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Riemann Mapping Theorem: If Ω is a simply
connected, proper subdomain of the plane, then there is
a conformal map f : Ω → D.

Conformal = angle preserving
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For polygons, enough to compute vertices.

The Schwarz-Christoffel formula:

f (z) = A + C

∫ z n
∏

k=1

(1 −
w

zk
)αk−1dw.

Gives conformal map to polygon.
παk’s are interior angles.
zk’s map to vertices.
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Hyperbolic metric on disk given by

dρ =
ds

1 − |z|2
≃

ds

dist(z, ∂D)
.

• Geodesics are circles perpendicular to boundary.
• Shaded region is hyperbolically convex.
• Metric transfers via conformal maps to other domains.







Crescents are regions bounded by two circular arcs.

Crescents have foliation into circular arcs perpendicular
to boundary. Gives mapping from one boundary arc to
other. It is Möbius (linear fractional) transformation.
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The medial axis consists of centers of disks in Ω which
touch the boundary in at least two points.

Discretize MA to approximate by a finite union of disks.



Fast Almost Riemann Mapping: Can construct
a map from n-gon Ω to disk in O(n) time and is “close
to” the conformal map.



Similar flow for any simply connected domain.





Flow defines Möbius map between medial axis disks.
Explicit formula for edges of medial axis.

point-point edge-edge

point-edge convex vertex

Can compute iota from MA in O(n). MA computable
in O(n) due to Chin, Snoeyink and Wang.



Plug iota parameters into SC formula. Should get a
good approximation to original polygon.



Plug iota parameters into SC formula. Should get a
good approximation to original polygon.

Target Polygon SC-image with iota
parameters

MA flow gives “formula” for SC-parameters {zk}.







Why does iota approximate the Riemann Map?



Why does iota approximate the Riemann Map?

Because iota is the boundary map of a conformal map
for a surface with the same boundary as Ω.



Why does iota approximate the Riemann Map?

Because iota is the boundary map of a conformal map
for a surface with the same boundary as Ω.

Take union of all hemispheres whose bases lie inside Ω.
Upper envelope is the “dome” of Ω.

(This is hyperbolic convex hull of Ωc.)







It is easy to map any dome conformally to a disk.



On base, foliate crescent by orthogonal arcs. Points in
plane move along these arcs.



A polygon, medial axis, approximation by disks.





Angle scaling family



Iota = conformal map from dome to disk.

Riemann = conformal from base to disk

From base to dome = Sullivan’s convex hull theorem

distortion
bounded

Riemann =
        conformal 

iota = conformal



Nearest point map in R
n is Lipschitz.

Nearest point retraction in hyperbolic space extends to
map R : Ω → S = Dome and is a quasi-isometry (Den-
nis Sullivan, David Epstein and Al Marden, C. Bishop)

1

A
ρΩ(x, y) − B ≤ ρS(R(x), R(y)) ≤ AρΩ(x, y).



P P 2

P = hyperbolic geometry, University of Warwick

P 2 = computational geometry, UC Irvine



Fast Mapping Theorem:

Given an n-gon we can compute an ǫ-conformal map
f : D → Ω in time O(n log 1

ǫ log log 1
ǫ).

ǫ-conformal means angles are distorted by < ǫ.

(Really means (1 + ǫ)-quasiconformal.)



K-quasiconformal means tangent map sends circles to
ellipses of eccentricity ≤ K.

K1

For smooth maps let µ = gz̄/gz where

gz̄ =
1

2
(gx + igy), gz =

1

2
(gx − igy).

Then |µ| < 1 and K = supD
1+µ
1−µ ≥ 1.

µ = 0 or K = 1 gives conformal map.

FARM: iota map ∂Ω → T has a K0 QC extension to
interiors with K0 independent of Ω.



Check SC-parameters by triangulating image polygon
and map affinely to target. Compute K for each triangle
and take maximum.

The most distorted triangle is shaded. Here K = 1.244.
We can bound QC distance from solution even though
we don’t know what the solution is.



Ideas in proof of FMT:
• Thick and thin parts of polygons
• O(n) domain decomposition
• Newton’s type iteration via fast multipole
• Angle scaling



Thick and Thin parts

An ǫ-thin part of a surface is a union of non-trivial
loops of length ≤ ǫ (parabolic/hyperbolic).

An ǫ-thin part of a polygon is sub-region with two edges
on ∂Ω whose extremal distance is ≤ ǫ.



Ω can be mapped to 1 × ǫ rectangle with two sides of
∂Ω covering the long sides of rectangle.



Right channel is not thin because edges on top have
length comparable to width of channel.



Previous figure not to scale. Proof uses ǫ ≪ 1 Two ends
of a thin part can be very different scales.

1

r=e
1

−θ/ε
ε

Think ǫ = .01, r = e−75.



Disk Decomposition: Break disk into O(n) pieces,
and use p = | log ǫ| term power series on each piece.
Time O(np log p) allows O(1) FFT’s per vertex.

Here p = 5. Representation is ǫ-conformal if series on
adjacent pieces agree to within ǫ (in certain metric).



Using single power series gives bad approximation: 100,
500, 2500 terms.



Decomposition depends on choice of n-tuple on T.

Keep dividing until each box contains ≤ 1 point.

But this can give ≫ n boxes if points cluster.



Replace a stack of boxes by a single arch and use a
Laurent series instead of a power series.

Decomposition has O(n) boxes and O(n) arches. Why?



Define sawtooth region with vertices at n-tuple. Com-
pute medial axis. Edge-edge bisectors are vertical.

Arches correspond to edge-edge bisectors of length ≥ A
in hyperbolic metric. There are O(n) such edges.



Arches correspond to hyperbolic thin parts.



Beltrami equation:

Given f : D → Ω let µ = fz̄/fz.

Find g : D → D so that gz̄/gz = µ. Then f ◦ g−1 :
D → Ω is conformal.

There is infinite series of convolution operators that
gives exact solution.

Newton’s method: Approximate solution converts
an ǫ-map into an O(ǫ2)-map in O(n1

ǫ log log 1
ǫ).



Uniform radius of convergence: iteration works
if ǫ < ǫ0, independent of n and Ω.

If we knew K0 < ǫ0 then iota map could use it as start-
ing point of iteration and be done.

But we don’t know this, so have to lead iteration to
correct answer in baby steps.



Angle Scaling:

Discretize angle scaling family so gaps are smaller than
ǫ0. Need only O(1) steps.

Use (almost) conformal map onto one domain as initial
point for iteration for next domain.

Start with identity map on disk and get ǫ0-map onto Ω
after O(n) work. Iterate log log 1

ǫ times to get ǫ-map.



Bern and Eppstein (1997): Any n-gon has a quadri-
lateral mesh with angles ≤ 120◦. At most O(n) points
are added. Runs in O(n log n).



Theorem: Any n-gon has a O(n) quadrilateral mesh
so that all new angles are between 60◦ and 120◦ and
which can be computed in O(n).

Uses fast mapping theorem, thick-thin decompositions,
hyperbolic geometry.

Bern-Eppstein showed angle bounds are best possible.



Idea of proof:

Divide polygon into thick and thin parts. Thick parts
look piecewise smooth with 90◦ angles. Map to disk
minus hyperbolic half-planes.



Disk has tesselation by hyperbolic right pentagons. Fi-
nite approximation divides disk into pentagons, trian-
gles and quadrilaterals.



Each piece can be meshed consistently.

Mesh disk, map to polygon, “snap” curves to line seg-
ments. Then mesh thin parts and connect meshes.



Final step is to mesh the thin parts and connect these
to meshing of thick part
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The factorization theorem: For any simply con-
nected Ω with inradius ≥ 1, a Riemann map can be
factored as f = h ◦ g : Ω → D → D where
• g is locally Lipschitz (Euclidean metrics)
• h is biLipschitz (hyperbolic metric)

Euclidean
Lipschitz

Hyperbolic
biLipschitz

conformal 

Cor: Any simply connected plane can be mapped to a
disk by a homeomorphism which is contracting for the
internal path metric.


