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THE PLAN

Lecture 1: Finite trees and Riemann surfaces
• Harmonic measure
• Finite trees and Shabat polynomials
• True trees exist: 2 proofs
• Possible shapes of a true tree.
• Surfaces with an equilateral triangulation.

Lecture 2: Infinite trees and transcendental dynamics
• Infinite trees and entire functions
• The folding theorem
• Application: wandering domains
• Application: Julia sets with small dimension
• Application: prescribing post-singular dynamics























200 step random walk.



1000 step random walk.



10,000 step random walk.



100,000 step random walk.



Harmonic measure = hitting distribution of Brownian motion

Suppose Ω is a planar Jordan domain.



Harmonic measure = hitting distribution of Brownian motion

Let E be a subset of the boundary, ∂Ω.



Harmonic measure = hitting distribution of Brownian motion

Choose an interior point z ∈ Ω.
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ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.
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Harmonic measure = hitting distribution of Brownian motion

ω(z, E,Ω) = probability a particle started at z first hits ∂Ω in E.



Harmonic measure = hitting distribution of Brownian motion

ω(z1, E,Ω) ≈ 3/10.



Harmonic measure = hitting distribution of Brownian motion

ω(z1, E,Ω) ≈ 61/100.



Harmonic measure = hitting distribution of Brownian motion

What if we move the starting point?



Harmonic measure = hitting distribution of Brownian motion
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Harmonic measure = hitting distribution of Brownian motion



Harmonic measure = hitting distribution of Brownian motion



Harmonic measure = hitting distribution of Brownian motion

ω(z2, E,Ω) ≈ 4/10.



Harmonic measure = hitting distribution of Brownian motion

ω(z2, E,Ω) ≈ 34/100.



Harmonic measure = hitting distribution of Brownian motion

61/100 versus 34/100.



Riemann Mapping Theorem: If Ω ( R2 is simply connected, then
there is a conformal map f : D→ Ω. (conformal = angle preserving)

f
θθ

Brownian motion is conformally invariant, so normalized length measure
maps to harmonic measure. Fastest way to compute harmonic measure.
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Riemann Mapping Theorem: If Ω ( R2 is simply connected, then
there is a conformal map f : D→ Ω. (conformal = angle preserving)

f
θθ

Brownian motion is conformally invariant, so normalized length measure
maps to harmonic measure. Fastest way to compute harmonic measure.



harmonic measure = .6683



harmonic measure = .3575



harmonic measure: .6683 versus .3575





Some basic properties of harmonic measure:

ω(z, E,Ω) is the harmonic measure of E ⊂ ∂Ω.

ω is harmonic in z and 0 ≤ ω ≤ 1

Harnack ⇒ different base points give comparable measures.

(If base points are on same side of curve.)



Thm (F & M Riesz 1916):
For rectifiable boundaries, ω(E) = 0 iff E has zero length.



Thm (F & M Riesz 1916):
For rectifiable boundaries, ω(E) = 0 iff E has zero length.

⇒ “Inside” and “outside” harmonic measures have same null sets.

⇒ ω1, ω2 are mutually absolutely continuous.

Recent deep generalizations to Rn by Tolsa and others.



For a fractal curve, inside and outside harmonic measures are singular.

ω1 ⊥ ω2 iff tangents points have zero length.



For which curves is ω1 = ω2?



For which curves is ω1 = ω2? True for lines:



For which curves is ω1 = ω2? True for lines:

Also for circles ( = lines conformally).

Converse? If ω1 = ω2 must Γ be a circle/line?



For which curves is ω1 = ω2? True for lines:

Also for circles ( = lines conformally).

Converse? If ω1 = ω2 must Γ be a circle/line? Yes



f

g

γ

Suppose ω1 = ω2 for a curve γ.

Conformally map two sides of circle to two sides of γ so f (1) = g(1).

ω1 = ω2 implies maps agree on whole boundary.



f

g

γ

Suppose ω1 = ω2 for a curve γ.

Conformally map two sides of circle to two sides of γ so f (1) = g(1).

ω1 = ω2 implies maps agree on whole boundary.

So f, g define homeomorphism h of plane holomorphic off circle.

Then h is entire by Morera’s theorem.

Entire and 1-1 implies h is linear (Liouville’s thm), so γ is a circle.



A planar graph is a finite set of points connected by non-crossing edges.

It is a tree if there are no closed loops.



A planar tree is conformally balanced if

• every edge has equal harmonic measure from ∞

• edge subsets have same measure from both sides

This is also called a “true tree” (true form of a tree).



A line segment is an example.



A line segment is an example.



A line segment is an example.



Trivially true by symmetry



Non-obvious true tree





Some random true trees by Don Marshall and Steffen Rohde



Definition of critical value: if p = polynomial, then

CV(p) = {p(z) : p′(z) = 0} = critical values

If CV(p) = ±1, p is called generalized Chebyshev or Shabat.

10 classical Chebyshev polynomials



Balanced trees ↔ Shabat polynomials

Fact: T is balanced iff T = p−1([−1, 1]), p = Shabat.

Ω U

p

Ω = C \ T U = C \ [−1, 1]



T conformally balanced ⇔ p Shabat.

Ω U

zn

1
z

1

2
(z +    )

p

conformal τ

p is entire and n-to-1 ⇔ p = polynomial.

CV(p) 6∈ U ⇔ p : Ω→ U is covering map.



Theorem: Every finite tree has a true form.

Standard proof uses the uniformization theorem.



• start with a finite tree.



• connect vertices of T to infinity; gives finite triangulation of sphere.

• Defines adjacencies between triangles.



• Glue equilateral triangles using adjacencies. Get conformal 2-sphere.

• By uniformization theorem, equivalent to Riemann sphere.

• Tree maps to balanced tree. Shape unclear.



I Note: conformal 2-sphere has many “equilateral triangulations”.

I Which other Riemann surfaces can be obtained in this way?



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values (usually 0, 1,∞).

Theorem: A Riemann surface can constructed from equilateral triangles
iff it has a Belyi function.

U

Ω
p

Triangles are inverse images of upper and lower half-planes.



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values (usually 0, 1,∞).

Theorem: A Riemann surface can constructed from equilateral triangles
iff it has a Belyi function.

U

Ω
p

A triangulation is equilateral iff every edge has an anti-holomorphic reflec-
tion fixing it pointwise and swapping the two adjacent triangles.



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values (usually 0, 1,∞).

Theorem: A Riemann surface can constructed from equilateral triangles
iff it has a Belyi function.

There are only finitely many ways to glue together n triangles.

⇒ only countably many compact surfaces have a Belyi function.



Belyi function = holomorphic map from Riemann surface with 3 crit-
ical values (usually 0, 1,∞).

Theorem: A Riemann surface can constructed from equilateral triangles
iff it has a Belyi function.

There are only finitely many ways to glue together n triangles.

⇒ only countably many compact surfaces have a Belyi function.

Belyi’s Thm: A compact surface has a Belyi function iff it is algebraic.

(Zero set of P (z, w) with algebraic integers as coefficients).

Motivated Grothendieck’s theory of dessins d’enfant.



Which non-compact Riemann surfaces are Belyi?

= has a Belyi function

= has an equilateral triangulation



The plane



The disk



The punctured disk (identity top and bottom sides)



The trice punctured sphere



Most surfaces have many conformal structures, e.g., disk 6= plane.

Higher genus surfaces have multi-dimensional moduli spaces.

Every Riemann surface can be triangulated.

⇒ every surface is homeomorphic a Belyi surface.

Which conformal structures occur? Need QC maps to answer this.



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K

Ellipses determined a.e. by measurable dilatation µ = fz/fz with

fz = fx − ify fz = fx + ify.

|µ| ≤ K − 1

K + 1
< 1.

Conversely, . . .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .

Cor: If f is holomorphic and g is QC, then there is a QC map h so that
F = g ◦ f ◦ h is also holomorphic. (g ◦ f is quasiregular.)

f gh

QCQC Holo

Holo

QR



QC proof that every finite tree has a true form:

diffeo

conformal QC

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.



QC proof that every finite tree has a true form:

diffeo

conformal

zn

1

z
(z+   )

2

1
QC

QR

“Equalize intervals” by diffeomorphism. Composition is quasiconformal.



QC proof that every finite tree has a true form:

diffeo

conformal

polynomial

zn

1
z

(z+   )
2
1

QC

QC QR

Mapping theorem implies there is a QC ϕ so p = q ◦ ϕ is a polynomial.

Only possible critical points are vertices of tree; these map to ±1.



QC proof that every finite tree has a true form:

diffeo

conformal

polynomial

zn

1
z

(z+   )
2
1

QC

QC QR

Constructive: can estimate QC correction, get shape of true tree.



Eremenko: do true trees approximate all possible shapes?
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Eremenko: do true trees approximate all possible shapes?

Thm: Every planar continuum is Hausdorff limit of true trees.

E,F are distance ≤ ε apart if each is in an ε-neighborhood of the other.



Suffices to approximate subtrees of a grid.
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Suffices to approximate subtrees of a grid.



Suffices to approximate subtrees of a grid.



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

Vertical side has much larger harmonic measure from left.
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“Left” harmonic measure is reduced (roughly 3-to-1).

New edges are approximately balanced (universal constant).



Theorem: Every planar continuum is a limit of true trees.

Idea of Proof: reduce harmonic measure ratio by adding edges.

“Left” harmonic measure is reduced (roughly 3-to-1).

New edges are approximately balanced (universal constant).

Mapping theorem gives exactly balanced.

QC correction map is near identity if “spikes” are short.

New tree approximates shape of old tree; different combinatorics.





This works on other shapes besides trees.

Suppose we are given “unbalanced polygon”.



QR

We can add short branches to make it almost balanced.

Exterior is QR mapped to evenly divided circle.

Again, QR distortion bounded, supported on tiny area.



QR

Important detail: QR map multiples arclength on each boundary segment.

This allows us to “glue together” local maps to get a global QR map.



Can replace trees by meshes. Can replace plane by other surfaces. Get
rational or meromorphic functions.



Using inversion we can work in a bounded domain.
Start with a piecewise smooth domain.



Add boundary points. Roughly evenly spaced.
Add interior point. Harmonic measures not all the same.



Add slits and trees so that all boundary arcs
have roughly the same harmonic measure.



z  + z
2

n −n

QR

−1 +1

Find quasiregular map taking base point to ∞,
sending boundary arcs to equal intervals on circle.
Then each arc is mapped to [−1, 1] via arclength.



Repeat with more closely spaced points. Get QR map
holomorphic except on thin neighborhood of boundary.



Now do this on a Riemann surface.



Cut the surface into nice pieces.



Subdivide edges into many small arcs.
Our construction gives QR maps on each piece.

Continuous across boundaries. QR on whole surface.



Change conformal structure to make QR map holomorphic.
Closely spaced dots ⇒ small conformal change.
⇒ Belyi surfaces are dense in all surfaces.



Every Riemann surface has a “QR Belyi” function.
Solving Beltrami gives countably, dense set of compact surfaces.

What about non-compact surfaces? .



Consider a non-compact surface R.



Take a compact, smoothly bordered piece Y1.



Take a compact, smoothly bordered piece Y1.
Build a QR covering map on this piece as before.



Take a compact, smoothly bordered piece Y1.
Build a QR covering map on this piece as before.

Solve Beltrami on the compact piece. Get new surface Ỹ1 6= Y1 .



Key idea: small dilatation implies Ỹ1 embeds in R.



Take a larger compact, bordered piece Y2.



Construct QR, solve Beltrami, embed Ỹ2 in R.



Induction: Construct, Beltrami, re-embed in R,...



Induction: Construct, Beltrami, re-embed in R,...
Eventually build Belyi function on R.



Thm (B-Rempe): Every non-compact surface has a Belyi function.
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Corollary: Every non-compact surface can be obtained by gluing to-
gether equilateral triangles.



Thm (B-Rempe): Every non-compact surface has a Belyi function.

Corollary: Every non-compact surface can be obtained by gluing to-
gether equilateral triangles.

Corollary: Every Riemann surface is a branched cover of the sphere,
branched over finitely many points.

For compact surfaces, this is Riemann-Roch.

Compact, genus g sometimes needs 3g branch points.

3 branch points suffice for all non-compact surfaces.



Corollary: Any open U ⊂ C is 3-branched cover of the sphere.

A. Epstein: a holomorphic map X → Y is finite type if
• Y is compact,
• f is open,
• f has no isolated removable singularities,
• the set of singular values is finite.

Gives many new dynamical systems of finite type.

E.g., escaping points have more than one point they can escape to.





Connection between finite planar trees and polynomials can be extended
to infinite trees and entire functions.

Folding theorem: given an infinite planar tree T with mild geometric
assumptions, there is an entire function f with two singular values so that
f−1([−1, 1]) approximates T .

This has various applications, e.g.,
• existence of certain “small” Julia sets,
• new wandering domains for certain entire functions,
• meromorphic functions with prescribed postcritical dynamics,








