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average number sides 7 0o, diameters — oo, areas bounded below






average number sides 7 oo, forbid vertices of degree 1 and 2



Theorem 1: Suppose faces have areas that are bounded below and
diameters that are bounded above, and every vertex had degree > 3.
Then

lim sup ANS(t) < 6.

t—00

Average is over all faces contained in circle of radius ¢.



Average over faces inside/hitting an expanding circle



Theorem false in three dimensions



Euler’s formula for finite planar graphs: V — F+ F=C+1

V' = number vertices
FE = number of edges
F' = number of faces

C' = number of components
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V' = number vertices
FE = number of edges
F' = number of faces

C' = number of components

bl
-
-
.....
bl
bl
-



Euler’s formula for finite planar graphs: V — F+ F=C+1

V' = number vertices
FE = number of edges
F' = number of faces

C' = number of components




Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree > 3, then 2 < 3F".



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree > 3, then 2 < 3F".

Proof: Clearly

Z deg(v) = 2F.

By assumption, deg(v) > 3 for all vertices so 3V < 2F. Hence V < %E .



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree > 3, then 2 < 3F".

Proof: Clearly

Z deg(v) = 2F.

By assumption, deg(v) > 3 for all vertices so 3V < 2F. Hence V < %E .
Plugging this into Euler’s formula V' — E + F = C' + 1 gives
1
—gE +F>C+1

or

E <3F —3(C +1) < 3F.



Sphere Theorem: If H is a finite graph on the 2-sphere and every
vertex has degree > 3, then 2 < 3F".

Corollary: Number of sides = 2E < 6F'. So for a finite planar graph
(all degrees > 3), the average number of sides per face is < 6.




This is for finite H. What about infinite maps?



Choose a piecewise smooth region R in the plane and let tR + = denote
the region dilated by a factor of £ > 0 and translated by .

Let H = H(R,t,z) be the sub-map of G consisting of the 2-cells of G
that lie inside tR + .

Let ANS(t) be average number of sides over faces in H(R,t, x).

Usually take circle around origin.



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.
{—00
Average is taken over faces contained in tR + x.

Same conclusion holds for faces hitting tR + x

Really only need R to have non-empty interior and zero area boundary:.



Definition: edge boundary: If H C G, then 0pH is set of edges in
G \ H with at least one endpoint in H.

opH
e(H):| ? ‘

Here e(H) = 9/5. Related to Cheeger constant of G.



Lemma 1: If H is a sub-map of G then ANS(H) < 6+ 4e(H).

Proof: Note that

2E + [0pH| < ) degg(v) < 2E + 20 H|,
veH

The lett hand inequality would be an equality, except that some edges in
Op H might have both endpoints on 0H.




Lemma 1: If H is a sub-map of G then ANS(H) < 6 + 4e(H).

Proof continued: Every vertex has degree > 3, so

3V < Y degq(v) < 2E +2|0pH|.
veH
Divide by 3 and put estimate for V' into Euler’s formula:

2 2
GE+3l0pH) = E+F 2 C

Simplitying gives
ogH| ,C

—3—< 2e(H).
I SF_3+ e(H)

E<3+2
S

Hence
ANS(H) <2E/F <6+ 4e(H).



Definition: the face boundary: OpH is the set of faces in G \ H
that touch H.

Fasy to see |[0pH| < |0pH|. We need converse direction.



One adjacent face, many adjacent edges




Lemma 2: Suppose the faces of G have diameters < D < oo and H is a

sub-map. Let N be the number of faces that lie inside a 3.D-neighborhood
of OH. Then |OpH| < 3N.



Lemma 2: Suppose the faces of G have diameters < D < oo and H is a
sub-map. Let N be the number of faces that lie inside a 3.D-neighborhood
of OH. Then |OpH| < 3N.

Proof:

Let G be the finite graph on the sphere consisting of the faces of G that lie
within the 2.D-neighborhood of O H, together with their edges and vertices.

Check that edges of G include all edges in OpH.

Each face of G/ is either a face of G or contains a face of G that is within
3D of OH. Thus number of faces of G’ is at most V.
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Lemma 2: Suppose the faces of G have diameters < D < oo and H is a

sub-map. Let N be the number of faces that lie inside a 3.D-neighborhood
of OH. Then |OpH| < 3N.

Proof continued:
Define G” by removing any vertices of degree 2 from G’; combine edges.
G’ and G have same number of faces, < N.

If e € OpH, endpoints have degree > 3 in G’ (any edge touching e in G
isin G’). So e is an edge of G”'.

By Sphere Theorem, edges in G” bounded by three times faces in G”.
Hence |[0pH| < 3N.



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00

Proof: Only need show e(H(R,t,x)) — 0.



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00

Proof continued: The number of faces in H(R,t,z) is > ct’.




Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00

Proof continued: Area within 3D of 0H is O(t - D),
so |0gH| =O(tD/A).



Theorem 1: Suppose all faces of G have diameter < D < oo, and have
area > A > 0, and that every vertex has degree > 3. Then

limsup ANS(H(R,t,x)) < 6.

t—00

Proof continued: Hence e(H) = O(t/t*) = O(1/t).



Theorem 2: If G satisfies the area lower bound and diameter upper
bouned and every vertex has degree 3, then

lim ANS(¢) = 6.

t—0



Voronoi diagram of Poisson point process




() is O-thick if for all 0 < r < diam(§2) and all x € 9S) we have
area(QLN D(z, 1)) > 6r°.

-~ o - -

Thick Not Thick

True if €2 is convex, with a 0 that depends on the aspect ratio.

Holds for quasidisks.



Theorem 3: Suppose GG is a planar map and every face is o-thick, for

some 0 > (0. Then there is a nested, increasing sequence of sub-maps
{Hy} so that lim,—oo ANS(Hj,) < 6.



Theorem 3: Suppose GG is a planar map and every face is o-thick, for
some 0 > (0. Then there is a nested, increasing sequence of sub-maps

{Hp,} so that limy,_c ANS(Hj,) < 6.

Idea of proof:

[f liminf > 6, then e(H(t)) > € > 0 for all £ > .

We can show this forces |0pH(t)| * oo in a finite time.

This contradicts local finiteness of 5.



limsup = oo, liminf < 6.



Aspect Ratio(K') = inf R/r where D(x,r) C K C D(y, R).

Is there a “6” theorem if taces have uniformly bounded aspect ratios?



Aspect Ratio(K') = inf R/r where D(x,r) C K C D(y, R).
Is there a “6” theorem if taces have uniformly bounded aspect ratios?

No.
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Out-radius/in-radius is bounded, but number of neighbors 7 oo




Out-radius/in-radius is bounded, but number of neighbors * co.




