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Suppose h : T → T is a orientation preserving
homeomorphism. Attach two copies of the disk
along their boundaries via h. We get a sphere S2.

h

The disks and the sphere all have conformal struc-
tures. Can we make the identification respect
these structures?
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Γ = closed Jordan curve

S2 \ Γ = Ω ∪ Ω∗.

f : D → Ω, g : D
∗ → Ω∗ conformal

h = g−1 ◦ f : T → T conformal welding

f

g

D

D

Ω

Ω∗ ∗

h

smooth Γ ↔ smooth h is 1-to-1, onto (up to
Möbius equivalence).

For general curves, neither 1-to-1 nor onto.
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From paper of Mumford and Sharon. Application
of conformal welding to pattern recognition.
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Let K be the closure of the graph of sin(1/x).

Let F,G be conformal maps from regions above
and below K to D, D∗.

h = G ◦ F−1 is well defined, continuous and 1-1
except at one point. Thus it extends to a homeo-
morphism h of circle.
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Claim: h is not a conformal welding.

Suppose h = g−1 ◦ f for some curve Γ. Then
f ◦ F and g ◦ G would be conformal off K and
continuous except on the segment I = [i,−i].

By Morera’s theorem they extend to conformal
map from complement of I to complement of a
point. This contradicts Liouville’s theorem.

f g

GF

K
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To see that the map is not 1-to-1 is more difficult.

There are curves Γ and homeomorphisms of the
sphere H which are conformal off Γ but which are
not Möbius.

Then Γ and Γ′ = H(Γ) are not equivalent, but
they do give the same homeomorphism h.

H

f

g

Γ

Η(Γ)

h = g−1 ◦ f = (H ◦ g)−1 ◦ (H ◦ f)
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For example, every curve of positive area (define
QC map with non-zero dilatation on Γ).

Non-uniqueness can fail more dramatically. There
are h’s with corresponding Γ’s dense in all closed
curves (in Hausdorff metric).

We call these flexible curves.

Such example can have dim = 1.

9



Fundamental thm of conformal welding:
quasisymmetric ⇒ conformal welding.

h is quasisymmetric (QS) if there is an M < ∞.

1

M
≤

|h(I)|

|h(J)|
≤ M,

for any adjacent intervals I, J of equal length.

By a famous theorem of Ahlfors and Beurling,
these are same as boundary values of quasicon-
formal self mappings of the disk.

First proof of fund thm was by Pfluger (1960)
using measurable Riemann mapping theorem.
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A map is K-quasiconformal if preimages of small
disks are ellipses of eccentricity ≤ K.

fz =
1

2
(fx − ify), fz̄ =

1

2
(fx + ify)

|µf | = |
fz̄

fz
| ≤

K − 1

K + 1
< 1

Measureable Riemann mapping theorem:
If ‖µ‖∞ < 1 then there is a QC f so µf = µ.

• normalized K-QC maps are equicontinuous.

• f : H → H is QC, reflection gives QC map.
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Standard proof of fund thm:

h : T → T extends to QC-map H : R
2 → R

2.

Let F be QC map with dilatation equal to H ’s in
D, equal to 0 outside disk. Let Γ = F (T).

Let g = F |D∗ and f = F ◦ H−1|D. THen

f : D → Ω, conformal

g : D
∗ → Ω∗, conformal

g−1 ◦ f = H ◦ F−1 ◦ F = H = h on T
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QS map include all diffeomorphisms and include
many non-smooth maps (h′ = 0 a.e. is possible).

Let X be space of all homeomorphisms T → T

d(f, g) = |{f 6= g}| + |{f−1 6= g−1}|.

QS maps are nowhere dense in this space.

Theorem 1: Weldings are dense in (X, d).

Every circle homeomorphism agrees with a con-
formal welding except on a set of length < ǫ.

There are homeomorphisms which do not agree
with any QS map on positive measure.

(Amusing fact: X is path connected but has no
finite length paths.)

13



A decomposition of a compact set K is a col-
lection of disjoint closed sets whose union is K.

A collection C of closed sets in the plane is called
upper semi-continuous if a collection of el-
ements which converges in the Hausdorff metric
must converge to a subset of another element.
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A Moore decomposition of the plane is an up-
per semi-continuous decomposition by compact,
connected sets not seperating the plane.

Theorem (R.L. Moore, 1925): The quo-
tient space formed by identifying each element of
a Moore decomposition to a point is homeomor-
phic to R

2.

We will call a Moore decomposition conformal
if the quotient map can be taken to be conformal
on Ω(C), the interior of the set of singletons.
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Not every Moore decomposition is conformal, e.g.,
suppose C consists of a single closed disk and sin-
gletons. If this were conformal we would contra-
dicts Liouvilles’s theorem.

If every Moore decomposition was conformal, then
every cirle homeomorphsim would be a conformal
welding.

x

h(x)
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Koebe’s circle domain theorem (1908):
Every finitely connected domain can be confor-
mally mapped to a Koebe domain (components
of Ωc are disks and points).

Koebe’s Conjecture: Every planar domain
can be mapped to a Koebe domain.

Koebe’s conjecture is known for some special cases.
He and Schramm proved it for countably many
boundary components (1993).
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A Koebe decomposition is a Moore decom-
position using only disks and points.

General Koebe Conjecture: Every Moore
decomposition is conformally equivalent to a Koebe
decomposition.

All but countable many components map to points.

This contains Koebe’s conjecture. If Ω is con-
nected then decomposition of S2 \Ω into its con-
nected components is a Moore decom. (Moore
1925).

It would also be nice to have conditions which
imply all elements collapse to points.
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Koebe’s thm gives conformal weldings:

• Connect points {xk}
n
1 ⊂ T by disjoint curves

{γn} to the points 2h(xk) ∈ {|z| = 2}.

• Let Ω be D ∪ 2D
∗ plus ǫ-nbhd of each γn.

• Ω can be mapped to a circle domain.

• As ǫ → 0, get chain of tangent circles.

If chains stay inside {|z| < R}, then there are
≤ (R/ǫ)2 disks of size > ǫ, independent of n.

Requires mild condition on h (cap(E) = 0 ⇒
cap(h(Ec)) > 0, i.e., h not log-singular).
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Theorem 1: For any o.p. homeomorphism h
there are non-degenerate sequences

fn : D → Ωn, gn : D
∗ → Ω∗

n

of conformal maps onto disjoint domains with

|fn(x) − gn(h(x))| → 0,

for all x ∈ T minus a countable set.

Conjecture 2: Suppose h : T → T is any o.p.
homeomorphism. Then there are conformal maps
f, g onto disjoint domains such that f = g ◦ h on
T minus a countable set.

Follows from the generalized Koebe Conjecture.
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The problem is passing to the limit. We can have

lim
n

fn = f, lim
n

gn = g, unif. on compacta

fn(x) = gn(h(x)) ∀n,

but still f(x) 6= g(x) some x ∈ T.

Moreover, we only know f and g have radial limits
off a set of zero logarithmic capacity.

If fn → f uniformly on compacta, then there is
subsequence so fn(x) → f(x) for all x ∈ T ex-
cept a set of zero K-capacity, any K with log 1

t =
o(K(t)). False for log-capacity. (Hamilton, Lund-
berg).
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Capacity: For µ > 0 define

IK(µ) =

∫∫
K(|z − w|)dµ(z)dµ(w).

capK(E) = sup{I(µ)−1 : µ prob. meas. onE}.

K = log 1
t gives log-capacity. For E ⊂ T, cap >

0, monotone and countably subadditive.

E ⊂ T has zero logarithmic capacity iff
(i) Planar Brownian motion never hits E a.s.
(ii) Extremal length from D(0, 1/2) to E is ∞.
(iii) E is the zero set of some conformal map f .
(iv) ∃ conformal f with no radial limits on E.

cap(E) = 0 implies dim(E) = 0 (very small!).
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Suppose
f : D → Ω

g : D
∗ → Ω∗

map onto disjoint simply connected domains.

If E ⊂ T and h = g−1 ◦ f on E (radial limits),
h is a generalized conformal welding on E.

David Hamilton (1991) introduced this idea.
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Try to pass to limit in Theorem 2. Lose control
of boundary values on sets of log capacity zero.

Theorem 3: Every o.p. homeomorphism h is a
generalized conformal welding on T \ (F1 ∪ F2),
where F1 and h(F2) have zero log capacity.

Corollary: If h preserves sets of zero capacity
then it is a generalized welding except on a set of
zero capacity.

Corollary: If h is log-regular then h is a general-
ized welding except on a set of Lebesgue measure
zero. (cap(E) = 0 implies |h(E)| = 0.)
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Theorem 3 gives no information if h is log singular,
i.e., T = F1∪F2, with cap(F1) = cap(h(F2)) = 0.
But amazingly in this case we have

Theorem 4: h is the welding of a flexible curve
iff h is log singular.

Thus we know h is a (classical) conformal welding
if it is either tame enough or wild enough!

Log-regular and log-singular maps are distance
one apart in X . To show CW is dense in X ,
take and h and divide T into sets where h looks
log-singular or log-regular, plus set of small length.
Combine results to get CW map which agrees with
h except on small measure.

25



Koebe’s theorem ⇒ Fund. Thm. of CW:

A circle chain defines a Jordan curve Γ (limit set
of corresponding reflection group).

Must show:

• Conformal welding of curve agrees with h at
tangents of circle chain.

• If h has K-QC extension H , Γ is K-quasicircle

• As n → ∞ we get a K-QC limit curve.
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f
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Conformal fn : D → Ωn can be extended by
reflection to a map of the universal cover of Wn =
S2 \ {x1, . . . , xn} to Dn (the inside of Γ).

Since the universal cover can be identified with D,
we get a map of D to Dn.
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G

g

n

n

n

Same construction gives a conformal map from D
∗

to D∗ (the outside of Γ).

Lift Hto the universal cover of S2 \ {y1, . . . , yn}
(use reflections). Get a K-QC map of D

∗ → D
∗.

Inside and outside maps agree on T. Gives Γ as
K-QC image of circle.
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