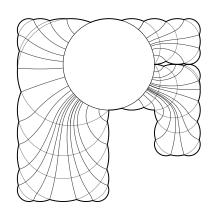
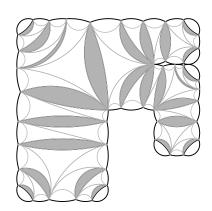
Conformal Mapping in Linear Time

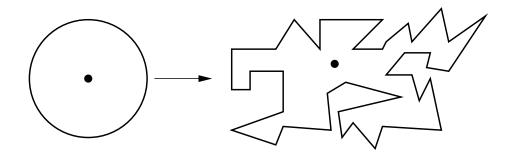
Christopher J. Bishop SUNY Stony Brook





copies of lecture slides available at www.math.sunysb.edu/~bishop/lectures

Riemann Mapping Theorem: If Ω is a simply connected, proper subdomain of the plane, then there is a conformal map $f:\Omega\to\mathbb{D}$.



I recently came across "Numerical conformal mapping using cross ratios and Delaunay triangulation" by Driscoll and Vavasis (1998). Thinking about this paper led to:

- 3-D hyperbolic geometry gives way to visualize and compute conformal maps.
- Computational geometry gives time bounds for doing these computations.

Theorem: If $\partial\Omega$ is an n-gon we can compute a $(1 + \epsilon)$ -quasiconformal map between Ω and \mathbb{D} in time $O(n \log^2 \frac{1}{\epsilon} \log \log \frac{1}{\epsilon})$.

Theorem: Suppose $\partial\Omega$ is an n-gon. We can construct points $\mathbf{w} = \{w_1, \dots, w_n\} \subset \mathbb{T}$ so that:

- 1. requires at most $C(\epsilon)n$ steps.
- $2. d_{QC}(\mathbf{w}, \mathbf{z}) < \epsilon.$

 $\mathbf{z} = f^{-1}(\mathbf{v})$ are conformal prevertices.

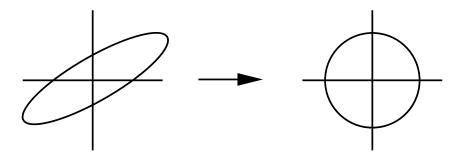
$$d_{QC}(\mathbf{w}, \mathbf{z}) = \inf\{\log K : \exists h \in QC_K, h(\mathbf{w}) = \mathbf{z}\}.$$

 $QC_K = K$ -quasiconformal maps.

$$C(\epsilon) = C + C \log^2 \frac{1}{\epsilon} \log \log \frac{1}{\epsilon}$$

A mapping is K-quasiconformal if either:

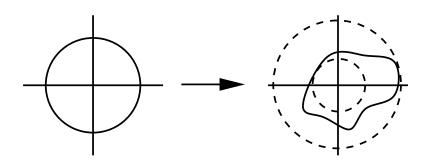
Analytic definition: $|f_{\bar{z}}| \leq \frac{K-1}{K+1}|f_z|$



$$f_z = \frac{1}{2}(f_x - if_y), f_{\bar{z}} = \frac{1}{2}(f_x + if_y).$$

Metric definition: For every $x \in \Omega$, $\epsilon > 0$ and small enough r > 0, there is s > 0 so that

$$D(f(x),s)\subset f(D(x,r))\subset D(f(x),s(K+\epsilon)).$$



• The map is determined (up to Möbius maps) by $\mu_f = f_{\bar{z}}/f_z,$

For μ with $\|\mu\|_{\infty} < 1$, there is a f with $\mu_f = \mu$.

- $\mu = 0$ iff f is conformal.
- \bullet K-QC maps form a compact family.
- \bullet f is a quasi-isometry if

$$\frac{1}{A}\rho(x,y) - B \le \rho(f(x),f(y)) \le A\rho(x,y) + B.$$

Theorem: $f : \mathbb{T} \to \mathbb{T}$ has a QC-extension to interior iff it has QI-extension (hyperbolic metric).

Proof of theorem is in three steps:

Step 1: Find K-QC $f_0: \Omega \to \mathbb{D}$.

Step 2: Given $\epsilon < \epsilon_0$ and $(1+\epsilon)$ -QC $f_n : \Omega \to \mathbb{D}$ construct $(1 + C\epsilon^2)$ -QC map $f_{n+1} : \Omega \to \mathbb{D}$.

If $K < \epsilon_0$ then done. Otherwise need:

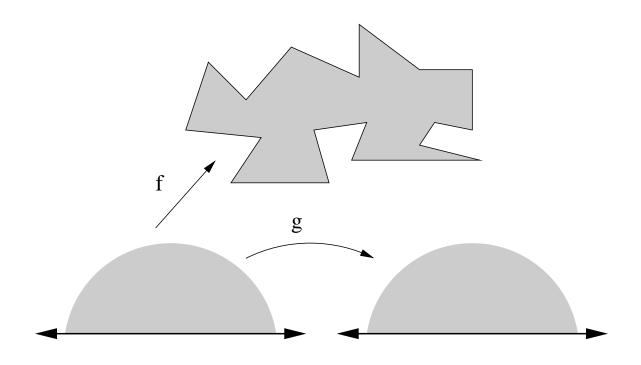
Step 3: Build chain $\mathbb{D} = \Omega_0, \dots, \Omega_N = \Omega$ with explicit $\sqrt{1 + \epsilon_0}$ -QC maps $g_k : \Omega_k \to \Omega_{k+1}$. Find conformal $f_k : \mathbb{D} \to \Omega_k$ by induction.

Clearly $f_0 = \text{Id}$. Use $g_0 \circ f_0$ as starting point to iterate to f_1 . When within $\sqrt{1 + \epsilon_0}$ of f_1 , compose with g_1 and start iterating to f_2 . Continue until reach ϵ_0 -ball around f_N .

Idea for Step 2: Suppose

$$f: \mathbb{H} \to \Omega, \qquad g: \mathbb{H} \to \mathbb{H}, \qquad \mu_f = \mu_g.$$

Then $f \circ g^{-1} : \mathbb{H} \to \Omega$ is conformal.

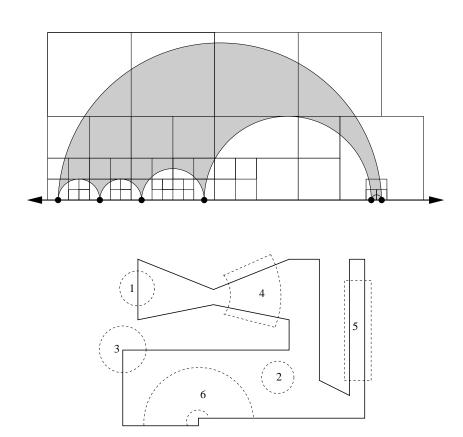


Can't solve Beltrami equation $g_{\bar{z}} = \mu g_z$ exactly in finite time, but can quickly solve

$$g_{\bar{z}} = (\mu + O(\|\mu\|^2))g_z.$$

Then $f \circ g^{-1}$ is $(1 + C \|\mu\|^2)$ -QC.

Cut \mathbb{H} into O(n) pieces on which f, f^{α} or $\log f$ has nice series representation. Need $p = O(|\log \epsilon|)$ terms on each piece to get ϵ accuracy.

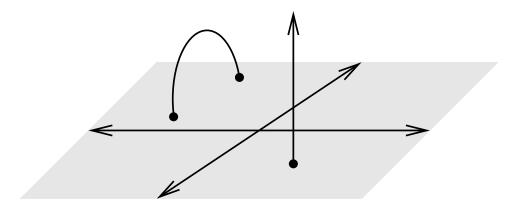


Use partition of unity supported near partition edges to combine expansions. Can compute μ explicitly. Use fast multipole method to approximately solve in time O(n).

Hyperbolic space: Metric on \mathbb{R}^3_+ ,

$$d\rho = |dz|/\mathrm{dist}(z, \mathbb{R}^2).$$

Geodesics are circles or lines orthogonal to \mathbb{R}^2 .

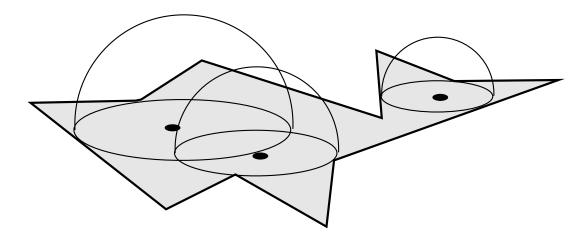


The hyperbolic metric on the disk or ball is

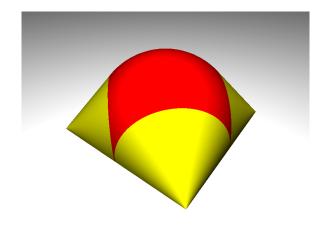
$$d\rho = 2|dz|/(1-|z|^2).$$

The hyperbolic metric on a simply connected domain plane Ω is defined by transferring the metric on the disk by the Riemann map.

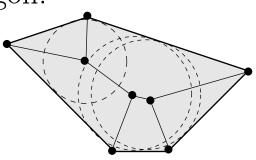
The **dome** of Ω is boundary of union of all hemispheres with bases contained in Ω .

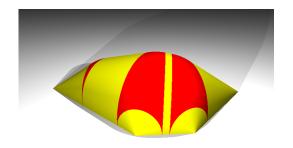


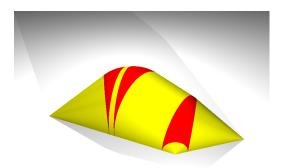
Equals boundary of hyperbolic convex hull of Ω^c . Similar to Euclidean space where complement of closed convex set is a union of half-spaces.



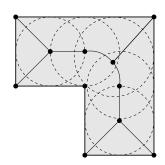
A convex polygon:

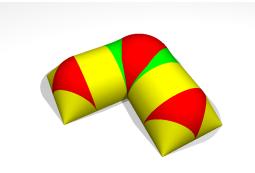






A non-convex polygon:





Each point on $Dome(\Omega)$ is on dome of a maximal disk D in Ω . Must have $|\partial D \cap \partial \Omega| \geq 2$. The centers of these disks form the **medial axis**.

For polygons is a finite tree with 3 types of edges:

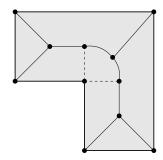
- point-point bisectors (straight)
- edge-edge bisectors (straight)
- point-edge bisector (parabolic arc)

For applications see:

www.ics.uci.edu/eppstein/gina/medial.html+

In CS is attributed to Blum (1967), but Erdös proved $\dim(MA) = 1$ in 1945.

Goggle("medial axis")= 26,300 Goggle("hyperbolic convex hull")= 71 Medial axis is boundary of Voronoi cells:

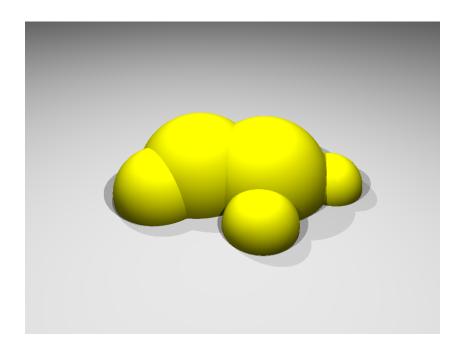


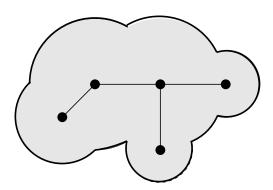
Chin-Snoeyink-Wang (1998) gave O(n) algorithm. Uses Chazelle' theorem (1991): an n-gon can be triangulated in O(n) time.

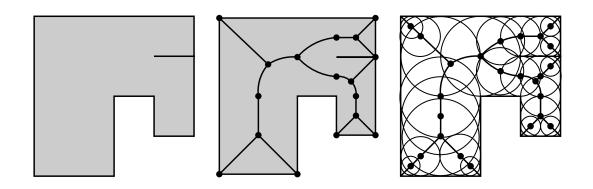
They use this to divide polygon into almost convex regions ("monotone histograms"); compute for each piece (Aggarwal-Guibas-Saxe-Shor, 1989) and merge results.

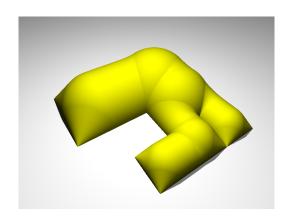
Merge Lemma: Suppose n sites $S = S_1 \cup S_2$ are divided by a line. Then diagram for S can be built from diagrams for S_1, S_2 in time O(n).

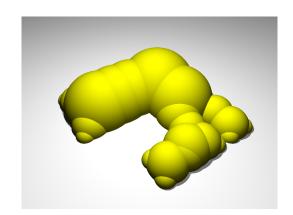
Finitely bent domain (= finite union of disks).



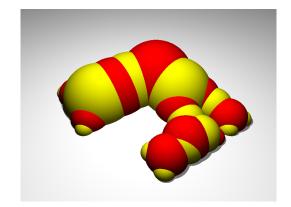








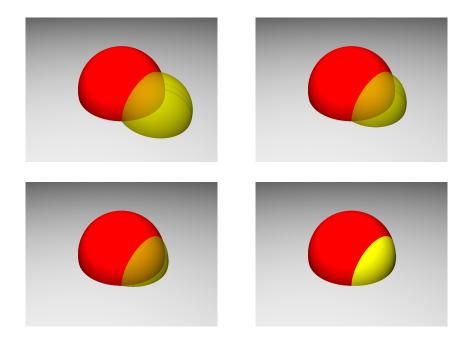




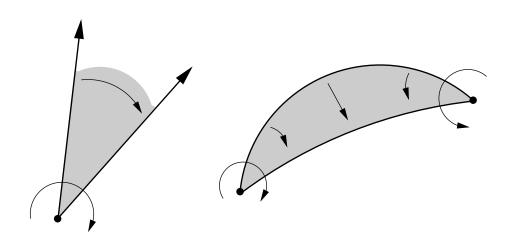
Let ρ_S be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ι from (S, ρ_S) to the hyperbolic disk.

For finitely bent domains rotate around each bending geodesic by an isometry to remove the bending (more obvious if vertices are 0 and ∞).

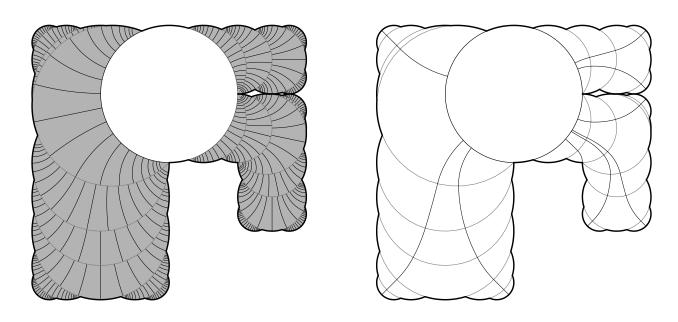


Elliptic Möbius transformation is conjugate to a rotation.



Elliptic transformation determined by fixed points and angle of rotation θ . It identifies sides of a crescent of angle θ : think of flow along circles orthogonal to boundary arcs.

Visualize ι as a flow: Write finitely bent Ω as a disk D and a union of crescents. Foliate crescents by orthogonal circles. Following leaves of foliation in $\Omega \setminus D$ gives $\iota : \partial\Omega \to \partial D$.



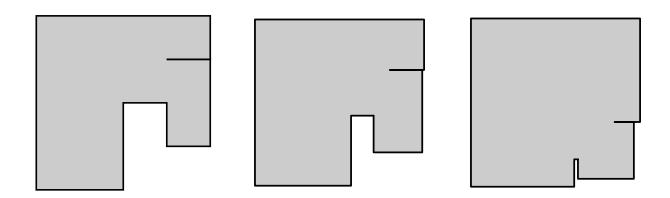
Has continuous extension to interior: identity on disk and collapses orthogonal arcs to points.

- ι has K-QC extension to interior.
- ι can be evaluated at n points in time O(n).

The Schwarz-Christoffel formula gives the Riemann map onto a polygonal:

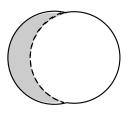
$$f(z) = A + C \int_{-\infty}^{z} \prod_{k=1}^{n} (1 - \frac{w}{z_k})^{\alpha_k - 1} dw.$$

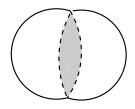
 α 's are known (interior angles) but z's are not (preimages of vertices).



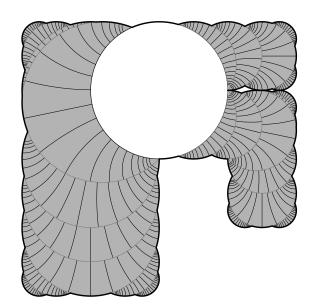
If we plug in ι -images of vertices we almost get the correct polygon (center). Using uniformly spaced points is clearly worse (right).

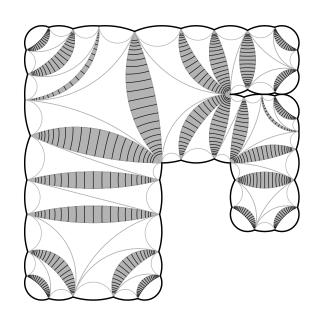
There are at least two ways to decompose a finite union of disks using crescents (with same angles and vertices in both cases).

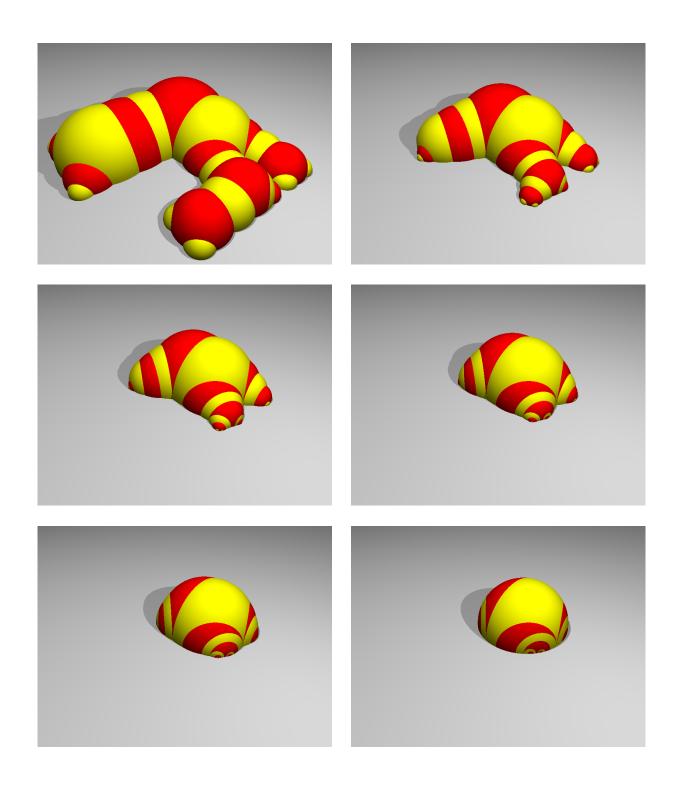


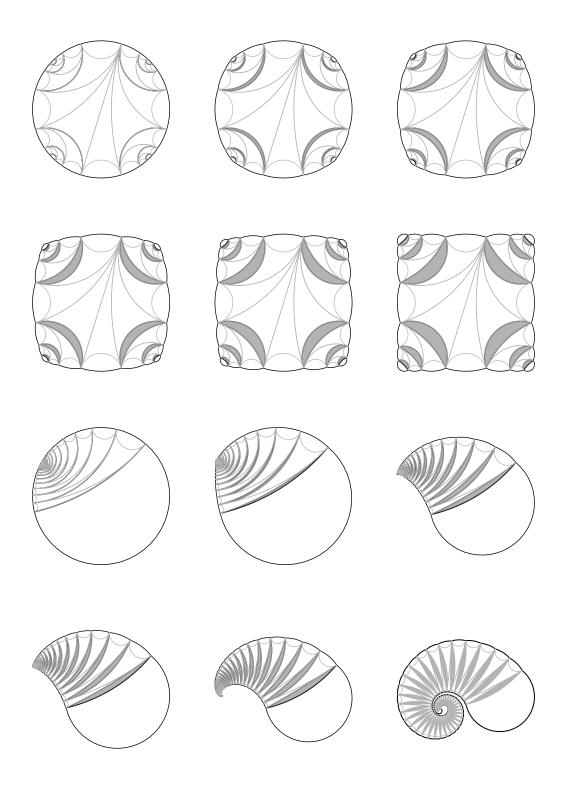


We call these **tangential** and **normal** crescents. A finitely bent domain can be decomposed with either kind of crescent.

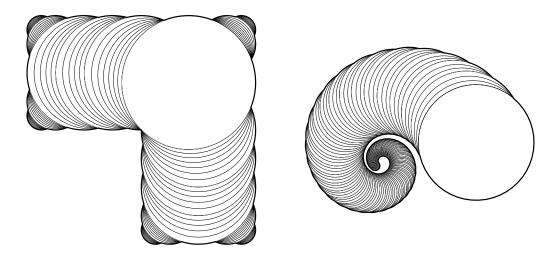




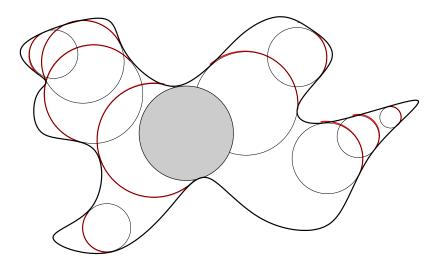




Foliate $\Omega \setminus D$ by arcs of medial axis disks and follow orthogonal flow:



Medial axis foliation and orthogonal flow make sense for any simply connected domain.



Theorem: Collapsing normal crescents gives hyperbolic quasi-isometry $R: \Omega \to \mathbb{D}$.

Corollary: ι has a K-QC extension to interior.

Corollary (Sullivan, Epstein-Marden):

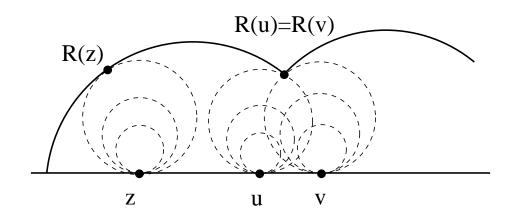
There is a K-QC map $\sigma: \Omega \to S_{\Omega}$ so that $\sigma = \operatorname{Id}$ on $\partial \Omega = \partial S$.

Result comes from hyperbolic 3-manifolds. If Ω is invariant under Möbius group G, $M = \mathbb{R}^3_+/G$ is hyperbolic manifold,

$$\partial_{\infty} M = \Omega/G, \quad \partial C(M) = \text{Dome}(\Omega)/G.$$

Thurston conjectured K=2 is possible. Best known upper bound is K<7.82.

Nearest point retraction $R: \Omega \to \mathrm{Dome}(\Omega)$: Expand ball tangent at $z \in \Omega$ until it hits a point R(z) of the dome.

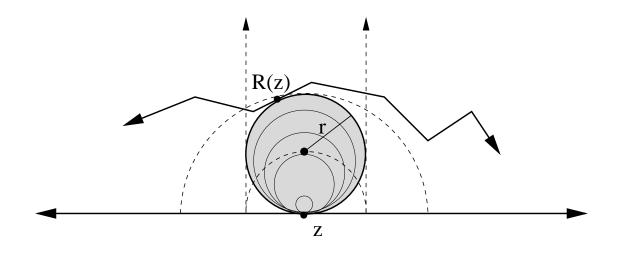


normal crescents =
$$R^{-1}$$
(bending lines)
gaps = R^{-1} (faces)

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasiisometry. This follows from three easy facts.

Fact 1: If $z \in \Omega$, $\infty \notin \Omega$, $r \simeq \operatorname{dist}(z, \partial \Omega) \simeq \operatorname{dist}(R(z), \mathbb{R}^2) \simeq |z - R(z)|$.



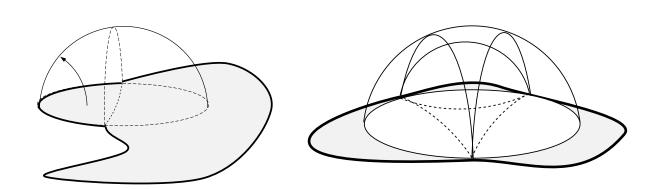
Fact 2: R is Lipschitz.

 Ω simply connected \Rightarrow

$$d\rho \simeq \frac{|dz|}{\operatorname{dist}(z,\partial\Omega)}.$$

$$z \in D \subset \Omega \text{ and } R(z) \in \text{Dome}(D) \Rightarrow$$

 $\operatorname{dist}(z, \partial \Omega) / \sqrt{2} \leq \operatorname{dist}(z, \partial D) \leq \operatorname{dist}(z, \partial \Omega)$
 $\Rightarrow \rho_{\Omega}(z) \simeq \rho_{D}(z) = \rho_{\text{Dome}}(R(z)).$



Fact 3: $\rho_S(R(z), R(w)) \leq 1 \Rightarrow \rho_{\Omega}(z, w) \leq C$.

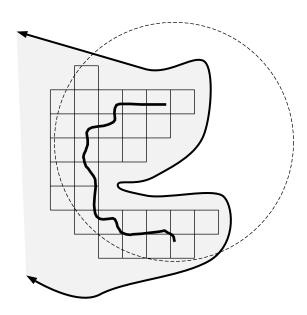
Suppose $\operatorname{dist}(R(z), \mathbb{R}^2) = r$ and γ is geodesic from z to w.

$$\Rightarrow \operatorname{dist}(\gamma, \mathbb{R}^{2}) \simeq r$$

$$\Rightarrow \operatorname{dist}(R^{-1}(\gamma), \partial\Omega) \simeq r,$$

$$R^{-1}(\gamma) \subset D(z, Cr)$$

$$\Rightarrow \rho_{\Omega}(z, w) \leq C$$



Moreover, $g = \iota \circ \sigma : \Omega \to \mathbb{D}$ is locally Lipschitz. Standard estimates show

$$|g'(z)| \simeq \frac{\operatorname{dist}(g(z), \partial \mathbb{D})}{\operatorname{dist}(z, \partial \Omega)}.$$

Use Fact 1

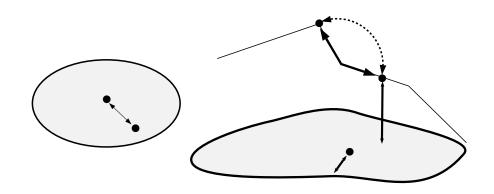
$$\operatorname{dist}(z, \partial\Omega) \simeq \operatorname{dist}(\sigma(z), \mathbb{R}^{2})$$

$$\simeq \exp(-\rho_{\mathbb{R}^{3}_{+}}(\sigma(z), z_{0}))$$

$$\gtrsim \exp(-\rho_{S}(\sigma(z), z_{0}))$$

$$= \exp(-\rho_{D}(g(z), 0))$$

$$\simeq \operatorname{dist}(g(z), \partial D)$$



Corollary: Every simply connected domain can be mapped to the disk by a QC Lipschitz homeomorphism (w.r.t. internal path metric).

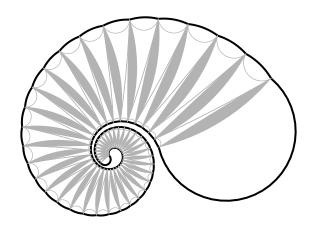
Corollary: Any quasicircle can be mapped to circle by Lipschitz QC mapping of plane.

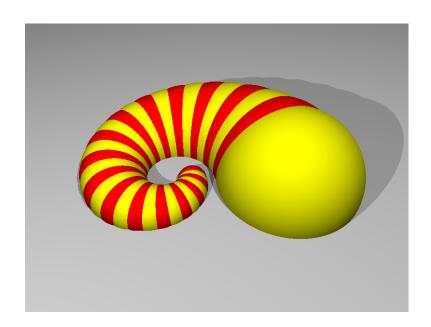
Corollary: $f: D \to \Omega$ conformal implies $f = g \circ h$ where $h: \mathbb{D} \to \mathbb{D}$ is K-QC and $|g'| > \epsilon > 0$. Indeed $|g'(tz)| \le C|g'(z)|$, $0 \le t \le 1$

Astala \Rightarrow if h is 2-QC then $h' \in \text{weak} - L^4$.

Corollary: $K = 2 \Rightarrow$ Brennan's conjecture.

But, Epstein and Markovic showed K > 2.1 for some log spirals.



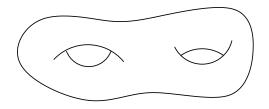


Still some avenues for further investigation. Write $g: \mathbb{D} \to \Omega$, $h: \mathbb{D} \to \mathbb{D}$, $g \circ h^{-1}$ conformal

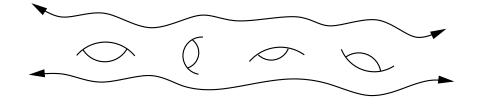
- g' not just bounded below, but tends to ∞ where h' goes to 0.
- Use path of domains. Estimate derivative of weak L^4 norm along path. Remains finite until t=1?
- Want to show $\int_{|h'|>\lambda|g'|} |h'|^2 dxdy < C/\lambda^2$.
- g and h are solutions of Beltrami equation which are orthogonal in some sense (h moves tangential to unit circle, g moves normal to to circle). Is there analog to estimates for Hilbert transform?

Application to Kleinian groups:

Bowen's Dichotomy: If Ω is simply connected and $R = \Omega/G$ is compact Riemann surface then either $\partial \Omega = \text{circle}$, or $\dim(\partial \Omega) > 1$.



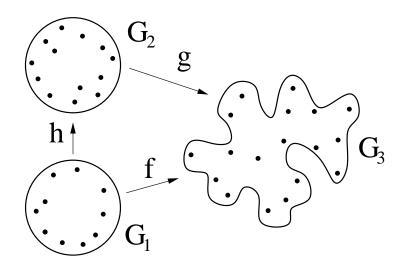
Finite area case by Sullivan (also see Bridgeman-Taylor, Bishop-Jones). Astala and Zinsmeister showed this is false if R has a Green's function. Is it true for other surfaces?



Theorem: If Ω/G has no Green's function then either $\partial\Omega=\mathrm{circle}$ or $\dim(\partial\Omega)>1$.

Want s > 1 s.t. $\sum_{g \in G} \operatorname{dist}(g(z_0), \partial \Omega)^s = \infty$. Hard part is to show for s = 1.

- No Green's function $\Rightarrow G_1$ -sum $= \infty$
- h quasiconformal $\Rightarrow G_2$ -sum $= \infty$
- |g'| bounded below $\Rightarrow G$ -sum $= \infty$



f = conformal, g = expanding, h = QC

I wouldn't even think of playing music if I was born in these times... I'd probably turn to something like mathematics. That would interest me.

Bob Dylan, 2005

"Ah!" replied Pooh. He'd found that pretending a thing was understood was sometimes very close to actually understanding it. Then it could easily be forgotton with no one the wiser...

Winnie-the-Pooh