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No Steiner Points With Steiner Points Dissection

Three types of triangulations



Good Bad
Goal: make pieces as close to equilateral as possible.
Minimize the maximum angle (compute MinMax angle).

“Good” meshes improve performance of numerical methods.



Defn:

Defn:

Defn:

Defn:

acute triangle = all angles < 90°.
nonobtuse triangle = all angles < 90°.
@-triangulation = all angles < ¢.

O(P) = inf{¢ : P has a ¢-triangulation}.



Thm (Burago-Zalgaller, 1960): ®(P) < 90° all polygons.

“Every polygon has an acute triangulation.”



Thm (Burago-Zalgaller, 1960): ®(P) < 90° all polygons.

“Every polygon has an acute triangulation.”

No bound < 90° works for all polygons.

Any triangle with an angle < 6 also has an angle > 90° — 6/2.



Thm (Burago-Zalgaller, 1960): ®(P) < 90° all polygons.
“Every polygon has an acute triangulation.”
Rediscovered by Baker-Grosse-Rafferty, 1988 (weaker version).

Much work on acute and non-obtuse triangulations by

Barth, Hirani, Przytycki, Tan,

Bern, [toh, Ruppert, Ungor,
Edelsbrunner, Kopczynski, Saalfeld, VanderZee,
Eppstein, Maehara, Saraf, Vavasis,
Erten, S. Mitchell Shefter, Yuan,
Gilbert, Pak, Shewchuk, Zamfirescu,

and many others (sorry if I omitted you).
Thm: every n-gon has an acute triangulation of size O(n).

Burago-Zalgaller result first cited in CS literature around 2004.



Steiner points versus no Steiner points.



Consider triangulations of a square.
Without Steiner points, 90° is best angle bound (Delaunay triangulation).
Using Steiner points, a 72°-triangulation is possible.

We shall prove later this is best possible.



With Steiner points is the optimum attained?



Omax ~ 74.7482 Omax ~ 70.3590 Omax ~ 67.8690
With Steiner points there are infinitely many possibilities.

Not obvious that optimal triangulation exists.



Omax ~ 74.7482 Omax ~ 70.3590 Omax ~ 67.8690
With Steiner points there are infinitely many possibilities.
Not obvious that optimal triangulation exists.
In case above, optimal angle is 67.5° and is attained.

But sometimes, the optimum bound is not achieved.



Dissections versus triangulations.



In a triangulation, triangles meet at vertices or full edges.

Dissections are more general, but do they give better angles?




Defn: 60°-polygon = all angles are multiples of 60°.
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Polygon has a dissection into two equilateral triangles.




Defn: 60°-polygon = all angles are multiples of 60°.
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Polygon has a dissection into two equilateral triangles.

Claim: it need not have any equilateral triangulation.

Equilateral triangulation

= all triangles the same size /NN
NN/

= edge lengths are integer multiples

| \VAVAVAVAVAVA
of triangle length ANAVAVAVAVA

= s/t is rational

Conclusion: a 60°-dissection exists, but a 60°-triangulation need not.



Lemma: For 60°-polygons ®(P) = 60°.



Lemma: For 60°-polygons ®(P) = 60°.
Sketch of Proof: Given P,

e Choose P’ near P, with same angles and vertices on equilateral grid.
e Map both conformally to disk. Vertex images almost agree.
e Align vertex images using small QC distortion of disk.

e Get small QC map P’ — P. Image triangulation has angles near 60°.

LT G

Conclusion: in this case, triangulations = dissections + €.

;




Main idea: conformal images of 60°-polygons

) AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN

Given P, construct a 60°-polygon P’ that “approximates” P.
Conformally map a nearly equilateral triangulation from P’ to P.
Conformal = 1-1, holomorphic = preserves angles infinitesimally:.

Map only vertices; then connect by segments. (Edge images are curved).



Main idea: conformal images of 60°-polygons

) AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN

Problems to overcome (among others):
e must map vertices to vertices,
e bound angle distortion at positive scales,
e attain sharp bounds versus approximate them,

e Fuler’s formula may force vertices of degree 5 or 7.



Euler’s formula: F'— E+V =1
Faces - Edges + Vertices = 1
9-17+9 =1



Let L(v) = number of triangles with v as vertex.

In particular, this gives a labeling of P by positive integers.



Curvature of boundary vertex v: k(v) =3 — L(v).

Curvature of interior vertex v: k(v) =6 — L(v).



Fuler’s formula can be rewritten to look like Gauss-Bonnet:

Z k(v) =6 — Z k(v)

vEinterior vEboundary

k(T)=6—r(0T)



Define curvature of labeling L of vertices V' of P (omit Steiner points):

R(L)=6— > r(v)=6-3]V|+» L)
veP veP
Labelings of ¢-triangulations have certain curvature restrictions.



For acute triangulations (angles < 90°) we must have
k(L) < k(T)
since omitted boundary Steiner points have L(v) > 3 = k(v) < 0.



If a triangle has all angles < ¢, then all angles are > 180° — 2¢.

[f a ¢-triangulation has L(v) triangles at vertex v € P of angle 6,,, then
L(v) - (180° — 26) < 6, < L(v) - o,



If a triangle has all angles < ¢, then all angles are > 180° — 2¢.

[f a ¢-triangulation has L(v) triangles at vertex v € P of angle 6,,, then
L(v) - (180" = 2¢) < 6y < L(v) - ¢.
Detn: A labeling L of P is a ¢-labeling if these inequalities hold, i.e.,
O - L(v) < v

- — 180° — 2¢
By definition, every ¢-triangulation gives a ¢-labeling.
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Suppose labeling L corresponds to a ¢-triangulation. Then

e ¢ < 72° = no degree < 5 vertices = k(L) < k(T) < 0.



Example: for a square, ®(P) = 72°.

Get (P) < 72° by explicit construction:

N
X

/|

Pay

VN



Converse:

e Suppose P has a ¢-triangulation with ¢ < 72°.
e Fuler = there is a ¢-labeling L of corners with x(L) < 0.
e = k(L)=06—) r(v) <0,s0 k(v) > 2 for some corner.
e = k(v)=3— L(v) > 2,80 L(v) = 1.

e = the triangulation has a 90° angle at corner v =<« .



AV

Suppose labeling L corresponds to a ¢-triangulation. Then

e ¢ < (450/7)° = no degree > 7 interior vertices and

only degree 3 Steiner boundary vertices

= k(L) =k(T)=0.



To summarize: if a polygon P has a ¢-triangulation, then the vertex
set has ¢-labeling L. Moreover, there is a labeling so that

k(L) < 0if ¢ < 72°,
k(L) = 0 if ¢ < (450/7)°.

These necessary conditions observed by Joseph Gerver in 1984.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < qﬁ < 72°, and P has a ¢-labeling with (L) < 0,
3. 60O < ¢ < - 90°, and P has a ¢-labeling with x(L) = 0.

VAN



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < qﬁ < 72°, and P has a ¢-labeling with k(L) < 0
3. 60O < ¢ < - 90°, and P has a ¢-labeling with x(L) = 0.

VAN
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Corollary: For ¢ > 60°, the following are equivalent:
(1) P has a (¢ + €)-triangulation for all € > 0.
(2) P has a ¢-triangulation.

Equivalent: If P is not a 60°-polygon, then the angle bound ®(P) is
attained by some triangulation of P.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < qﬁ < 72°, and P has a ¢-labeling with k(L)
3. 60O < ¢ < -90°, and P has a ¢-labeling with x(L) =

VAN

0,
0.

Cor: ¢(P) only depends on set of angles. Not order or edge lengths.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < qﬁ < 72°, and P has a ¢-labeling with k(L) < 0
3. 60O < ¢ < - 90°, and P has a ¢-labeling with x(L) = 0.

VAN
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Gerver (1984) proved necessity when P only has ¢-dissection.

Corollary: For ¢ > 60°, the following are equivalent:
(1) P has a ¢-dissection.
(2) P has a ¢-triangulation.

= Dissections and triangulations give same angle bound.



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < qﬁ < 72°, and P has a ¢-labeling with k(L)
3. 60O < ¢ < -90°, and P has a ¢-labeling with x(L) =

VAN

0,
0.

Some geometric consequences of the proof:
Cor: If 0, > 36°, then ®(P) < 72°.

Cor: If 0, < 36°, then ®(P) = 90° — Hmm
Cor: ®(P) = 72° for any axis-parallel polygon.

Cor: If 0,;; > 144° then ®(P) = 72°. (This has interior!)



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. 5 - 90° < gb < 72°, and P has a ¢-labeling with k(L) < 0
3. 60O < ¢ < - 90°, and P has a ¢-labeling with x(L) = 0.

VAN
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Cor: Put a topology on n-gons by thinking of them as a subset of R%".
(a) The map P — ®(P) is continuous, so { P : ®(P) = ¢} is closed.
(b) This set has non-empty interior iff ¢ = 2 - 90° or ¢ = 72°,

(¢) Otherwise it has co-dimension > 1.



Generating random 10-gons.
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The distribution of optimal upper bounds over 10” random samples.
On the left is a histogram based on 1° bins. The spike a 72° is evident.

On the right is an enlargement near 64° using .1° bins.

No spike at % -+ 90° & 64.26° is visible. Is N = 10 too small?
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In these experiments I just chose angles at random (with correct sum).
Didn’t choose edge lengths or check for self-intersections.

What is better model for random polygons?



Theorem: For 60° < ¢ < 90°, a polygon P has a ¢-triangulation iff
1.72° < ¢ < 90° and P has a ¢-labeling L of Vp,

2. % - 90° < ¢ < 72°, and P has a ¢-labeling with k(L)
3.60° < ¢ < % -90°, and P has a ¢-labeling with (L)

VAN
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0
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Cor: For an N-gon ®(P) can be computed in time O(N).

However, 1 x R rectangle needs = R triangles.

AN IS N AN >

= no bound for number of triangles in terms of V.



Sketch of O(N) computation of ®(P), N = number of vertices:
Find 6,;, in time O(N).

If O < 36° then ®(P) = 90° — 0,,i,/2. Done.

If O = 144° then &(P) = 72°. Done.

[f Pis a 60° degree polygon then ®(P) = 60°. Done.

Can now assume 36° < 6, < 144° and 60° < ¢(P) < 72°.



After some work, computing ®(P) reduces to finding two numbers:

Poo

inf{¢ : 3 ¢-labeling L},

¢og = inf{¢ : 3 ¢-labeling L with k(L) =0}

Computing ¢ is easy: for v find the minimum ¢ so that either
6. 6.
o 180—20

is an integer; this takes O(1) work per vertex.

Then take maximum of these results (O(NN') work).



To compute ¢, we rewrite it as

¢p = nf{¢: f(¢) < 0 and g(¢p) = 0}

where f, g are the monotone step functions:

f(¢) =min k(L) =6 —3|V|+ Z inf{k : 180 — 2¢ < i < ¢}

k
velP
0,
g(¢) =max k(L) =6 — 3|V| + Z sup{k : 180 — 2¢ < - < ¢}
velP

Note f < g, f = decreasing, g = increasing.

O(N) jump points to check, O(N) work per point = O(N?) work?



No, we can find ¢g € J in time O(N) as follows:
e F'ind smallest, largest elements of J. Evaluate f, g.
e I'ind median of J by median-of-medians algorithm. Evaluate f, g.
e Decide if ¢q is > or < median. Delete half of J.
e Repeat last two steps until ¢q is found.
e Monotonicity implies new evaluations only use remaining points.

= Work diminishes geometrically. Total is O(V).



Idea behind proof of main theorem: conformal maps

VAVAVAVAVAN
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Given P with angles {0;.}, approximate by 60°-polygon P’ angles {1/.}.

Rounding to nearest multiple of 60° often doesn’t work: need

D =(N—2)-180° =) 0.



Idea behind proof of main theorem: conformal maps

VAVAVAVAVAN

\VAVAVAVAV/

After angles {1/}, } are chosen, P’ is built using Schwarz-Christoffel formula:
> N
F(z)=A+ 0/ [T - =)0/ g,
=1

F : D — P where {0;.} = angles, {z;.} = vertex pre-images on unit circle.
P’ has same zp-parameters as P, new angles = {1;.}.



Idea behind main theorem: conformal maps
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v,
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Map a (nearly) equilateral triangulation of P’ to P.
Can prove worst angle distortion is at vertices = 0. /1.

Extra work needed to ensure angle bound attained, not just approximated.



Triangulation of a sector can be computed with power map.
Away from corners, all angles are close to 60° (Koebe’s theorem).

In between, we use quasiconformal interpolation to define triangulation.
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Images of equilateral triangulation of halt-plane under power map.

“Worst” angles near vertex. Tends towards 60° away from vertex.



But....

This approach gives a triangulation with only degree 6 interior vertices.
Only works when P has a zero curvature ¢-labeling.

Let L minimize |k(L)| over ¢-labelings of P.

If k(L) > 0 there must be interior vertices of degree < 5.

If k(L) < 0 there must be interior vertices of degree > 7.



Creating degree 5 vertices by folding:

YAV VAN

o

f maps P’ to P with a slit removed: identifies boundary segments.
A degree 5 interior vertex is created.

But is this really a triangulation of P?



Creating degree 5 vertices by folding:

YAV VAN
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Technical difficulty: Image triangulations must match up across slit.
Matching occurs if | f/(w)| = | f/(2)| whenever f(w) = f(2).
Differential equation can be solved explicitly (= conformal welding).

Solution gives a curved slit (tangent changes by 3° above).



Creating a degree 7 vertex requires P’ to be Riemann surface.
All non-zero curvature cases can be handled.

= interior vertices are all degree six with |k(L)| exceptions



Open problems:
e Minimal weight Steiner triangulations.
e How large are optimal triangulations?
e Surfaces and solids.

e Triangulations of PSLGs (planar straight line graphs).



We saw a triangulation achieving MinMax angle usually exists.

A minimal weight Steiner triangulation (MWST) minimizes total
edge length. It need not exist (t € s € 1 K r):

r

Question: Does a MWST exist for polygons in general position?

Without Steiner points, finding a MW'T is NP-hard for point sets (Mulzer-
Rote 2008) and O(n?) for polygons (Gilbert 1979, Klincsek 1980).

O(optimal) approximation of MWST is possible (Eppstein, 1994)



How many triangles does MaxMin solution need?
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Proof of theorem gives exponentially many triangles for 1 x R rectangle.

triangles.

)

Estimate smallest number of triangles needed for general P

(R

above gives O

polygon P’

But good choice of 60°-

may help.

Thick-thin decomposition of polygons

[s exact minimum NP-hard to compute?



Main question in 3 dimensions:

Does every polyhedron have an acute triangulation of polynomial size?

triangulation = tetrahedralization with dihedral angles < 90°.
Acute triangulation exists for unit cube [0, 1]%: 1370 tetrahedra.
No acute triangulation of cube in R", n > 4.

Kopczynski-Pak-Przytycki 2009, VanderZee-Hirani-Zharnitsky-Guoy 2010.

Do polyhedral surfaces have polynomial sized acute triangulations?
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Mario, triangulated



Mario, triangulated (N=>500)
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Mario, triangulated (N=1000)
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Happy Birthday Mario!



Thanks for listening. Questions?




A planar straight line graph I' (or PSLG) is finite union of points
V and a collection of disjoint edges F with endpoints among these points.
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Generally let n = |V| be the number of vertices.

A simple polygon is a PSLG where edges form a closed cycle.



A conforming triangulation of a PSLG is a triangulation of each face,
consistent across edges of the PSLG.

PSLG Non-conforming Conforming

NOT = Non-Obtuse Triangulation = all angles < 90°.
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Consider a NOT for this PSLG (or any angle bound < 180°).
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An edge must leave the vertex with the 90° wedge.
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[terating shows many new vertices, edges are needed.



A NOT for this PSLG needs > n? triangles.
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Burago-Zalgaller, 1960: Every PSLG has an NOT (no size bound).
S. Mitchell, 1993: Every PSLG has a 157.5°%-triangulation, size O(n?).

Tan, 1996: Every PSLG has a 132°-triangulation, size O(n?).

NOT-Thm (B. 2018): Every PSLG has a NOT with O(n??) elements.
Improves O(n3) for Delaunay triangulation by Edelsbrunner, Tan (1993).
First polynomial bound for NOTs.

Proof uses a “discrete closing lemma” for flows.



Problems for PSLGs I':

e NOT Conj: Every PSLG has a NOT with O(n?) elements.

e Compute ®(I') = MinMax angle for conforming triangulation of I'.
e When is minimum MinMax angle attained?

e Give bounds on ®(I") in terms of minimum angle 6,,;, in I".



Problems for PSLGs I':

e NOT Conj: Every PSLG has a NOT with O(n?) elements.

e Compute ®(I') = MinMax angle for conforming triangulation of I'.
e When is minimum MinMax angle attained?

e Give bounds on ®(I") in terms of minimum angle 6,,;, in I".

Best result so far: there is a 83 > 0 so that
O(I") < 90° — min(by, Oppin) /2.

Uses compactness argument: 6y not explicit.



Flows associated to triangulations:
e In-circle divides any triangle into three sectors and a central triangle.

e Sectors are foliated by circular arcs centered at vertices.

e Propagating cusp points defines flow lines on triangulation.
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