Suppose h : T — T is a orientation preserving
homeomorphism. Attach two copies of the disk
along their boundaries via h. We get a sphere S2.
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The disks and the sphere all have conformal struc-
tures. Can we make the identification respect
these structures?



Suppose I is a closed Jordan curve and
S°\T =QUQO*

Let f:ID— Qand g : D* — QF be conformal.
Then h = g~ 1o f is homeomorphism of the circle.

This gives a map from closed curves in the plane to
circle homeomorphisms (all modulo Mobius trans-
formations).

D- — = ol

Is the map I' — A onto?

Is the map I' — A 1-to-17

The answer to both questions is no.



Let K be the closure of the graph of sin(1/z).
This divides the plane into two domains. Let F
and G be maps corresponding maps to D, D*.
Then h = G o F~ ! is well defined, continuous
and 1-1 except at one point. Thus it extends to a
homeomorphism of circle.




This h is not a conformal welding. Suppose h =
g 1o f for some curve T'. Then fo F and go G
would be conformal off K and continuous except
on the segment I = [i, —i]. By Morera’s theorem
they extend to conformal map from complement
of I to complement of a point. This contradicts
Liouville’s theorem.
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To see that the map is not 1-to-1 is more difficult.
However, one can prove there are closed curves I'
and homeomorphisms of the sphere H which are
conformal off I' but which are not Mobius. Then
' and I" = H(T") are not equivalent, but they do
oive the same homeomorphism h.

For example, every curve of positive area is non-
removable (define QC map with non-zero dilata-
tion on I').

Non-uniqueness of I' can tail more extremely. There
are h’s so that the set of corresponding I"’s is dense
in the set of all closed curves (in Hausdorff met-
ric). We call these flexible curves.



Fundamental theorem of conformal weld-
ing: h is a conformal welding if it is quasisym-
metric, 1.e., there is an M < oo.
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for any adjacent intervals I, J of equal length.

By a famous theorem of Ahlfors and Beurling,
these are same as boundary values of quasicon-
formal selfmappings of the disk. First proof of
fundamental theorem was by Pfluger (1960) using
measurable Riemann mapping theorem.

QS map include all diffeomorphisms and include
many non-smooth maps (h' = 0 a.e. is possible),
but are still far from all homeomorphisms. For
example, every QS map must be Holder continu-
ous.



A decomposition of compact set K is a collection
of pairwise disjoint closed sets whose union is all
of K.

A collection C of closed sets in the plane is called
upper semi-continuous it a collection of elements
which converges in the Hausdorft metric must con-
verge to a subset of another element.




Theorem (R.L. Moore, 1925): Suppose C
1s an upper semi-continuous collection of disjoint
continua (compact, connected sets) in R? each of
which does not separate R2. Then the quotient
space formed by identifying each set to a point is
homeomorphic to RZ.

h(x)



Koebe’s circle domain theorem (1908):
Every finitely connected domain can be confor-
mally mapped to a domain bounded by circles
and points.
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Koebe’s Conjecture: Every planar domain
can be mapped to a domain whose boundary com-
ponents are all points or circles.

Koebe’s conjecture has been proven in various
special cases. He and Schramm proved it for count-
ably many boundary components (1993).
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Connect points {zx}!" C T by disjoint curves
{vn} to the points 2h(x) € {|z| = 2}. Let Q
be the union of D, 2ID* and an e-neighborhood of
each ;. By Koebe’s circle domain theorem, this
can be mapped to a circle domain. Taking € — 0
we obtain a closed chain of tangent circles.

Assume chains stay inside {|z| < R} for all n.
Then there are at most (R/€)? disks of size > e,
independent of n.
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Theorem 1: For any orientation preserving home-
omorphism h there are non-degenerate sequences
frn D — Qp and g, : D* — € of conformal
maps such that |fn(z) — gn(h(x))| — 0, for all
x € T\ E, where E is countable.

Conjecture: Suppose h : T — T is any orienta-
tion preserving homeomorphism. Then there are
conformal maps f, g onto disjoint domains such
that h = g 'o f on T\ E where E is a countable
set.

The problem is passing to the limit. We can
have limy, f, = f, limp gn = g, and fp(x) =
gn(h(z))Vn, but still f(x) # g(x). Moreover, we
only know f and g have radial limits off a set of
zero logarithmic capacity:.

H
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Generalized Koebe conjecture: Suppose C
is a upper semi-continuous decomposition of S?
and suppose none of the elements of C separate
the plane. Let () be the interior of the set of sin-
gletons. Then there is a closed decomposition D
of 52 such that every element is either a point or
a disk and a bijection f : C — D so that f is
continuous in the Hausdorfl metric and f is con-
formal on €.

This contains Koebe’s conjecture as a special case,
because 1f €2 is connected then the decomposition
of E = S%\ Q into its connected components

is a upper semi-continuous decomposition (R.L.
Moore 1925).

It would also be nice to have conditions on C which
imply all elements of D are points (the analog of
welding).
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Suppose f : D — Q and g : D* — QF onto
disjoint simply connected domains. It & C T and
h =g 1o fon E, wesay h is a generalized
conformal welding on F. David Hamilton (1991)
introduced this idea.

Theorem 2: Every orientation preserving home-
omorphism A is a generalized conformal welding
on T\ (F} U F5), where F1 and h(F3) have zero
logarithmic capacity.

Corollary: If h preserves sets of zero capacity
then it is a generalized welding except on a set of
zero capacity.

Corollary: If cap(F) = 0 implies |h(E)| = 0
then h is a generalized welding except on a set of
Lebesgue measure zero.
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Theorem 2 gives no information it T = F7 U Fb,
but amazingly in this case we have

Theorem 3: Suppose h is a orientation pre-
serving homeomorphism. Then it is the welding
of a flexible curve iff there is a Borel set £ such

that both E and h(FE) have zero logarithmic ca-
pacity.

Thus we know h is a conformal welding if it is ei-
ther good enough (quasisymmetric) or wild enough
(log-singular)!

Theorem 4: Every orientation preserving home-
omorphism h : T — T agrees with a conformal
welding homeomorphism H, except on a set of
measure € (for any € > 0).

This requires another idea: interpolating sets for
conformal maps.
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Suppose 1 > 0 is a Borel measure and define

= [

Let Prob(E) be mass 1 measures on E and define
cap(E) sup{I(p)"' : p € Prob(E)}.

For &/ C T, cap > 0, monotone and countably
subadditive.
For compact subsets of the circle I/ has zero log-
arithmic capacity ift
(i) E is the zero set of some conformal map f.
(ii) Planar Brownian motion never hits F a.s.
(iii) The extremal length from D(0,1/2) to E is
infinite.
(iv) Radial limits for a conformal f don’t exist

on I.
(v) E is an interpolation set for conformal maps.

15



To 1illustrate the Koebe’s theorem approach to
conformal welding, we will give a new proof that
boundary values of QC maps are weldings.
IDEA OF PROOF:

Step 1: Choose large n and take n-circle chain
associated to h. Let I' be limit set of correspond-
ing reflection group.

Step 2: Let f and g be conformal maps from
D and D* to the two sides of circle chain.

Step 3: Extend f and g by Schwarz reflection
to maps from universal cover of a n-punctured
plane to either side of T'.

Step 4: By uniformization theorem this gives
maps from D and D* to either side of I'.

Step 5: Lift H to D* and show two maps agree.
Thus I' is K-quasiconformal image of circle.

Step 6: Let n — oo and pass to limit.
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Here 1s a circle chain and several selt-reflections.
The limit of these reflections is a closed Jordan
curve I'. The two sides of the curve will be denoted

D andD*.
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Same figure as before, but with a chain corre-
sponding to the identity homeomorphism.

18



The map f : D — €2, can be extended by re-
flection to a map of the universal cover of W,, =
S?\ {z1,...,zn} to Dy (the inside of T'). Since
the universal cover can be identified with D, we
get a map of D to Dy,.
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Same construction gives a conformal map from
D* to D* (the outside of I'). If we first extend
H to the plane by reflection and then lift it to
the universal cover of S?\ {y1,...,yn}, we get
a K -quasiconformal map of D* which conjugates
the group action to the symmetric one (i.e., the
reflection of the inside).
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Idea to prove Theorem 4: If h is log-regular
(maps sets of zero capacity to zero length), then
results above are enough. If i maps zero capacity
to positive length, then need new idea.

Theorem 5: If E has zero log capacity and A is
any o.p. homeomorphism of the circle then there
1s a conformal map of D — €2 C D such that

fle=hlE.

Given such an h we can take f inside the disk
and ¢(z) = z outside. Then g~ 'o f = h (at least
on the set of zero capacity). Combining this with
ideas from log-regular case gives all cases.
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We say the decomposition is realized by a func-
tion f : K — S?if it consists of the level sets
{fY2):2€ 8%} of f. If K C T and f is the
boundary values of a conformal map on D, we will
call the decomposition conformal.

We will say a decomposition of the unit circle is
separated and if any two distinct sets are con-
tained in disjoint intervals.
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Theorem 6: Suppose £/ C T is compact. Then
the following are equivalent.

1. I/ has logarithmic capacity zero.

2. Given any homeomorphism g : D — Q C R?
which extends continuously to T, there is a con-
formal map f : D — ) which extends continu-
ously to T and f|r = g|g.

3. Given any continuous map ¢ : E — R? such
that z # w implies ¢~ '(2) and ¢~ (w) lie in
disjoint arcs of T, there is a conformal map f :
D — € which extends continuously to T and

flE=4alp
4. A decomposition of £ is conformal iff it is upper
semi-continuous and separated.
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