function f ,

Fatou set = F(f ) = open set where iterates are normal family.

Julia set = J (f ) = complement of Fatou set.

f permutes components of its Fatou set.

Wandering domain = Fatou component with infinite orbit.

• Entire functions can have wandering domains (Baker 1975).

• No wandering domains for rational functions (Sullivan 1985).

• Also none in Speiser class (Eremenko-Lyubich, Goldberg-Keen).

Are there wandering domains in Eremenko-Lyubich class?



Graph giving wandering domain in Eremenko-Lyubich class.

Original proof corrected by Marti-Pete and Shishikura.



Graph giving wandering domain in Eremenko-Lyubich class.

Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.
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Graph giving wandering domain in Eremenko-Lyubich class.

Variations by Lazebnik, Fagella-Godillon-Jarque, Osborne-Sixsmith.



Folding a pair of pants

For Riemann surfaces, A. Epstein defines a non-constant f : Y → X to
be finite type if set of singular values is finite. If Y ⊂ X , f can be
iterated until an orbit leaves Y .

• Rational maps S2 → S2,

• Speiser class C → C,

• Covering map D → X .

Are there examples where domain is not simply connected?



Folding creates non-trivial examples, where Y ⊂ X is a “pair of pants”.

Pair of pants = sphere minus three disks.

Every surface is union of these.

Does every compact surface have such self-maps? If not, which do?



For f entire, escaping set is I(f ) = {z : fn(z) → ∞}.

Known that J (f ) = ∂I(f ).

Fatou observed I(f ) often consists of curves to ∞.

Curve in escaping set, courtesy of Lasse Rempe-Gillen



Eremenko Conj: components of I(f ) are unbounded (still open).

Strong Eremenko Conj (SEC): path components are unbounded.

Rottenfusser, Rüchert, Rempe-Gillen and Schleicher (2011) proved:

• SEC true for EL functions with finite order of growth.

• SEC false for some EL functions with infinite order.

• Examples with trivial path components.

QC-Folding gives examples in Speiser class.



Speiser class counterexample to SEC.
Path components of escaping set can be points.

Other exotic examples by Rempe-Gillen.



Speiser class counterexample to SEC.
Path components of escaping set can be points.

Other exotic examples by Rempe-Gillen.



SEC counterexample in logarithmic coordinates









Ceci n’est pas un ensemble de Julia.



True tree based on combinatorics of Julia set of z2 + i.
Example of “rigidity”: combinatorics determines geometry.



“True DLA” (Diffusion Limited Aggregation)



“True DLA” (Diffusion Limited Aggregation)


