Conformal Mapping in Linear Time

Christopher J. Bishop
SUNY Stony Brook

copies of lecture slides available at
www.math.sunysb.edu/ "bishop/lectures
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e Has simple geometric definition

e Only requires a “tree-of-disks” to define.

e [s stable; limit exists as disks fill in polygon.

e Fast to compute using medial axis.

e Is uniformly close to Riemann map.

e Can be used to compute Riemann map quickly.
e Definition motivated by hyperbolic 3-manifolds.

e Fxtends to Lipschitz map of interiors.



Riemann Mapping Theorem: If () is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : 2 — D.

The Schwarz-Christoffel formula gives the
Riemann map onto a polygonal:

flz)=A+C / i []a- ;U—k)o‘k_ldw.
k=1

a’s are known (interior angles) but z’s are not
(preimages of vertices).
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If we plug in t-images of vertices we almost get the
correct polygon (center). Using uniformly spaced
points is clearly worse (right).







“Numerical conformal mapping using cross ra-

tios and Delaunay triangulation” by Driscoll and
Vavasis (1998).







Theorem: If 0f) is an n-gon we can compute a

e-approximation of the conformal map between 2
and D in time C'(€)n.

Theorem: Suppose 0f) is an n-gon. We can
construct points w = {wy,...,wp} C T so that:

1. requires at most C'(€)n steps.

2. |w — z| < €, z = true conformal prevertices.

C(e) = log? % log log %

But, what metric are we using?



Hyperbolic half-plane: Metric on RZ
dp = |dz|/dist(z, R?).

Geodesics are circles or lines orthogonal to R.
Hyperbolic disk: Metric on DD,

2
dp = |dz|/1 — |z]".
Geodesics are circles or lines orthogonal to OID.

The hyperbolic metric on a simply connected do-
main plane 2 is defined by transterring the metric
on the disk by the Riemann map.

Important Fact: p ~ p where
dz|
dist(z, 002)’

is pseudo-hyperbolic metric.

dj =
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Hyperbolic space: Metric on RS .
dp = |dz|/dist(z, R?).

Ceodesics are circles or lines orthogonal to R
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A mapping is K-quasiconformal if either:

Analytic definition: |fz| < £=1|7|

A/ o (N
A 1/

fo=3lfe = ify), f2 = 3(fu+ify).

Metric definition: For every x € €2, ¢ > 0 and
small enough r» > 0, there is s > 0 so that

D(f(z),s) C f(D(z,r)) C D(f(z), s(K+e¢)).
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Notation for today: e-conformal = e¢-quasiconformal.
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e The map is determined (up to Mobius maps) by

Mf — fZ/fZ)
For p with [|u|lcc < 1, thereis a f with pur = p.

o [|ulloo <k, k=(K-1)/(K+1)iff fis K-QC.
e ;=0 iff f is conformal.

e K-QQC maps form a compact family.
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e f is a bi-Lipschitz if

%p(fc, y) < p(f(x), f(y)) < Ap(z,y).

e { is a quasi-isometry if

%p(x, y) — B < p(f(z), fy)) < Ap(z,y) + B.

o QI=BL at “large scales”.
e On hyperbolic disk, BL = QC = QI.

Theorem: f : T — T has a QC-extension to
interior iff it has QI-extension (hyperbolic metric)
iff it has a Bl-extension.
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Theorem: If 0f) is an n-gon we can compute a
(1 4+ €)-quasiconformal map between €2 and I in
time O(n log? % log log %)

Theorem: Suppose 0f) is an n-gon. We can
construct points w = {wy,...,wp} C T so that:

1. requires at most C'(€)n steps.

2.dgo(w,z) < e

z = f~1(v) are conformal prevertices.
doco(w,z) = inf{log K : 3h € QCy, h(w) = z}.
QCyk = K-quasiconformal maps.

Ce) =C+ C’logQ%loglog%
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Proof of theorem is in two steps:

Step 1: Given € < ¢gand e-QC fp, : €2 — DD con-
struct C'e>-QC map fna1: 2 — . Construction
takes time C(€) = C' + C'log? % log log %

Step 2: Build domains and finite boundary sets

(€0, V0)5 - -, (2N, V)
so that
o ()g =D,
o Uy =0 Vy=V,
® 5—QC maps g : Qk — Qk—I—lv Vk — Vk—l—l-

If § < €p/2 then find conformal maps by induc-
tion (use previous map as starting point of Step 1
to find next map).
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Amazing Fact 1: Can take ¢; independent of
() and n.

Amazing Fact 2: Can take NV independent of
() and n.

Consequence: Get €y approximation in time
O(n) (independent of 2). Then just repeat Step
1 until get desired accuracy :

k
€0, C’e%, .. C’ke% .

About log log € iterations suffice and time for kth
iteration is O(k2%F), so work dominated by final
step.
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Idea for Step 1: Suppose
fH — (), g: H — H, pf = pg.

Then fog~t:H — Q is conformal.

- - - -

Can’t solve Beltrami equation g = ug, exactly
in finite time, but can quickly solve

gz = (1 + O([|ul*)) g
Then fog tis (1+ Cllul*)-QC.
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Cut H into O(n) pieces on which f, f¢ or log f
has nice series representation. Need p = O(] log€|)
terms on each piece to get € accuracy.

| T
/ X
e .
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Our approximation is of the form

o p=O(|loge]),

e ¢ is a known elementary function, z, 2%, log z,
or SC-integral (only for arches)

e {(p} is a piecewise polynomial partition of unity
for the decomposition; is non-constant only near
boundaries of pieces

o {2;} are centers of the pieces

e sums are truncation of series that converge uni-
formly on big neighborhood of each piece (nega-
tive terms only occur for arches).

e (QJC-constant can be bounded above by checking
agreement of terms on overlaps.
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Can compute p explicitly. Use fast multipole method
to approximately solve in time O(n). Finds new
decomposition, and new series expansions. Bot-
tleneck is time to compute p terms of series ex-
pansion of a product and composition of p linear
fractional transformations. Takes time p?log p.

That completes sketch of Step 1.

Idea for step 2 is to consider the “iota” map from
beginning of talk. Show how to factor it into
composition of maps with small constant. Images
of these are elements of our chain. First review
“domes” and “medial axis”.
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The dome of () is boundary of union of all hemi-
spheres with bases contained in ).

=
Equals boundary of hyperbolic convex hull of €2¢.

Similar to Euclidean space where complement of
closed convex set is a union of half-spaces.
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A convex polygon:
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A non-convex polygon:




Each point on Dome(2) is on dome of a maximal
disk D in €. Must have |0D N 09| > 2. The
centers of these disks form the medial axis.

For polygons is a finite tree with 3 types of edges:
e point-point bisectors (straight)

e edge-edge bisectors (straight)

e point-edge bisector (parabolic arc)

For applications see:

www.ics.uci.edu/ eppstein/gina/medial html+

In CS is attributed to Blum (1967), but Erdos
proved dim(MA) = 1 in 1945.

Goggle(”medial axis” )= 26,300
Goggle(”hyperbolic convex hull”)= 71
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Medial axis is boundary of Voronoi cells:

Chin-Snoeyink-Wang (1998) gave O(n) algorithm.
Uses Chazelle’ theorem (1991): an n-gon can be
triangulated in O(n) time.

They use this to divide polygon into almost con-
vex regions (“monotone histograms”); compute
for each piece (Aggarwal-Guibas-Saxe-Shor, 1989)
and merge results.

Merge Lemma: Suppose n sites S = 51U 59
are divided by a line. Then diagram for .S can be
built from diagrams for S7, .Sy in time O(n).
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Finitely bent domain (= finite union of disks).
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and oo)

T
e e
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Elliptic Mobius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation 6. It identifies sides of a
crescent of angle 6: think of flow along circles
orthogonal to boundary arcs.
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Visualize : as a flow: Write finitely bent €2 as a
disk D and a union of crescents. Foliate crescents
by orthogonal circles. Following leaves of foliation

in 2\ D gives ¢ : 090 — 0D.
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Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

e ; has K-QC extension to interior.
e . can be evaluated at n points in time O(n).
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There are at least two ways to decompose a finite
union of disks using crescents (with same angles
and vertices in both cases).

We call these tangential and normal crescents.
A finitely bent domain can be decomposed with
either kind of crescent.
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Theorem: Collapsing normal crescents gives hy-
perbolic quasi-isometry R : 2 — .

Corollary: ¢ has a K-QQC extension to interior.

Corollary (Sullivan, Epstein-Marden):
Thereisa K-QC map o : {2 — Sq so that o = Id
on 0€) = 08S.

Result comes from hyperbolic 3-manifolds. If {) is
invariant under Mobius group G, M = Ri /G is
hyperbolic manifold,

OocM = Q /G, 0C(M) = Dome(2)/G.

Thurston conjectured K = 2 is possible. Best
known upper bound is K < 7.82.
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Nearest point retraction R : {2 — Dome((2):
Expand ball tangent at z € {2 until it hits a point

R(z) of the dome.

R~ (bending lines)
gaps = R~ (faces)

normal crescents

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasi-
isometry. This follows from three easy facts.
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Fact 1: If z € Q, 0o &€ (),
r ~ dist(z, Q) ~ dist(R(2), R?) ~ |z — R(z)|.
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Fact 2: R is Lipschitz.

(2 simply connected =>
dz|

dp ~

 dist(z, 09)
z€ D C Qand R(z) € Dome(D) =
dist(z, 90) /2 < dist(z,0D) < dist(z, 99)

= p(2) = pp(z) = pPpome(F(2)).
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Fact 3: pg(R(z), R(w)) <1 = pg(z,w) <C

Suppose dist(R(z),R?) = r and ~ is geodesic
from z to w.

=
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Moreover, g = 10 o : {) — D is locally Lipschitz.
Standard estimates show

_ dist(g(z), OD)
9(z)] = dist(z,00)

Use Fact 1
dist(z, )

~ dist(o(2), R?)
(0(2), 20))

(
~ exp(—
2 exp(—pg(o(z
= exp(

(

R
=
@))]
—
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If you understand the figures, you understand
the book.
John Garnett,
Bounded Analytic
Functions, 1981

“Ah!”  replied Pooh. He’d found that pre-
tending a thing was understood was sometimes
very close to actually understanding 1t. Then
it could easily be forgotton with no one the

wiser...
Winnie-the-Pooh

I wouldn’t even think of playing music if I
was born in these times... I'd probably turn to
something like mathematics. That would in-
terest me.

Bob Dylan, 2005
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