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Riemann Mapping Theorem: If () is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : 2 — D.

I recently came across “Numerical conformal map-
ping using cross ratios and Delaunay triangula-

tion” by Driscoll and Vavasis (1998). Thinking
about this paper led to:

e 3-D hyperbolic geometry gives way to visualize
and compute conformal maps.

e Computational geometry gives time bounds for
doing these computations.



Theorem: If 0f) is an n-gon we can compute a
(1 4+ €)-quasiconformal map between €2 and I in
time O(n log? % log log %)

Theorem: Suppose 0f) is an n-gon. We can
construct points w = {wy,...,wp} C T so that:

1. requires at most C'(€)n steps.

2.dgo(w,z) < e

z = f~1(v) are conformal prevertices.
doco(w,z) = inf{log K : 3h € QCy, h(w) = z}.
QCyk = K-quasiconformal maps.

Ce) =C+ C’logQ%loglog%



A mapping is K-quasiconformal if either:
Analytic definition: |fz| < K+1|f?«’|
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fo=3lfa = ify), fz = 3(fu +ify).

Metric definition: For every x € (), ¢ > 0 and
small enough r > 0, there is s > 0 so that

D(f(z),s) C f(D(z,7)) C D(f(z), s(K+e)).
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e The map is determined (up to Mobius maps) by

Mf — fZ/fZ)
For p with [|u|lcc < 1, thereis a f with pup = p.

e 1, =0 1iff f is conformal.
o K-(QC maps form a compact family.

e f is a quasi-isometry if

plw.y) — B < p(f(@), fy) < Aplx,y) + B.

Theorem: f : T — T has a QC-extension to
interior iff it has Ql-extension (hyperbolic metric).



Proof of theorem is in three steps:

Step 1: Find K-QC fy: Q2 — D.

Step 2: Given e < ¢gand (1+€)-QC f, : 2 — D
construct (1 + Ce?)-QC map fr41: Q — D

If K < ¢y then done. Otherwise need:

Step 3: Build chain D = )y, ..., 2x = 2 with

explicit /1 + €p-QC maps g : 2 — (24 1. Find
conformal f;. : D — €2;. by induction.

Clearly fo = Id. Use gg o fg as starting point to
iterate to f1. When within /1 + ¢g of f1, com-
pose with g; and start iterating to fo. Continue
until reach ep-ball around fy.



Idea for Step 2: Suppose
fH — (), g: H — H, pf = pg.

Then fog~t:H — Q is conformal.

- - - -

Can’t solve Beltrami equation g = ug, exactly
in finite time, but can quickly solve

gz = (1 + O([|ul*)) g
Then fog tis (1+ Cllul*)-QC.
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Cut H into O(n) pieces on which f, f¢ or log f
has nice series representation. Need p = O(] log€|)
terms on each piece to get € accuracy.

| T

Use partition of unity supported near partition
edges to combine expansions. Can compute 4 ex-
plicitly. Use fast multipole method to approxi-
mately solve in time O(n).
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Hyperbolic space: Metric on RS .
dp = |dz|/dist(z, R?).

Ceodesics are circles or lines orthogonal to R

The hyperbolic metric on the disk or ball is
dp = 2/dz|/(1 — |2]2).

The hyperbolic metric on a simply connected do-
main plane € is defined by transferring the metric
on the disk by the Riemann map.



The dome of () is boundary of union of all hemi-
spheres with bases contained in ).

=
Equals boundary of hyperbolic convex hull of €2¢.

Similar to Euclidean space where complement of
closed convex set is a union of half-spaces.
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A convex polygon:

<zl

avZ
SN
1)

A non-convex polygon:




Each point on Dome(2) is on dome of a maximal
disk D in €. Must have |0D N 09| > 2. The
centers of these disks form the medial axis.

For polygons is a finite tree with 3 types of edges:
e point-point bisectors (straight)

e edge-edge bisectors (straight)

e point-edge bisector (parabolic arc)

For applications see:

www.ics.uci.edu/ eppstein/gina/medial html+

In CS is attributed to Blum (1967), but Erdos
proved dim(MA) = 1 in 1945.

Goggle(”medial axis” )= 26,300
Goggle(” hyperbolic convex hull”)= 71
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Medial axis is boundary of Voronoi cells:

Chin-Snoeyink-Wang (1998) gave O(n) algorithm.
Uses Chazelle’ theorem (1991): an n-gon can be
triangulated in O(n) time.

They use this to divide polygon into almost con-
vex regions (“monotone histograms”); compute
for each piece (Aggarwal-Guibas-Saxe-Shor, 1989)
and merge results.

Merge Lemma: Suppose n sites S = 51U 59
are divided by a line. Then diagram for .S can be
built from diagrams for S7, .Sy in time O(n).
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Finitely bent domain (= finite union of disks).
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains rotate around each bend-
ing geodesic by an isometry to remove the bending
(more obvious if vertices are 0 and oo)

T
e e
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Elliptic Mobius transformation is conju-
gate to a rotation.

Elliptic transformation determined by fixed points
and angle of rotation 6. It identifies sides of a
crescent of angle 6: think of flow along circles
orthogonal to boundary arcs.
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Visualize : as a flow: Write finitely bent €2 as a
disk D and a union of crescents. Foliate crescents
by orthogonal circles. Following leaves of foliation

in 2\ D gives ¢ : 090 — 0D.
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Has continuous extension to interior: identity on
disk and collapses orthogonal arcs to points.

e ; has K-QC extension to interior.
e . can be evaluated at n points in time O(n).
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The Schwarz-Christoffel formula gives the
Riemann map onto a polygonal'

A+0/ 0% Ldw.

a’s are known (interior angles) but z’s are not
(preimages of vertices).

L

If we plug in (-images of vertices we almost get the
correct polygon (center). Using uniformly spaced
points is clearly worse (right).

19



There are at least two ways to decompose a finite
union of disks using crescents (with same angles
and vertices in both cases).

We call these tangential and normal crescents.
A finitely bent domain can be decomposed with
either kind of crescent.
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Foliate €2 \ D by arcs of medial axis disks and
tfollow orthogonal flow:

Medial axis foliation and orthogonal flow make
sense for any simply connected domain.




Theorem: Collapsing normal crescents gives hy-
perbolic quasi-isometry R : 2 — .

Corollary: ¢ has a K-QQC extension to interior.

Corollary (Sullivan, Epstein-Marden):
Thereisa K-QC map o : {2 — Sq so that o = Id
on 0€) = 08S.

Result comes from hyperbolic 3-manifolds. If {) is
invariant under Mobius group G, M = Ri /G is
hyperbolic manifold,

OocM = Q /G, 0C(M) = Dome(2)/G.

Thurston conjectured K = 2 is possible. Best
known upper bound is K < 7.82.
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Nearest point retraction R : {2 — Dome((2):
Expand ball tangent at z € {2 until it hits a point

R(z) of the dome.

R~ (bending lines)
gaps = R~ (faces)

normal crescents

collapsing crescents = nearest point retraction

Suffices to show nearest point retraction is a quasi-
isometry. This follows from three easy facts.
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Fact 1: If z € Q, 0o &€ (),
r ~ dist(z, Q) ~ dist(R(2), R?) ~ |z — R(z)|.
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Fact 2: R is Lipschitz.

(2 simply connected =>
dz|

dp ~

 dist(z, 09)
z€ D C Qand R(z) € Dome(D) =
dist(z, 90) /2 < dist(z,0D) < dist(z, 99)

= p(2) = pp(z) = pPpome(F(2)).
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Fact 3: pg(R(z), R(w)) <1 = pg(z,w) <C

Suppose dist(R(z),R?) = r and ~ is geodesic
from z to w.

=
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Moreover, g = 10 o : {) — D is locally Lipschitz.
Standard estimates show

_ dist(g(z), OD)
9(z)] = dist(z,0Q)

Use Fact 1
dist(z, )

2
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Corollary: Every simply connected domain can
be mapped to the disk by a QC Lipschitz homeo-
morphism (w.r.t. internal path metric).

Corollary: Any quasicircle can be mapped to
circle by Lipschitz QC mapping of plane.

Corollary: f : D — () conformal implies f =
goh where h : D — Dis K-QC and |¢'| > € > 0.

Indeed |¢'(t2)] < Clg'(2)], 0 <t < 1

Astala = if h is 2-QC then b/ € weak — L.

Corollary: K = 2 = Brennan’s conjecture.

But, Epstein and Markovic showed K > 2.1 for
some log spirals.
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Still some avenues for further investigation. Write

g:D—Q h:D—D, go h~conformal

e ¢’ not just bounded below, but tends to oo
where h' goes to 0.

e Use path of domains. Estimate derivative of
weak L* norm along path. Remains finite until
t =17

e Want to show f|h’|>/\|g’| |h’|2da:dy < C’//\2

e g and A are solutions of Beltrami equation which
are orthogonal in some sense (h moves tangential
to unit circle, g moves normal to to circle). Is
there analog to estimates for Hilbert transtorm?
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Application to Kleinian groups:

Bowen’s Dichotomy: If ) is simply connected
and R = /G is compact Riemann surface then

either 9) = circle, or dim(0€2) > 1.

Finite area case by Sullivan (also see Bridgeman-
Taylor, Bishop-Jones). Astala and Zinsmeister
showed this is false if R has a Green’s function. Is
it true for other surfaces?
\/\/\/—\/—\/"
S Y
W
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Theorem: If (2/G has no Green’s function then
either 0€) = circle or dim(952) > 1.

Want s > 1s.t. ) cqdist(g(zp), 02)° = oo.
Hard part is to show for s = 1.

e No Green’s function = G{-sum = oo
e h quasiconformal = Go-sum = oo
e |¢'| bounded below = G-sum = oo

> g
\
ht f G,
/
f= conformal, g = expanding, h = QC
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I wouldn’t even think of playing music if I
was born in these times... I'd probably turn to
something ltke mathematics. That would in-
terest me.

Bob Dylan, 2005

“Ah!”  replied Pooh. He’d found that pre-
tending a thing was understood was sometimes
very close to actually understanding 1t. Then
it could easily be forgotton with no one the
wiser...

Winnie-the-Pooh
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