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1. Introduction and overview



Weil-Petersson curves are rectifiable quasicircles that are related to many ideas:

• Teichmüller theory

• Sobolev spaces

• Geometric measure theory (Jones’s β-numbers)

• Polygonal approximations

• Conformal mappings

• Quasiconformal maps

• Minimal surfaces

• Isoperimetric inequalities

• Renormalized area

• Integral Geometry

• Schramm-Loewner Evolutions (SLE)

• Brownian loop soup



The same curves were studied by Guo [33] and Cui [18] using the terms

“integrable Teichmüller space of degree 2”

“integrably asymptotic affine maps” respectively.



The name “Weil-Petersson class” is more common in recent papers and comes

from work of Takhtajan and Teo [65] defining a Weil-Petersson metric on uni-

versal Teichmüller space.

Motivated by string theory, they wanted to put a Riemannian metric on space

of smooth closed curves, i.e., the space of diffeomorphisms of the unit circle T
into the complex numbers C.

This means thinking of the space of closed curves as an infinite dimensional

manifold and putting a Hilbert space norm on the tangent space at each point.

This is not my point of view and I won’t discuss it in great detail.

Their metric is defined on all quasicircles, including non-smooth fractals. Weil-

Petersson class is the closure of smooth curves in their metric.



Their metric space is disconnected. WP-class is connected component containing

circle (and all smooth curves).

Need for metric on smooth closed curves also arises in computer vision and

pattern recognition. The Weil-Petersson metric is used in David Mumford’s

approach to computer vision: how similar or dissimilar are two shapes? How do

we morph one shape to another most efficiently? Use geodesics of Weil-Petersson

metric.

For example, see the papers of Sharon and Mumford [62], Feiszli, Kushnarev

and Leonard [23], and Feiszli and Narayan [24].



Some personal history.

In December of 2017, Mumford asked me to try to geometrically characterize

elements of Weil-Petersson class.

This problem also stated in book of Takhtajan and Teo. I looked at the book,

but did not see a way into the problem.

At the time I was busy with other things, but one year later (January of 2019)

I attended a workshop on the geometry of random sets at IPAM (UCLA). Yilin

Wang gave two talks: some known characterizations of WP class were listed at

end of first talk. Material from the Takhtajan-Teo book that I had missed, but

were similar to some of my own earlier work in 1990’s with Peter Jones.

Yilin Wang’s IPAM talk

http://www.ipam.ucla.edu/abstract/?tid=15312&pcode=AGR2019


Wang’s talk gave me a way into the problem. That week I formulated a con-

jecture in terms of Peter Jones’s β-numbers and proved it within a few weeks.

Found several more conditions, some involving hyperbolic geometry and minimal

surfaces.

During corona virus lockdown in Spring 2020, I had time to think about WP

curves and was able to answer some more questions. I also realized that many

of my characterizations make sense for curves in higher dimensions and are still

equivalent.

Email conversations with David Mumford were very helpful: he observed con-

nection to Sobolev smoothness of parameterizations.



David Mumford = 1974 Fields medalist in algebraic geometry. Later moved into

in computer vision and pattern recognition using tools from conformal analysis,

computational geometry and Riemmanian manifolds.

He has many interesting ideas, e.g., use information theory and entropy to mea-

sure the complexity of a curve.

Wikipedia page for David Mumford

https://en.wikipedia.org/wiki/David_Mumford


Are there more characterizations of WP curves to be found?

Are WP curves in higher dimensions interesting, i.e., related to other known

mathematical objects or ideas?

What about analogs of Weil-Petersson curves in Hilbert space? Other metric

spaces?

What is a Weil-Petersson surface? Interesting or not?

Definition of WP class was motivated by string theory. We shall see WP curves

are also related to idea of renormalized area, a concept coming from physics.

Are these two things related?



Plan for lectures:

• Quick overview of results.

• Basic definitions: quasicircles, Dirichlet class, ....

• Known characterizations of WP class using conformal and QC maps

• How this relates to earlier work from 1990’s

• Discuss some new characterizations, some easy proofs.

• Harder proofs. Start with β-numbers and traveling salesman theorem.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Eccentricity = ratio of major to minor axis of ellipse.

For K-QC maps, ellipses have eccentricity ≤ K

Ellipses determined a.e. by measurable dilatation µ = fz/fz with

|µ| ≤ K − 1

K + 1
< 1.

Conversely, . . .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .



Quasiconformal (QC) maps send infinitesimal ellipses to circles.

Mapping theorem: any such µ comes from some QC map f .

Cor: If f is holomorphic and ψ is QC, then there is a QC map ϕ so that

g = ψ ◦ f ◦ ϕ is also holomorphic.



A quasicircle is the image of the unit circle T under a quasiconformal mapping

f of the plane, e.g., a homeomorphism of the plane that is conformal outside

the unit disk D, and whose dilatation µ = fz/fz belongs to B∞1 , the open unit

ball in L∞(D).

The collection of planar quasicircles corresponds to universal Teichmüller space

T (1) and the usual metric is defined in terms of ‖µ‖∞.



Any smooth curve is a quasicircle (diffeomorphism in QC on compact set). Also

many non-smooth examples



 

Quadratic Julia set that is a quasicircle.



Ω

Γ

f

Suppose Γ = ∂Ω is Jordan curve, f : D→ Ω is conformal.

Basic problem: how is geometry of Γ related to properties of f?

If f is quasiconformal, is geometry of Γ related to properties of µf = fz/fz?

If Γ is a quasicircle, f has a quasiconformal extension to plane, with dilation µ

defined on D∗ = {|z| > 1}.



Ω

Γ

f

Also interested in Schwarzian derivative: S(f ) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

This is sort of second derivative that measures rate of change of best approxi-

mating Möbius transformation.

(Usual F ′′ measures rate of change of best approximating linear map.)

|S(f )(z)|(1− |z|2)2 < 2 implies f is conformal.

f conformal implies |S(f )(z)|(1− |z|2)2 < 6.



• Γ = f (T) is associated to a conformal welding h = g−1 ◦ f : T→ T:

h

g

f

Two similar curves have same welding.

Möbius images have same welding.

For quasicircles welding determines Γ up to Möbius image.

Not true in general (e.g., curves of positive area).



crd(  )γ

diam(  )γ

γ

w

z

β(γ) diam(  )γ

If γ is a planar Jordan arc with endpoints z, w, we set:

• diam(γ) = diameter of γ

• crd(γ) = z − w = chord length of γ

• `(γ) = length of γ,

• ∆(γ) = `(γ)− crd(γ) = excess length

• β(γ) = sup{z ∈ γ : dist(z, L)/diam(γ)}, L = line through z, w



Γ

γ

Γ is a quasicircle iff diam(γ) = O(crd(γ)) for γ ⊂ Γ.

(Called Ahlfors 3-point condition.)

Γ is chord-arc iff `(γ) = O(crd(γ)) for γ ⊂ Γ.

Space of quasicircles (modulo certain identifications) is called universal Te-

ichmüller space.



Motivated by problems arising in string theory (e.g. [13], [14]), Takhtajan and

Teo [65] defined a Weil-Petersson metric on universal Teichmüler space T (1)

that makes it into a Hilbert manifold. This structure on T (1) is related to the

Weil-Petersson metric on finite dimensional Teichmüller spaces.

This topology on T (1) has uncountably many connected components, but one

of these components, denoted T0(1), is exactly the closure of the smooth curves;

this is the Weil-Petersson class. T0(1) is naturally a topological group: identfy

elements bu conformal weldings and then compose these circle homomorphisms,

T (1) is group but not a topological group; the group operation is not continuous

in general.

These curves are precisely the images of T under quasiconformal maps with

dilatation µ ∈ L2(dAρ)∩B∞1 , where Aρ is hyperbolic area on D. Thus, roughly

speaking, Weil-Petersson curves are to L2 as quasicircles are to L∞.



I won’t give the original definition of WP class from Takhtajan and Teo paper

now. Instead we will work from equivalent definitions (also in their paper) in

terms of the conformal map f from the unit disk, D, to the domain Ω bounded

by Γ.

There are several results in geometric function theory that say “Γ has geometric

property X iff log f ′ is in function space Y”.

I will mention a few examples to give the flavor. We won’t use these results.



Ω

Γ

f

Theorem (Pommerenke, 1978): Γ is asymptotically conformal, i.e.,

β(γ)→ 0, as diam(γ)→ 0,

iff log f ′ is in little Bloch class

B0 =

{
g holomorphic on D : |g′(z)| = o

(
1

1− |z|

)}
.

Bloch space = B =
{
g holomorphic on D : |g′(z)| = O

(
1

1−|z|

)}
.



Ω

Γ

f

Theorem (Pommerenke, 1978): Γ is asymptotically smooth, i.e.,

∆(γ)

crd(γ)
=
`(γ)− crd(γ)

crd(γ)
→ 0, as diam(γ)→ 0,

iff log f ′ ∈ VMOA.



Bounded mean oscillation (BMO) is the space of functions so that

mI(f −mI(f )) = O(1),

where mI(f ) is the mean value of f over I , i.e.,

mI(f ) =
1

|I|

∫
I

fdx.

Here |I| is Lebesgue measure of I . In other words, f is in BMO if

‖f‖BMO = sup
I

1

|I|

∫
I

|f −mI(f )|dx <∞.

L∞ ⊂ BMO, but log |x| ∈ BMO.

Vanishing Mean Oscillation (VMO)

lim
|I|→0

1

|I|

∫
I

|f −mI(f )|dx→ 0.

A holomorphic function on D is in BMOA (VMOA) if it is the harmonic exten-

sion of a BMO (VMO) function on the circle.



Theorem (B.-Jones): log f ′ ∈ BMOA iff for every z ∈ Ω there is a chord-arc

subdomain z ∈ W ⊂ Ω with

diam(W ) ' `(∂W ) ' `(∂W ∩ Γ) ' dist(z,Γ).

z

W

W

Expands on closely related work of Kari Astala and Michel Zinsmeister who

gave characterization in terms of Schwarzian derivatives. They developed a

whole “BMO-Teichmüller” theory parallel to stadard “Bloch” version.



Consider the conformal mapping f : D→ Ω, the domain bounded by Γ.

Ω

Γ

f

Dirichlet space = holomorphic F on D with F ′ ∈ L2(dxdy).

Then Γ is Weil-Petersson if and only if log f ′ is in the Dirichlet space, i.e.,

(log f ′)′ = f ′′/f ′ ∈ L2(D, dxdy),

or ∫
D
|(log f ′)′|2dxdy <∞.
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Takhtajan and Teo [65] showed this condition is the same as

1

π

∫∫
D

∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣2 dxdy +
1

π

∫∫
D∗

∣∣∣∣g′′(z)

g′(z)

∣∣∣∣2 dxdy + 4 log
|f ′(0)|
|g′(∞)|

<∞.

where g is a conformal map from D∗ = {|z| > 1} to C \ Ω so that g(∞) =∞.

They called this quantity the universal Liouville action, and showed that it is

Möbius invariant.

More recently, Yilin Wang [66] proved it equals the Loewner energy of Γ, as

defined by her and Steffen Rohde in [59]; we will denote it by LE(Γ). This

provides a connection to SLE (Schramm-Loewner Evolutions).



The definition of Weil-Petersson in terms of the Dirichlet space implies:

Theorem 1.1. Γ is Weil-Petersson iff it is chord-arc and the arclength

parameterization is in the Sobolev space H3/2(T).

By definition f ∈ H3/2 if f is absolutely continuous and f ′ ∈ H1/2.

H1/2(T) has several equivalent definitions.

Lemma 1.2. Suppose f ∈ L2(T). Then the following are equivalent.

(1) f (z) =
∑∞
−∞ anz

n where
∑∞
−∞ n|an|2 <∞ (Fourier coefficients).

(2)
∫
D |∇Pf (z)|2dxdy <∞, where Pf denotes the Poisson extension of f

to D. (Dirichlet integral)

(3) f is the a.e. radial limits of a function u ∈ W 1,2(D) = {u :
∫
D |u|

2 +

|∇u|2dxdy <∞. (Trace theorem for Sobolev spaces)

(4)
∫
T
∫
T

∣∣∣f(x)−f(y)
x−y

∣∣∣2 dxdy <∞. (Douglas formula)



It was previously known that the tangent space at a point of T0(1) is naturally

identified with H3/2 (see [65]), but it was not previously known how to identity

T0(1) itself with a subset of H3/2(T).

Hs diffeomorphisms of circle, s > 3/2, is a topological group under composition

([15], [36]). H3/2 is not.

Theorem 1.1 makes H3/2 into topological group via identification with T0(1).

Shen proved conformal weldings h of WP curves are characterized by log h′ ∈
H1/2.



Theorem 1.1 was one of the last characterizations that I discovered. David

Mumford noticed that it was implied by another characterization from an earlier

draft.

Current draft does not use my original approach. Instead it uses an idea from

knot theory.



Theorem 1.3. Γ is Weil-Petersson iff it has finite Möbius energy, i.e.,

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|x− y|2
− 1

`(x, y)2

)
dxdy <∞.(1.1)

Möbius energy is one of several “knot energies” introduced by O’Hara [49], [51],

[50]. It blows up when the curve is close to self-intersecting, so continuously de-

forming a curve in R3 to minimize the Möbius energy should lead to a canonical

“nice” representative of each knot type.

x y

|x−y|

l(x,y) 

x=y



This was proven for irreducible knots by Freedman, He and Wang [34], who also

showed that Möb(Γ) is Möbius invariant (hence the name), that Möb(Γ) attains

its minimal value 4 only for circles, that finite energy curves are chord-arc, and

in R3 they are topologically tame (there is an ambient isotopy to a smooth

embedding).

Theorem 1.3 follows from Theorem 1.1 by a result of Blatt [11] (proof later).

Pulling knot tight can change topology. Must renormalize by Möbius transfor-

mations. Possible for irreducible knots.



Define dyadic decomposition. If a closed Jordan curve Γ has finite length

`(Γ), choose a base point z0
1 ∈ Γ and for each n ≥ 1, let {znj }, j = 1, . . . , 2n

be the unique set of ordered points with zn1 = z0
1 that divides Γ into 2n equal

length intervals (called the nth generation dyadic subintervals of Γ).

Let Γn be the inscribed 2n-gon with these vertices. Clearly `(Γn)↗ `(Γ).



Theorem 1.4. With notation as above, a curve Γ is Weil-Petersson if and

only if
∞∑
n=1

2n [`(Γ)− `(Γn)] <∞(1.2)

with a bound that is independent of the choice of the base point.

We need to say the bound is independent of the base point.

A square is not WP, but `(Γ) = `(Γ2) if the base point is a corner.



Definition of β-numbers

Given a curve Γ ⊂ R2, x ∈ R2 and t > 0, define

βΓ(x, t) = inf
L

sup
z∈D(x,t)

dist(z, L)

t
,

where the infimum is over all lines hitting D(x, t). β̃ uses lines through x.

3Q

x

t

Q

There are equivalent versions using dyadic cubes or using subarcs: βΓ(Q), β(Γj).



Lemma 1.5. Suppose −1 < s < 2 and Γ ⊂ Rn is Jordan curve (either

closed or an arc). Then the following are equivalent:∑
Q∈D

β2
Γ(Q)diam(Q)s <∞,(1.3)

∫ ∞
0

∫∫
Rn
β2(x, t)

dxdt

tn+1−s <∞,(1.4) ∫ ∞
0

∫
Γ

β̃2(x, t)
dsdt

t2−s
<∞,(1.5) ∑

j

β2(Γj)diam(Q)s <∞,(1.6)

where dx is volume measure on Rn, ds is arclength measure on Γ, and

the sum in (6.7) is over a multi-resolution family {Γj} for Γ. All four

quantities are comparable with constants that depend only on n.

Proved in

The travelings salesman theorem for Jordan curves

http://www.math.stonybrook.edu/~bishop/papers/tst.pdf


`(Γ) ' diam(Q) +
∑
Q

β2
γ(Q)diam(Q)



If both A and B depend on some parameter,

A . B

means that A ≤ C ·B for some C <∞ independent of that parameter.

Is the same as A = O(B).

A = O(1) means A is bounded, independent of the parameter.

A & B iff B . A.

A ' B means both A . B and A & B hold. In this case we say A and B are

“comparable”.

A = o(B) means A/B → 0 as the parameter tends to infinity.

A = o(1) means A→ 0 as the parameter tends to infinity.



A multi-resolution family in a metric space X is a collection of sets {Xj} in X

such that there is are N,M <∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X ,

(2) each bounded subset ofX hits at mostN of the setsXk with diam(X)/M ≤
diam(Xk) ≤Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one

Xj with diam(Xj) ≤Mdiam(X).

Dyadic intervals are not a multi-resolution family, e.g., X = [−1, 1] ⊂ R is not

contained in any dyadic interval, violating (3).

However, the family of triples of all dyadic intervals (or cubes) do form a multi-

resolution family. Similarly, if we add all translates of dyadic intervals by ±1/3,

we get a multi-resolution family (this is sometimes called the “1
3-trick”, [52]).

The analogous construction for dyadic squares in Rn is to take all translates by

elements of {−1
3, 0,

1
3}

n.



Peter Jones’s traveling salesman theorem in [38] says that the shortest curve Γ

containing E ⊂ R2 has length

`(Γ) ' diam(E) +
∑
Q

β2
E(Q)diam(Q)

' diam(E) +

∫∫
β2
E(x, t)

dxdt

t

Jones’s TST was extended to higher (finite) dimensions by Kate Okikiolu [52],

but with constants that grow exponentially with the dimension, and later Raanan

Schul [61] proved a version that holds for sets in Hilbert space, and thus in Rn

with constants that are independent of n. This is one of only a handful of prob-

lems in Euclidean analysis where dimension independent bounds are known.

Extensions to curves in other metric spaces are given in [19], [25], [42], [43].



Theorem 1.6. A Jordan curve Γ is Weil-Petersson if and only if∑
Q

β2
Γ(Q) <∞.(1.7)

Equivalent: ∫
Γ

∫ ∞
0

β2
Γ(x, t)

dtdx

t2
<∞.

β-numbers measure curvature of Γ at a particular point and scale.

This says that Γ is Weil-Petersson iff curvature is square integrable over all

locations and scales”.

We will have many variations of this were curvature is measured in different

ways: Schwarzian derivatives, Menger curvature, the Gauss curvatures of mini-

mal surfaces.



Rectifiable:
∑

Q β
2
Γ(Q) diam(Q) <∞.

Weil-Petersson:
∑

Q β
2
Γ(Q) <∞.

Thus WP is stronger version of rectifiability. (Even stronger than chord-arc).



The fact that
∑
β2

Γ(Q) < ∞ holds for H3/2 curves is fairly straightforward,

but the reverse implication seems less so. For curves in R2, we can prove this

direction though a chain of function theoretic characterizations that eventually

lead back to the H3/2 condition. For curves in Rn, n ≥ 3, we will need an

improvement of Jones’s original TST.



Original version:

`(Γ) ' diam(Γ) +
∑
Q

β2(Q)diam(Q).

`(Γ) ≤ (1 + δ)diam(Γ) + C(δ)
∑
Q

β2(Q)diam(Q).

Can’t take δ = 0. Can choose 3 points so optimal length is 1 + x, diameter is

1 + O(x2) and β2-sum is O(x2):

1

x

But we can take δ = 0 if E = Γ is a Jordan curve.



Theorem 1.7. If Γ ⊂ Rn is a Jordan arc, then

`(Γ) = diam(Γ) + O

∑
Q

β2(Q)diam(Q)


= crd(Γ) + O

∑
Q

β2(Q)diam(Q)


= crd(Γ) + O

(∫
Rn

∫ ∞
0

β2
Γ(x, t)

)

Here crd(Γ) = |z − w| denotes the distance between the endpoints z, w of Γ.

The point of Theorem 1.7 is that the diam(Γ) term in TST can be replaced by

the smaller value crd(Γ), and that this term is only multiplied by “1” in the

estimate (1.8).

I plan to prove this (and the general TST for Rn) in this course.
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The Weil-Petersson class is Möbius invariant, so we should seek a Möbius in-

variant version of the β-numbers as well.

The β-numbers locally trap Γ between two lines. We will introduce ε-numbers

that globally trap Γ between two disjoint disks. We then extend these disks

to hemispheres in the upper half-space R3
+ = R3

+ and measure the distance

between these hemispheres in the hyperbolic metric on R3
+.



The hyperbolic upper half-space is defined as

R3
+ = R3

+ = {(x, t) : x ∈ R2, t > 0},
with the hyperbolic metric dρ = ds/2t is chosen so that R3

+ has constant Gauss

curvature −1.

The ball model uses

B = {x ∈ R3 : |z| < 1},
with the metric dρ = ds/(1− |z|2).



Geodesics are circles (or lines) perpendicular to boundary.

The hyperbolic convex hull of Γ ⊂ R2, denoted CH(Γ), is the smallest convex

set in R3
+ that contains all (infinite) hyperbolic geodesics with both endpoints

in Γ.



For a circle in plane, hyperbolic convex hull is a hemisphere.

In general, CH(Γ) has non-empty interior.

There are two boundary surfaces, each asymptotic to Γ.

For experts: if Γ is the limit set of a quasi-Fuchsian group G, then CH(Γ)

corresponds to convex core of the corresponding 3-manifold M = R3
+/G.



Suppose Ω is Jordan domain with boundary Γ.

The dome of Ω is upper envelope of all hemispheres with base disk in Ω.

Region above dome is intersection of half-spaces, hence convex.

CH(Γ) is region between domes of “inside” and “outside” of Γ.























Except when Γ is a circle, CH(Γ) has non-empty interior and two boundary

surfaces (both with asymptotic boundary Γ). We define δ(z) to be the maximum

of the hyperbolic distances from z to the two boundary components of CH(Γ).

This function serves as our Möbius invariant version of the β-numbers.

Instead of integrating over all points x in the plane and all scales t > 0, our

hyperbolic Weil-Petersson criteria will involve integrating over points (x, t) on

some surface S ⊂ R3
+ that has Γ ⊂ R2 as its asymptotic boundary; usually S

will be one of the two connected components of ∂CH(Γ), the cylinder Γ× (0, 1],

or a minimal surface contained in CH(Γ).



Let δ(z) be the hyperbolic distance to farther boundary component.

δ(  )z

CH(   )Γ
z

For z ∈ CH(Γ), δ(z) measures “width” of convex hull near z.

δ(z) = 0 iff Γ is a circle (hull has no interior).

If δ(z) = ε then δ = O(ε) on a unit neighborhood of z (proof later).



Given a point zin the convex hull of Γ there is a geodesic segment through z

this is perpendicular to half-spaces that have their boundaries on either side of

Γ.

The hyperbolic length of this is approximately δ and is conformally invariant.



For quasicircles, δ(z) ∈ L∞ (not conversely).



For quasicircles, δ(z) ∈ L∞ (not conversely).



Suppose S ⊂ R3
+ is a 2-dimensional, properly embedded sub-manifold that

has an asymptotic boundary that is a closed Jordan curve in R2. The Euler

characteristic of S will be denoted χ(S), and equals 2− 2g− h if S is a surface

of genus g with h holes.

We let K(z) denote the Gauss curvature of S at z. The hyperbolic metric

dρ = ds/2t is chosen so that R3
+ has constant Gauss curvature −1. If the

principle curvatures of S at z are κ1(z), κ2(z), then K(z) = −1 + κ1(z)κ2(z)

(this is the Gauss equation). The norm of the second fundamental form is given

by |K(z)|2 = κ1(z)2 + κ2(z)2.

The surface S is called a minimal surface if κ1 = −κ2 (the mean curvature is

zero). In this case we will write κ = |κj|, j = 1, 2 and so K(z) = −1− κ2(z).

Surface looks like a “saddle” with curvature κ in one direction and −κ in per-

pendicular direction.



The surface S is called area minimizing if any compact Jordan region Ω ⊂ S

has minimal area among all compact surfaces in R3
+ with the same boundary.

All such surfaces are minimal, but not conversely.

Michael Anderson [6] has shown that every closed Jordan curve on R2 bounds

a simply connected minimal surface in R3
+, but there may be other minimal

surfaces with boundary Γ that are not disks (example later).

Any minimal surface S with boundary Γ is contained in CH(Γ) and the principle

curvatures of S at a point z can be controlled by the function δ(z) introduced

above. Let Aρ denote hyperbolic area and `ρ hyperbolic length.



Minimal surface trapped between two parallel planes must itself be flat. Minimal

surfaces analogous to harmonic functions: supremum controls gradient.



Theorem 1.8. For a closed curve Γ ⊂ R2, the following are equivalent:

(1) Γ ⊂ R2 is a Weil-Petersson curve.

(2) Γ asymptotically bounds a surface S ⊂ R3
+ so that∫

S

|δ(z)|2dAρ(z) <∞.

(3) Γ asymptotically bounds a surface S ⊂ R3
+ so that |K(z)| → 0 as z →

R2 = ∂R3
+ and ∫

S

|K(z)|2dAρ(z) <∞.

(4) Every minimal surface S asymptotically bounded by Γ has finite Euler

characteristic and finite total curvature, i.e.,∫
S

|κ(z)|2dAρ(z) =

∫
S

|K(z) + 1|dAρ(z) <∞.

(5) There is some minimal surface S with finite Euler characteristic and

asymptotic boundary Γ so that S is the union of a nested sequence of

compact Jordan subdomains Ω1 ⊂ Ω2 ⊂ . . . with

lim sup
n→∞

[`ρ(∂Ωn)− Aρ(Ωn)] <∞.



Usual Euclidean isoperimetric inequality

L2 ≥ 4πA,

where A is area, L is boundary length.

In a space of constant negative curvature

L2 ≥ 4πAχ + A2,

where χ = χ(Ω) is the Euler characteristic of Ω. Hence

L− A ≥ 4πAχ

L + A

For topological disk, χ = 1, so

L− A ≥ 4πA

L + A
> 0

A simply connected minimal surface corresponds to WP curve iff L − A is

bounded above for some exhaustion of surface by compact Jordan subdomains.



For surface in upper half-space with boundary on R2, we can form sub-domains

by cutting at a certain height.

Truncate S ⊂ R3
+ at a fixed height above the boundary, i.e.,

St = S ∩ {(x, y, s) ∈ R3
+ : s > t}, ∂St = S ∩ {(x, y, s) ∈ R3

+ : s = t}
and define the renormalized area of S to be

RA(S) = lim
t↘0

[Aρ(St)− `ρ(∂St)]

when this limit exists and is finite.

This was introduced by Graham and Witten [32]. Related to quantum entan-

glement, black holes,...



Corollary 1.9. For any closed curve Γ ⊂ R2 and for any minimal surface

S ⊂ R3
+ with finite Euler characteristic and asymptotic boundary Γ,

RA(S) = −2πχ(S)−
∫
S

κ2(z)dAρ,(1.8)

In other words, either Γ is Weil-Petersson and both sides are finite and

equal, or Γ is not Weil-Petersson and both sides are −∞.



Proposition 3.1 of Alexakis and Mazzeo’s paper [5] gives a version of (1.8) for sur-

faces in the setting of n-dimensional Poincaré-Einstein manifolds (that formula

also contains a term involving the Weyl curvature), but they use the additional

assumption that Γ is C3,α.

However, Weil-Petersson curves need not be even C1, in general. We can build

examples with infinite spirals. Need angles to satisfy
∑
θn = ∞, but

∑
θ2
n <

∞.



Corollary 1.9 shows that the Alexakis-Mazzeo result holds without any condi-

tions on Γ, at least in the case of R3
+. Their proof uses power series expansions

near boundary; need to control several terms.

Our proof of Corollary 1.9 will show that the exact method of truncation in

the definition of renormalized area is not important, and that it can be defined

intrinsically on S, without explicit reference to the boundary:

Corollary 1.10. Suppose S ∪nKn ⊂ R3
+ is a minimal surface where K1 ⊂

K2 ⊂ . . . are nested compact sets such that S \Kn is a topological annulus

for all n. Then

−2πχ(S)−
∫
S

κ2(z)dAρ,= RA(S) = lim
n→∞

sup
Ω⊃Kn

[Aρ(Ω)− `ρ(∂Ω)]

where the supremum is over compact domains Kn ⊂ Ω ⊂ S bounded by a

single Jordan curve. All terms are finite and equal, or all are −∞.



Möbius energy is also an example of renormalization, namely the Hadamard

regularization of a divergent integral.

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|x− y|2
− 1

`(x, y)2

)
dxdy <∞.

Given the divergent integral of a function that blows up on a set E, this is

defined by integrating the function outside a t-neighborhood of E, writing the

result as power series in t, and taking the constant term of this series as the

renormalized value of the integral (of course, this depends on exactly how we

choose the neighborhoods).



To apply Hadamard renormalization to Möbius energy, note that the integral

of the first term in (1.1) is infinite, but for smooth curves the truncated version

equals ∫∫
`(x,y)>t

dxdy

|x− y|2
=

2`(Γ)

t
+ C + O(t).(1.9)

Regularizing the other term in (1.1) (e.g., Lemma 2.3 of [34]) gives∫∫
`(x,y)>t

dxdy

`(x, y)2
=

2`(Γ)

t
− 4,(1.10)

so that Möb(Γ) = 4 + C.



The divergent integral in (1.9) is the energy of arclength measure with respect to

a inverse cube law, e.g., electrostatics in four dimensions. It is infinite because

Brownian motion in R4 almost surely misses any rectifiable curve, but Weil-

Petersson curves are exactly those for which the electrostatic energy of arclength

measure blows up as slowly as possible (up to an additive constant).

Incidentally, the Loewner energy of Γ can also be written as type of renormal-

ization involving the Lawler-Werner Brownian loop measure of random closed

curves hitting both sides of a neighborhood of Γ. This measure tends to infinity

as the neighborhood shrinks, but subtracting the corresponding quantity for a

circle gives a multiple of LE(Γ) in the limit.
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Since Loewner energy, Möbius energy and renormalized area are all Möbius

invariant quantities that characterize Weil-Petersson curves, it seems natural to

ask if they are essentially the same quantity, or at least comparable in size.

There are examples showing that for any large M we can have

(1) LE(Γ1) ' Möb(Γ1) ' RA(Γ1) 'M .

(2) LE(Γ2) ' RA(Γ2) 'M but Möb(Γ2) 'M logM .

(3) |LE(Γ3)− LE(Γ4)| 'M ' |RA(Γ3)| but |RA(Γ3)−RA(Γ4)| ' 1 .

Thus it is unclear whether there is any simple relation among these quantities.

In these estimates, RA(Γ) denotes RA(S) for some choice of minimal surface

S with asymptotic boundary Γ. This surface need not be unique and a different

choice can lead to very different values of the renormalized area.



The example from Anderson’s paper [6] where the absolute area minimizer

is not simply connected; it can have very different renormalized area from the

simply connected minimal surface. Top row shows the upper half-space model

and the lower row is in the ball model.















The dyadic dome

There is a discrete version of this that might be relevant to computational ques-

tions, and that illustrates the connection between our Euclidean and hyperbolic

conditions.

Define the “dyadic cylinder”

X =

∞⋃
n=1

Γn × [2−n, 2−n+1),

where {Γn} are the dyadic polygonal approximations to Γ, as in Theorem 1.4.



X is a union of vertical rectangular panels that do not quite meet up, so it has

holes, but we can replace the vertical rectangles by tilted triangles that form a

simply connected surface, the “dyadic dome”,



Theorem 1.11. Γ is Weil-Petersson iff the corresponding dyadic dome has

finite renormalized area.

















2. Function theoretic definitions of the Weil-Petersson

class



A quasiconformal (QC) map h of a planar domain Ω is a homeomorphism of

Ω to another planar domain Ω′ that is absolutely continuous on almost all lines

and whose dilatation µ = hz/hz is satisfies ‖µ‖∞ ≤ k < 1. See [3] or [40] for

the basic properties of such maps.

We say the h is a planar quasiconformal map if Ω = Ω′ = R2. The measurable

Riemann mapping theorem says that given such a µ, there is a planar quasicon-

formal map h with this dilatation. If µ is supported on the unit disk, D, then

there is a quasiconformal h : D→ D with this dilatation.

A quasiconformal map h is called K-quasiconformal if its dilatation satisfies

‖µ‖∞ ≤ k = (K − 1)/(K + 1). More geometrically, at almost every point h

is differentiable and its derivative (which is a real linear map) send circles to

ellipses of eccentricity at most K (the eccentricity of an ellipse is the ratio of

the major to minor axis).



Ω

Γ

f

Suppose Γ = ∂Ω is Jordan curve, f : D→ Ω is conformal.

Basic problem: how is geometry of Γ related to properties of f?



crd(  )γ

diam(  )γ

γ

w

z

β(γ) diam(  )γ

If γ is a planar Jordan arc with endpoints z, w, we set:

• diam(γ) = diameter of γ

• crd(γ) = z − w = chord length of γ

• `(γ) = length of γ,

• ∆(γ) = `(γ)− crd(γ) = excess length

• β(γ) = sup{z ∈ γ : dist(z, L)/diam(γ)}, L = line through z, w



Γ

γ

Γ is a quasicircle iff diam(γ) = O(crd(γ)) for γ ⊂ Γ.

Γ is chord-arc iff `(γ) = O(crd(γ)) for γ ⊂ Γ.



If f is conformal on D, then f ′ is never zero, so Φ = log f ′ is a well defined

holomorphic function on D. Recall that the Dirichlet class is the Hilbert space of

holomorphic functions F on the unit disk such that |F (0)|2 +
∫
D |F

′(z)|2dxdy <
∞. In other words, the Dirichlet space consists of the holomorphic functions in

the Sobolev space W 1,2(D) (functions with one derivative in L2(dxdy)).

Definition 1. Γ is a quasicircle and Γ = f (T), where f is conformal on D
and log f ′ is in the Dirichlet class.



This definition immediately provides some geometric information about the

curve Γ. For a Jordan arc γ, let `(γ) denote its arclength and let crd(γ) = |z−w|
where z, w are the endpoints of γ. If log f ′ is in the Dirichlet class, then

log f ′ ∈ VMOA (vanishing mean oscillation; see Chapter VI of [28]). The

John-Nirenberg theorem (e.g., Theorem VI.2.1 of [28]) then implies f ′ is in the

Hardy space H1(D), so Γ is rectifiable.

Even stronger, a theorem of Pommerenke [56] implies that Γ is asymptotically

smooth, i.e., `(γ)/crd(γ)→ 1 as `(γ)→ 0, i.e., a Weil-Petersson curve has “no

corners”.

Asymptotic smoothness implies Γ is chord-arc; a fact observed in [26] (see also

Theorem 2.8 of [57], but there is a gap due to the non-standard definition of

“quasicircle” in a result quoted from [22].)



Bounded mean oscillation (BMO) is the space of functions so that

mI(f −mI(f )) = O(1),

where mI(f ) is the mean value of f over I , i.e.,

mI(f ) =
1

|I|

∫
I

fdx.

Here |I| is Lebesgue measure of I . In other words, f is in BMO if

‖f‖BMO sup
I

1

|I|

∫
I

|f −mI(f )|dx <∞.

mI(f ) can be replaced by any constant cI .

Equivalent definition

sup
I

1

|I|

∫
I

|f −mI(f )|2dx <∞.

L∞ ⊂ BMO, but log |x| ∈ BMO.



Vanishing Mean Oscillation (VMO)

lim
|I|→0

1

|I|

∫
I

|f −mI(f )|2dx→ 0.

The John-Nirenberg Theorem says that if f in in BMO, then

|{x ∈ I : |f (x)−mI(f )| > λ}| ≤ C exp(−λ/C‖f‖BMO).

In particular, if f is in BMO then
∫
ecf < ∞ for some c > 0 depending

on the BMO norm of f . See Theorem VI.2.1 of Garnett’s Bounded Analytic

Functions.



If f is in VMO, then we can write f as the sum of a continuous function and

function with small BMO norm (Theorem VI.5.1 of BAF). This implies that if

f is in VMO then exp(cf ) is integrable for any c (not just small c).

A positive measure on the unit disk is a Carleson measure if for every disk

D = D(x, r) centered on the unit circle,

µ(D) = O(r).

If u is the harmonic extension of g from unit circle to disk, then g is in BMO iff

µ = |∇u(z)|2 log
1

|z|
dxdy

is a Carleson measure. See Theorem VI.3.4 of Garnett’s Bounded Analytic

Functions.

g is in VMO iff this µ is a vanishing Carleson measure. This means µ(D) = o(r).



If f is a conformal map and g = log f ′ is in the Dirichlet space, then it it also

in VMO: ∫
D(x,r)∩D

|g′|2 log
1

|z|
dxdy . r

∫
D(x,r)∩D

|g′|2dxdy = ro(1),

where we have used the dominated convergence theorem.

Thus log f ′ in Dirichlet space implies log f ′ is in VMO, hence |f ′| = exp(log f ′)

is integrable. Hence f ′ is in the Hardy space H1(T) and Γ = f (T) is rectifiable.



An estimate of Beurling [9] (simplified and extended by Chang and Marshall in

[16] and [44]) says that log |f ′| in the Dirichlet class implies
∫

exp(α log2 |f ′|2)ds <

∞ for all α ≤ 1. So being in Dirichlet class is stronger than VMO.



It is easy to see that a function F is in the Dirichlet class if and only if F (D)

has finite area, when counted with multiplicity. It is also easy to check that if

the inradius of a simply connected domain Ω is small, then the conformal map

g : D→ Ω is in the Bloch space with small norm, i.e.,

‖g‖B = sup
z∈D
|g′(z)|(1− |z|2),

is small. A standard result (e.g., Theorem VII.2.1 of [29]) then says that f =∫ z
0 e

gdz is a conformal map onto a Jordan domain.

Thus choosing Ω to have finite area, small in-radius but containing unbounded

rays gives a conformal map f with g = log f ′ in the Dirichlet class such that

f (T) contains infinite spirals. Hence Weil-Petersson curves need not be C1

(there are even examples where the spirals are dense on the curve).

We can also build examples of spirals by hand and verify the β2-sum character-

ization of Weil-Petersson curves.



Set F = log f ′. We claim ∫∫
D
|F ′(z)|2dxdy <∞

is equivalent to

I :=

∫∫
D
|F ′′(z)|2(1− |z|2)2dxdy <∞.



Proof. Assume F has the power series expansion F (z) =
∑∞

n=0 bnz
n, and then

a simple computation in polar coordinates leads to∫∫
D
|F ′(z)|2dxdy = 2π

∞∑
n=1

n2|bn|2
∫ 1

0

r2n−1dr =

∞∑
n=1

(πn)|bn|2,

and hence

I =

∫∫
D
|F ′′(z)|2(1− |z|2)2dxdy

= 2π

∞∑
n=1

n2(n− 1)2|bn|2
∫ 1

0

r2n−4(1− 2r2 + r4)rdr

= 2π

∞∑
n=1

n2(n− 1)2|bn|2(
1

2n− 2
− 2

2n
+

1

2n + 2
)

=

∞∑
n=1

2π
n(n− 1)

n + 1
|bn|2 '

∞∑
n=2

πn|bn|2

Thus both infinite series (and hence both integrals) diverge or converge together.

�



If we expand out F ′ = (log f ′)′ and F ′′ we see that∫
D
|F ′|2dxdy =

∫
D
|(log f ′)′|2dxdy =

∫
D

∣∣∣∣f ′′f ′
∣∣∣∣2 dxdy <∞(2.1)

can be replaced by the condition∫
D
|F ′′|2(1− |z|2)2dxdy(2.2)

=

∫
D

∣∣∣∣∣
(
f ′′′

f ′

)
−
(
f ′′

f ′

)2
∣∣∣∣∣
2

(1− |z|2)2dxdy <∞.(2.3)



This integrand is reminiscent of the Schwarzian derivative of f given by

S(f ) =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.(2.4)

The quantities in (2.2) and (2.4) are very similar, except that a factor of 1 has

been changed to 3/2. However, this represents a non-linear change, and it is

difficult to compare the two quantities directly, e.g., for a Möbius transformation

sending D to a half-plane, the Schwarzian is constant zero, but the expression

in (2.2) blows up to infinity at a boundary point.



Nevertheless, for conformal maps into bounded quasidisks, the integrals of these

two quantities are simultaneously finite or infinite:

Definition 2. Γ is quasicircle and Γ = f (T), where f is conformal on D
and satisfies ∫

D
|S(f )(z)|2(1− |z|2)2dxdy <∞.(2.5)



Proposition 1 of Cui’s paper [18] says that Definitions 2 and 1 are equivalent to

each other.

See also Theorem II.1.12 of Takhtajan and Teo’s book [65] and Theorem 1 of

[55] by Pérez-González and Rättyä.

I can give a proof in class later.



If f is univalent on D then

sup
z∈D
|S(f )(z)|(1− |z|2)2 ≤ 6.(2.6)

See Chapter II of [41] for this and other properties of the Schwarzian.

If f is holomorphic on the disk and satisfies (2.6) with 6 replaced by 2, then

f is injective, i.e., a conformal map. If 2 is replaced by a value t < 2, then f

also has a K-quasiconformal extension to the plane, where K depends only on

t. This is due to Ahlfors and Weill [2], who gave a formula for the extension and

its dilatation

f (w) = f (z) +
(1− |z|2)f ′(z)

z − 1
2(1− |z|2)(f ′′(z)/f ′(z))

(2.7)

µ(w) = −1

2
(1− |z|2)2S(f )(z)(2.8)

where w ∈ D∗ and z = 1/w ∈ D.

See Section 4 of [17] for a lucid discussion of the Ahlfors-Weill extension and a

proof that when t = 2, this extension gives a homeomorphism of the sphere.

See also Formula (3.33) of [53] and or Equation (9) of [58].



The Alhfors-Weill extension shows that Definition 2 implies:

Definition 3. Γ = f (T) where f is a quasiconformal map of the plane that

is conformal on D∗ and whose dilatation µ on D satisfies satisfies∫
D

|µ(z)|2

(1− |z|2)2
dxdy <∞.(2.9)

This was shown to be equivalent to Definition 2 by Guizhen Cui; see Theorem

2 of [18].

The integral in (2.9) is the same as∫
D
|µ(z)|2dAρ <∞,(2.10)

where dAρ denotes integration against hyperbolic area. Thus Γ is Weil-Petersson

iff if is image of a QC map whose dilatation in in L2 for hyperbolic area on the

disk.



Another variation on this theme is to consider the map R(z) = f (1/f−1(z)).

This is an orientation reversing quasiconformal map of the sphere to itself that

fixes Γ pointwise, exchanges the two complementary components of Γ and whose

dilatation satisfies ∫
Ω∪Ω∗
|µ(z)|2dAρ(z) <∞,(2.11)

where dAρ is hyperbolic area on each of the domains Ω,Ω∗.

This version is sometimes easier to check, and we will use it interchangeably

with Definition 3. The map R is called a quasiconformal reflection across Γ

(and constructing R is often the easiest way to check Γ is WP).



f is K-biLipschitz if
1

K
≤ |f (x)− f (y)|

|x− y|
≤ K,

for all x, y.

BiLipschitz implies quasiconformal.

Quasicircles in plane always have biLipschitz reflections.

Later we will formulate a biLipschitz variation of Definition 3, that we shall

discuss later and is easier to extend to higher dimensions: Γ is Weil-Petersson

iff it is the fixed point set of a orientation reversing biLipschitz mapping of R2

so that “the local biLipschitz constant 1 + ρ(x) is in L2 on the complement of

the curve”. We will have to make this last part more precise later.
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A circle homeomorphism ϕ : T→ T is called a conformal welding if ϕ = f−1◦g
where f, g are conformal maps from the two sides of the unit circle to the two

sides of a closed Jordan curve Γ.

There are many weldings associated to each Γ, but they all differ from each other

by compositions with Möbius transformations of T. Not every circle homeomor-

phism is a conformal welding, but weldings are dense in the homeomorphisms

in various senses; see [27].

A circle homeomorphism is called M -quasisymmetric if it maps adjacent arcs in

T of the same length to arcs whose length differ my a factor of at most M ; we

call ϕ quasisymmetric if it is M -quasisymmetric for some M .

The quasisymmetric maps are exactly the circle homeomorphisms that can be

continuously extended to quasiconformal self-maps of the disk, and are also

exactly the conformal weldings of quasicircles. See [3].



The QS maps form a meager set in the space of all circle homeomorphism, but

the set of conformal weldings is residual (it contains a Gδ). Thus most conformal

weldings are not QS.

Fσ = countable union of closed sets

Gδ = countable intersection of open sets

residual = contains a dense Gδ = topologically generic

meager = contained in nowhere dense Fσ = topologically rare

See my recent preprint

Conformal removability is hard

http://www.math.stonybrook.edu/~bishop/papers/notborel.pdf


A quasisymmetric homeomorphism is called symmetric if the constant M tends

to 1 on small scales (Pommerenke [56] proved such weldings characterize curves

where log f ′ is in the little Bloch space; see also [27] by Gardiner and Sullivan

and [64] by Strebel).

These papers were part of the origin of Takhtajan and Teo’s book, and hence

this class.

Weil-Petersson class corresponds to replacing “tends to zero” with “is square

summable”.



More precisely, if I ⊂ T is an arc, let m(I) denote its midpoint. For a homeo-

morphism ϕ : T→ T define

qs(ϕ, I) =
|ϕ(m(I))−m(ϕ(I))|

`(ϕ(I))
.

qs



Definition 4. Γ is closed Jordan curve whose welding map ϕ satisfies∑
I

qs2(ϕ, I) <∞,(2.12)

where the sum is over some dyadic decomposition of T.

This makes sense, because we expect qs(ϕ, I) to control size of dilatation µ of

the QC extension of ϕ to the unit disk.

Weil-Petersson weldings were first characterized by Yuliang Shen [63] in terms

of the Sobolev space H1/2. We will describe his result a little later.



A Whitney decomposition of an open set Ω ⊂ Rn is a countable collection

of closed sets {Qj} inside Ω so that

(1) ∪jQj = Ω,

(2) the Qj have disjoint interiors

(3) diam(Qj) ' dist(Qj, ∂Ω)

(4) Qj contains a ball of radius comparable to its diameter.

Lemma 2.1. Whitney decompositions always exist if ∂Ω 6= ∅.

Proof. For each x ∈ Ω take the largest dyadic cube Q containing x so that

3Q ⊂ Ω. (A largest one clearly exists.)

Clearly these cover Ω since every x is in such a square.

The nested property of dyadic square implies disjoint interiors.

Upper diameter bound clear since 3Q ⊂ Ω.

Maximality implies the lower diameter bound (otherwise we would have chosen

a bigger cube). �









In disk we define a Carleson square associate to an arc I ⊂ T as

QI = {z ∈ D : z/|z| ∈ I, 0 < 1− |z| ≤ |I|}.
and its “top half” as

TI = {z ∈ D : z/|z| ∈ I, |I|/2 ≤ 1− |z| ≤ |I|}.
As I ranges over the dyadic intervals of T, this gives a Whitney decomposition

(we also use a disk near the origin.)



Julia set, c=0.28804+i0.45725

A Whitney decomposition for the complement of the Julia set of a quadratic

polynomial. Here the elements of the decomposition are chosen to respect the

dynamics: near the Julia set each Whitney box has two preimages that are also

Whitney boxes.



Julia set, c=0.28804+i0.45725



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically

conformal
Bishop-Jones

condition
asymptotically

smooth

Each of four columns is a theorem giving 5 equivalent conditions.

Conditions become more restrictive moving left to right.

CM = Carleson measure, CM0 = vanishing Carleson measure,

C0 = continuous on disk, vanishing on boundary

Strongly quasisymemtric = h is abssolutely continuous and h′ is an A∞ weight.



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically

conformal
Bishop-Jones

condition
asymptotically

smooth

Theorem (Pommerenke, 1978): Γ is asymptotically conformal, i.e.,

β(γ)→ 0, as diam(γ)→ 0,

iff log f ′ is in little Bloch class

B0 =

{
g holomorphic on D : |g′(z)| = o

(
1

1− |z|

)}
.

Bloch space = B =
{
g holomorphic on D : |g′(z)| = O

(
1

1−|z|

)}
.



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically

conformal
Bishop-Jones

condition
asymptotically

smooth

Theorem (Pommerenke, 1978): Γ is asymptotically smooth, i.e.,

∆(γ)

crd(γ)
=
`(γ)− crd(γ)

crd(γ)
→ 0, as diam(γ)→ 0,

iff log f ′ ∈ VMOA.



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically

conformal
Bishop-Jones

condition
asymptotically

smooth

Astala-Zinsmeister theorem:

log f ′ ∈ BMO⇔ |S(f )|2(1− |z|2)3dzxdy is Carleson.

µ is a Carleson measure if µ(D(x, r)) = O(r).

BMOA are homomorphic functions such that

|g′(z)|2(1− |z|2)dxdy is Carleson



log f ′ B0 BMOA VMOA Dirichlet

(log f ′)′(1− |z|2) C0(D) CM(D) CM0(D) L2(dAρ)

S(z)(1− |z|2)2 C0(D) CM(D) CM0(D) L2(dAρ)

µ C0(D) CM(D) CM0(D) L2(dAρ)

h = g−1 ◦ f symmetric
strongly

quasisymmetric
log h′ ∈ VMO log h′ ∈ H1/2

Γ = f (T)
asymptotically

conformal
Bishop-Jones

condition
asymptotically

smooth

Bishop-Jones: for all z ∈ Ω there is chord-arc W ⊂ Ω with z ∈ W and

`(∂W ) ' `(∂W ∩ ∂Ω) ' dist(z, ∂Ω) ' dist(z, ∂W )

W z

Ω



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Diagram of implications between previous definitions.

Edge labels refer to sections of my preprint..



3. Sobolev type definitions of the Weil-Petersson class



Definition 1 can be interpreted in terms of Sobolev spaces. The space H1/2(T) ⊂
L2(T) is defined by the finiteness of the seminorm

D(f ) =

∫∫
D
|∇u(z)|2dxdy

=
1

8π

∫ 2π

0

∫ 2π

0

∣∣∣∣∣f (eis)− f (eit)

sin 1
2(s− t)

∣∣∣∣∣
2

dsdt '
∫
T

∫
T

|f (z)− f (w)|2

|z − w|2
|dz||dw|.

where u is the harmonic extension of f to D.

The equality of the first and second integrals is called the Douglas formula, after

Jesse Douglas who introduced it in his solution of the Plateau problem [21]. See

also Theorem 2.5 of [4] (for a proof of the Douglas formula) and [60] (for more

information about the Dirichlet space).



For s ∈ (0, 1) we define the space Hs(T) using∫
T

∫
T

|f (z)− f (w)|2

|z − w|1+2s
|dz||dw| <∞.

See [1] and [20] for additional background on fractional Sobolev spaces.

See also [48] by Nag and Sullivan; in the authors’ words its “purpose is to survey

from various different aspects the elegant role of H1/2 in universal Techmüller

theory” (a role we seek to explore in this paper too).



Shen [63] proved Γ is Weil-Petersson iff its welding map satisfies logϕ′ ∈ H1/2.

To see necessity, observe that log f ′ is in the Dirichlet class on D if and only

if its radial boundary values satisfy log f ′ ∈ H1/2(T). Thus Definition 1 im-

plies log f ′, log g′ ∈ H1/2(T) and a simple computation shows logϕ′(x) =

− log f ′(ϕ(x)) + log g′(x). Beurling and Ahlfors [8] proved H1/2(T) is invari-

ant under pre-compositions with quasisymmetric circle homeomorphisms, so

logϕ′ ∈ H1/2(T).

At present I don’t plan to prove the converse here.



Tuesday, September 22, 2020



As noted above, log f ′(z) is in the Dirichlet class on D if and only if the radial

limits log |f ′| and arg(f ′) are in H1/2(T).

Since arg(f ′) can be unbounded, it is, perhaps, surprising that this is equivalent

to f ′/|f ′| ∈ H1/2:

Definition 5. Γ = f (T) is chord-arc and exp(i arg f ′) = f ′/|f ′| ∈ H1/2(T).

In other words, Γ is WP iff the unit tangent direction at f (z) defines an H1/2

function on the circle.



One direction is easy:

Definition 1 implies log f ′ = log |f |+i arg f ′ is in the Dirichlet class, so arg f ′ ∈
H1/2(T). Using |eix − eiy| ≤ |x− y| and the Douglas formula we get∫
T

∫
T

∣∣∣∣∣ei arg f ′(x) − ei arg f ′(y)

x− y

∣∣∣∣∣
2

dxdy ≤
∫
T

∫
T

∣∣∣∣arg f ′(x)− arg f ′(y)

x− y

∣∣∣∣2 dxdy <∞.
Thus exp(i arg f ′) ∈ H1/2(T).

The converse direction seems harder. We shall give two proofs of it: one by

following a chain of geometric characterizations of the Weil-Petersson class, and

a direct function theoretic proof.



Let a : T → Γ be an orientation preserving arclength parameterization (i.e., a

multiplies the arclength of every set by `(Γ)/2π). For z ∈ Γ, let τ (z) be the

unit tangent direction to Γ with its usual counterclockwise orientation.

Then τ (a(x)) = a′(x)2π/`(Γ), where a′ = da
dθ on T. Thus a′ = exp(i arg f ′) ◦ ϕ

where ϕ = a−1 ◦ f is a circle homeomorphism.

We shall prove that this map ϕ is quasisymmetric (and hence so is its inverse).

It is a result of Beurling and Ahlfors [8] that pre-composing with such maps

preserves H1/2(T), so Definition 5 is equivalent to saying a′ ∈ H1/2(T).



Every arclength parameterization is Lipschitz hence absolutely continuous, and

therefore the distributional derivative of a equals its pointwise derivative a′.

Thus, for arclength parameterizations, a′ ∈ H1/2(T) is the same as a ∈ H3/2(T).

Therefore Definition 5 is equivalent to

Definition 6. Γ is chord-arc and the arclength parameterization a : T→ Γ

is in the Sobolev space H3/2(T).

Proving this is equivalent to Definition 1 gives Theorem 1.1.



Lemma 3.1. Definition 5 implies Definition 6.

Proof. Suppose f is a conformal map from D to the bounded complementary

component of Γ. Let a : T→ Γ be an orientation preserving arclength param-

eterization and let ϕ = a−1 ◦ f : T→ T. We claim this circle homeomorphism

is quasisymmetric.

To prove this, consider to adjacent arcs I, J of the same length. Since Definition

1 is known to be equivalent to Definition 3, f has a quasiconformal extension

to the whole plane, hence it is also a quasisymmetric map and this implies that

f (I) and f (J) have comparable diameters. See [31] or Section 4 of [35].



Since we also know that Γ is chord-arc, this implies that f (I) and f (J) have

comparable lengths, hence ϕ(I) and ϕ(J) also have comparable lengths, since

a preserves arclength. This is the definition of quasisymmetry for ϕ.

Note that a′ = exp(i arg f ′) ◦ ϕ. Beurling and Ahlfors proved in [8] that H1/2

is invariant under composition with a quasisymmetric homeomorphism of T.

Thus a′ ∈ H1/2 iff exp(i arg f ) ∈ H1/2. Since a is Lipschitz, it is also absolutely

continuous, so its weak derivative agrees with its pointwise derivative a′. Hence

a ∈ H3/2(T). �



Previous to Shen’s result described earlier, Gay-Balmaz and Ratiu [30] had

proved that if Γ is Weil-Petersson, then ϕ ∈ Hs(T) for all s < 3/2, but Shen

[63] gave examples not in H3/2(T) or Lipschitz.

Thus Theorem 1.1 implies that having an H3/2 arclength parameterization is

not equivalent to having an H3/2 conformal welding. These are equivalent con-

ditions for s > 3/2: for such weldings the Sobolev embedding theorem implies

that ϕ′ is Hölder continuous, which implies that the conformal mappings f, g

have non-vanishing, Hölder continuous derivatives (e.g.,[39]), and therefore ϕ is

biLipschitz.

This implies Γ has an Hs arclength parameterization (copy the argument follow-

ing Definition 5, using the fact that biLipschitz circle homeomorphisms preserve

Hs(T) for 1/2 < s < 1, e.g., [12]).



When identified with quasisymmetric circle homeomorphisms, elements of the

universal Teichmüller space T (1) form a group under composition. It is not a

topological group under the usual topology because left multiplication is not

continuous (e.g., Theorem 3.3 in [41] or Remark 6.9 in [37]).

However, the subgroup T0(1) is a topological group with its Weil-Petersson

topology. Circle diffeomorphisms in Hs(T) with s > 3/2 also form a group, e.g.,

[36], [63], and by the previous paragraph this meansHs curves are identified with

a topological group via conformal welding. Even though H3/2-diffeomorphisms

of the circle are not a group, Theorem 1.1 shows the set of H3/2 curves can also

be identified with a group via conformal welding, namely T0(1).

See also [7], [30], [45], [46] for relevant discussions of groups, weldings, Sobolev

embeddings and immersions.



Assuming Γ is chord-arc,
1

C
≤ |a(x)− a(y)|

|x− y|
≤ 1, x, y ∈ T,

so setting z = a(x), w = a(y), we have∫
Γ

∫
Γ

∣∣∣∣τ (z)− τ (w)

z − w

∣∣∣∣2 |dz||dw| =

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

a(x)− a(y)

∣∣∣∣2 dxdy
=

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y
· x− y
a(x)− a(y)

∣∣∣∣2 dxdy
'
∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y

∣∣∣∣2 dxdy



Thus Definition 6 is equivalent to:

Definition 7. Γ is chord-arc and∫
Γ

∫
Γ

∣∣∣∣τ (z)− τ (w)

z − w

∣∣∣∣2 |dz||dw| <∞.
This is very similar to saying f ′/|f ′| ∈ H1/2(T), but the under lying measure

is wrong. The condition on f ′/|f ′| transported to Γ would involve integrating

against harmomic measure, the image of Lebesgue measure under the conformal

map. The definition above is in terms of arclength measure.

Thus in this sense, harmonic measure and arclength are “essentially the same”

on Weil-Petersson curves.



We will prove this is equivalent to:

Definition 8. Γ has finite Möbius energy, i.e,

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|z − w|2
− 1

`(z, w)2

)
dzdw <∞.

Blatt [11] proved directly that Definition 6 is equivalent to Definition 8 (but

there is a typo in Theorem 1.1 of [11]: it is stated that s = (jp − 2)/(2p), but

this should be s = (jp− 1)/(2p), as given in the proof).



A Jordan curve with a H3/2 arclength parameterization is chord-arc (Lemma

2.1 of [11], because this assumption prevents bending on small scales, but there

is no quantitative bound on the chord-arc constant. However, such a bound is

possible in terms of Möb(Γ). This is Lemma 1.2 of [34], but for the reader’s

convenience, we sketch a proof here.



Lemma 3.2. Finite Möbius energy implies chord-ard.

Proof. If |z − w| ≤ ε, but `(z, w) ≥ Mε, let σk, σ
′
k ⊂ γ(z, w) be arcs of

length 2kε that are path distance (on Γ) 2kε from z and w respectively, for

k = 1, . . . , K = blog2(M)c− 4. Then σk ∪σ′k has diameter at most ε(1 + 2k+1)

in Rn, but these two arcs are at least distance (M − 2k+2)ε ≥ Mε/2 apart on

Γ.



Thus∫
σk

∫
σ′k

(
1

|z − w|2
− 1

`(v, w)2

)
dzdw ≥

[
1

(2k+2ε)2
− 1

(M/2)2

]
(2kε)(2kε)

≥ 1

16
− 22K+2

M 2

≥ 1

16
− 2−6 >

1

32

Summing over k shows Möb(Γ) ≥ K/32 & logM , so Möb(Γ) < ∞ implies Γ

is chord-arc. �



Using the fact that Γ is chord-arc, we get

Möb(Γ) =

∫
Γ

∫
Γ

`(z, w)2 − |z − w|2

|z − w|2`(z, w)2
dzdw

=

∫
Γ

∫
Γ

(`(z, w)− |z − w|)(`(z, w) + |z − w|)
|z − w|2`(z, w)2

dzdw

'
∫

Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

.

Thus Definition 8 holds iff

Definition 9. Γ is chord-arc and satisfies∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| <∞.(3.1)

In [26], Gallardo-Gutiérrez, González, Pérez-González, Pommerenke and Rättyä

claim that (3.1) follows from Definition 1, but their proof contains a small error.

They state the converse as a conjecture of Peter Jones; our results prove both

directions.



This definition does not immediately look like a “curvature is square integrable”

criterion, but it can easily be put in this form. Set

κ(z, w) =
√

24 ·

√
`(z, w)− |z − w|
|z − w|3

.

If Γ is smooth, then it is easy to check that κ(x) = limy→x κ(x, y), is the usual

Euclidean curvature of Γ at x. Thus (3.1) can be rewritten as∫
Γ

∫
Γ

κ2(z, w)|dz||dw| <∞,(3.2)

and this has much more of a “L2-curvature” flavor.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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5. β-numbers



A dyadic interval I in R is one of the form (2−nj, 2−n(j + 1)]. A dyadic cube in

Rn is the product of n dyadic intervals of the same length. This length is called

the side length of Q and is denoted `(Q). Note that diam(Q) =
√
n`(Q).

For a positive number λ > 0, we let λQ denote the cube concentric with Q but

with diameter λdiam(Q), e.g., 3Q is the “triple” of Q, a union of Q and 3n− 1

adjacent copies of itself. We let Q↑ denote the parent of Q; the unique dyadic

cube containing Q and having twice the side length. Q is one of the 2n children

of Q↑.



A multi-resolution family in a metric space X is a collection of sets {Xj} in X

such that there is are N,M <∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X ,

(2) each bounded subset ofX hits at mostN of the setsXk with diam(X)/M ≤
diam(Xk) ≤Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one

Xj with diam(Xj) ≤Mdiam(X).



Dyadic intervals are not multi-resolution family, e.g., X = [−1, 1] ⊂ R is not

contained in any dyadic interval, violating (3). However, the family of triples of

all dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we

add all translates of dyadic intervals by ±1/3, we get a multi-resolution family

(this is sometimes called the “1
3-trick”, [52]).

The analogous construction for dyadic squares in Rn is to take all translates by

elements of {−1
3, 0,

1
3}

n.



We often deal with functions α that map a collection of sets into the non-negative

reals, and will wish to decide if the sum
∑

j α(Xj) over some multi-resolution

family converges or diverges. We will frequently use the following observation

to switch between various multi-resolution families without comment.

Lemma 5.1. Suppose {Xj}, {Yk} are two multi-resolution families on a

space X and that α is a function mapping subsets of X to [0,∞) that

satisfies α(E) . α(F ), whenever E ⊂ F and diam(F ) . diam(E). Then∑
j

α(Xj) '
∑
k

α(Yk).



Proof. By Condition (3) above, each Xj is contained in some set Yk(j) of compa-

rable diameter. Hence α(Xj) . α(Yk(j)) by assumption. Each Yk is contained

in a comparably sized Xm, and Xm can contain at most a bounded number of

comparably sized subsets Xj. Thus each Yk is only chosen boundedly often as a

Yk(j). Thus
∑

j α(Xj) .
∑

k α(Yk). The opposite direction follows by reversing

the roles of the two families. �



For a Jordan arc γ with endpoints z, w recall crd(γ) = |z − w| and define

∆(γ) = `(γ)− crd(γ). We will prove Definition 9 is equivalent to:

Definition 10. Γ is chord-arc and∑
j

∆(Γj)

`(Γj)
<∞(5.1)

for some multi-resolution family {Γj} of arcs on Γ.

Condition (5.1) is just a reformulation of (1.2), since if {Γj} corresponds to a

dyadic decomposition of Γ we have∑
n

2n[`(Γ)− `(Γn)] =
∑
j

∆(γj)/`(γj).(5.2)



Thus proving that Definition 10 is equivalent to being Weil-Petersson essentially

proves Theorem 1.4.

There is a slight gap here because Definition 10 uses a sum over a multi-resolution

family and Theorem 1.4 is in terms of dyadic intervals.

However, the theorem assumes a bound that is uniform over all dyadic decom-

positions, and this includes the 1
3-translates of a single dyadic family, and these

form another multi-resolution family (recall the “1
3-trick” from above). Con-

versely, we will show that ∆(γ) ≤ ∆(3γ), so the dyadic sum can be bounded by

the sum over dyadic triples, a multi-resolution family. Thus (5.1) for any multi-

resolution family is equivalent to (5.2) with a uniform bound over all dyadic

decompositions of Γ.



Lemma 5.2. If γ, γ′ ⊂ Γ are adjacent, then ∆(γ) + ∆(γ′) ≤ ∆(γ ∪ γ′).

Proof. Note that `(γ ∪ γ′) = `(γ) + `(γ′), and crd(γ ∪ γ′) ≤ crd(γ) + crd(γ′),

so

∆(γ ∪ γ′) = `(γ ∪ γ′)− crd(γ ∪ γ′)
≥ `(γ) + `(γ′)− crd(γ)− crd(γ′) = ∆(γ) + ∆(γ′). �

Corollary 5.3. If γ ⊂ γ′ then ∆(γ) ≤ ∆(γ′).



Lemma 5.4. Definition 9 is equivalent to Definition 10.

Proof. Without loss of generality we may rescale Γ so that is has length 1. We

identify Γ×Γ with the torus T2 = [0, 1]2, let U be the torus minus the diagonal,

and take a Whitney decomposition of U by dyadic squares {Qj}.



Elements of the decomposition are denoted {Wj}, and each is a product of

dyadic arcs Wj = γj × γ′j. For each Wj, we can write γj ∪ γ′j = Γj \ Γ′j for arcs

Γj,Γ
′
j so that all four arcs have comparable lengths.

Recall that crd(γ) = |z−w| where z, w are the endpoints of γ and that ∆(γ) ≡
`(γ)−crd(γ). We sometimes write ∆(z, w) for ∆(γ) when γ has endpoints z, w,

and it is clear from context which arc connecting these points we mean. We say

two subarcs of Γ are adjacent if they have disjoint interiors, but share a common

endpoint.



Now, fix j and consider the Whitney box Wj = γj × γ′j. If γ ⊂ Γj is any

arc with one endpoint in γj and the other in γ′j then Γ′j ⊂ γ ⊂ Γj, and hence

∆(Γ′j) ≤ ∆(γ) ≤ ∆(Γj). Because Γ is chord-arc, if z ∈ γ′j and w ∈ γj, then

|z − w| & `(Γ′j) ' `(Γj).



We can therefore write the integral from Definition 9 as∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| =
∑
j

∫
Wj

∆(z, w)

|z − w|3
|dz||dw|

.
∑
j

∆(Γj)

`(Γj)3
`(Γj)

2 =
∑
j

∆(Γj)

`(Γj)
.



Reversing the argument, now assume Γ′j is some dyadic subinterval of Γ and let

γj, γ
′
j be the equal length dyadic arcs adjacent to Γ′j.∫

γj

∫
γ′j

`(z, w)− |z − w|
|z − w|3

|dz||dw| &
∆(Γ′j)

`(Γ′j)
.



The squares Wj = γj × γ′j arising in this way have bounded overlap, so∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| &
∑
j

∆(Γ′j)

`(Γ′j)
,

where the sum is over all dyadic subintervals of Γ. This works for any dyadic

decomposition {Γj} of Γ, and hence for a multi-resolution family. This gives the

equivalence of Definitions 9 and 10. �



6. Tuesday, Sept 29, 2020



The Beta-numbers:

Given a set E ⊂ Rn and a dyadic cube Q, define Peter Jones’s β-number as

β(Q) = βE(Q) =
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E},

where the infimum is over all lines L that hit 3Q.

3Q

x

t

Q



Peter Jones invented the β-numbers as part of his traveling salesman theorem

[38]. One consequence of his theorem is that for a Jordan curve Γ,

`(Γ) ' diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),(6.1)

where the sum is over all dyadic cubes Q in Rn. Our main geometric char-

acterization of Weil-Petersson curves is to simply the “diam(Q)” terms from

(6.1).

Definition 11. Γ is a closed Jordan curve that satisfies∑
Q

βΓ(Q)2 <∞,(6.2)

where the sum is over all dyadic cubes.



This is not terribly surprising (in retrospect). Peter Jones and I proved (Lemma

3.9 of [10], or Theorem X.6.2 of [29]) that if Γ is a M -quasicircle, then

`(Γ) ' diam(Γ) +

∫∫
|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy(6.3)

with constants depending only on M .

By Koebe’s distortion theorem

|f ′(z)|(1− |z|2) ' dist(f (z), ∂Ω),

and thus the factor on the left is analogous to the diam(Q) in Jones’s β2-sum.

Dropping this term from (6.3) gives exactly the integral in Definition 2:∫∫
|S(f )(z)|2(1− |z|2)2dxdy(6.4)

Thus Definition 11 in the plane is a direct geometric analog of this.



It will be convenient to consider several equivalent formulations of condition

(6.2). For x ∈ R2 and t > 0, define

βΓ(x, t) =
1

t
inf
L

max{dist(z, L) : z ∈ Γ, |x− z| ≤ t},

where the infimum is over all lines hitting the disk D = D(x, t) and let β̃Γ(x, t)

be the same, but where the infimum is only taken over lines L hitting x.

Since this is a smaller collection, clearly β(x, t) ≤ β̃(x, t) and it is not hard to

prove that β̃(x, t) ≤ 2β(x, t) if x ∈ Γ.

Given a Jordan arc γ with endpoints z, w we let

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w|
,

where L is the line passing through z and w.



Lemma 6.1. If Γ is a closed Jordan curve or a Jordan arc in Rn such that

(6.2) holds, then Γ is a chord-arc curve. Moreover, (6.2) holds if and only

if any of the following conditions holds:∫ ∞
0

∫∫
Rn
β2(x, t)

dxdt

tn+1
<∞,(6.5) ∫ ∞

0

∫
Γ

β̃2(x, t)
dsdt

t2
<∞,(6.6) ∑

j

β2(Γj) <∞,(6.7)

where dx is volume measure on Rn, ds is arclength measure on Γ, and the

sum in (6.7) is over a multi-resolution family {Γj} for Γ. Convergence or

divergence in (6.5) and (6.6) is not changed if
∫∞

0 is replaced by
∫M

0 for

any M > 0.



H3/2 implies Beta-numbers:

Lemma 6.2. Definition 7 implies Definition 11.

Proof. Let U be the torus T× T minus the diagonal. Take a Whitney decom-

position of U , i.e., a covering of U by squares Q with disjoint interiors and the

property that diam(Q) ' dist(Q, ∂U). We will think of T as [0, 1] with its

endpoints identified, and use dyadic squares in [0, 1]2 as elements of our decom-

position.



Each element Wj of the decomposition can be written as Wj = γj × γ′j where

γj ∪ γ′j = Γj \ Γ′j and all these arcs have comparable lengths (in fact, γj and γ′j
have the same length).

For each Whitney piece Wj = γj × γ′j, choose a w0 ∈ γ′j so that

`(γ′j)

∫
γj

|τ (z)− τ (w0)|2|dz| ≤ 2

∫
γ′j

∫
γj

|τ (z)− τ (w)|2|dz||dw|.

(We can do this because a positive measurable function must take a value that

is less than or equal to twice its average.)



Let L be the line through one endpoint of γ′j in direction τ (w). Then the

maximum distance D that γj can attain from L satisfies

d .
∫
γj

|τ (z)− τ (w0))||dz| ≤

(∫
γj

|τ (z)− τ (w0)|2|dz|

)1/2

`(γj)
1/2.

Therefore (using the fact that γ is chord-arc),

β2(γj) ' d2/diam(γj) .
1

`(γj)

∫
γj

|τ (z)− τ (w0)|2|dz|

≤ 2

`(γj)2

∫
γj

∫
γ′j

|τ (z)− τ (w)|2|dz||dw|

.
∫
γj

∫
γ′j

∣∣∣∣τ (z)− τ (w)

z − w

∣∣∣∣2 |dz||dw|.



Summing over all Whitney pieces proves that the β2-sum is finite when taken

over all arcs of the form {γj}. By construction every dyadic interval in [0, 1]

(except for [0, 1
2], [1

2, 1] and [0, 1]) occurs as a γj at least once and at most three

times, so this bounds the sum of β2(γ) over all dyadic subintervals of Γ for a

fixed base point, with an estimate independent of the basepoint.

Thus it holds for some multi-resolution family of arcs (recall the 1
3-trick for

making such a family from three translates of the dyadic family). Because of

Lemma 6.1, this proves the lemma. �



Beta-numbers imply BiLipschitz reflection:

Lemma 6.3. Definition 11 implies Definition 13 for n = 2.

Proof. Since
∑

Q β
2
Γ(Q) < ∞, only finitely many of the β’s can be larger than

1/1000. Let U(ε) denote the ε-neighborhood of Γ, and choose ε0 so small that

U(ε0) only contains dyadic squares Q with βΓ(Q) < 1/1000. Let Ω be the

bounded complementary component of Γ and consider a Whitney decomposition

for Ω using dyadic squares.

Form a triangulation of Ω by connecting the center of each square to the vertices

on its boundary. Note that neighboring triangles have comparable diameters and

that all angles are bounded uniformly above 0 and below π.



We will define a reflection across Γ that is defined on a neighborhood of Γ and

is piecewise affine on the above triangles. Let Sk be the collection of squares Q

in the Whitney decomposition so that `(Q) = 2−k and let S = ∪k>k0Sk where

k0 is chosen so that the elements of S are all contained in U(ε/100). Order the

elements of {Qj}∞1 = S so that side lengths are non-decreasing.



T

v*

v

T*

Γ

For each Qj choose a dyadic square Q′j of comparable size that hits Γ and so

that 3Q′j contains Qj. Note that Q′j ⊂ U , so βΓ(Q′j) is small. To begin, choose

a line Lj that minimizes the definition of βΓ(Q′j). Reflect all four vertices of Q1

across L1. In general, reflect each vertex v of Qj across Lj to a point v∗ in Ω∗,

if it was not already reflected by belonging to some Qk with k < j.



T

v*

v

T*

Γ

The main point is that each vertex v belongs a uniformly bounded number of

QJ ’s and the different possible reflections v∗ of v corresponding to these different

squares all lie within distance βj · dist(v,Γ) of each other, where Qj is any of

the Whitney squares having v as a corner and βj = βΓ(Q′j).



T

v*

v

T*

Γ

This occurs because all the lines we might use have directions that differ by

at most O(βj), and they all pass within O(βj`(Q
′
j)) of some point in Q′j. We

now define affine maps on each element of our triangulation that lies inside

U(ε0/1000) by sending each vertex to its reflection v∗. Suppose T is a triangle

associated to Qj. Then diam(T ) ' dist(T,Γ). The reflected vertices of T form

a triangle T ∗ that is within O(βj) of being congruent to T .



T

v*

v

T*

Γ

Extending the map between vertices linearly, we get an affine map from T to T ∗

that is biLipschitz with constant 1 + O(β(Q′j)). Moreover, for each z ∈ T we

have dist(1
2(z +R(z)),Γ) = O(βjdiam(Q′j)). Thus we have ρ(Qj) = O(β(Q′j)),

and so the ρ2-sum is finite if the β2-sum is finite. �



Beta-numbers implies µ ∈ L2:

Corollary 6.4. For n = 2, Definition 13 implies Definition 3

Proof. The homeomorphism R constructed above on a neighborhood of U of

Γ ⊂ R2 is clearly quasiconformal on U\Γ. Since Γ is a quasicircle, it is removable

for quasiconformal homeomorphisms and hence our map is quasiconformal on all

of U , i.e., we have defined a quasiconformal reflection across Γ on a neighborhood

U of Γ. Each triangle T has hyperbolic area ' 1, so∫
T

|µ(z)|2dAρ(z) = O(β2
Γ(Q)),

for some dyadic square Q with diam(Q) ' dist(Q, T ) ' diam(T ). Therefore∫
U

|µ(z)|2dAρ(z) = O

∑
Q

β2
Γ(Q)


since each Q occurs for only boundedly many T . Extend this map quasiconfor-

mally to the rest of Ω to get a reflection satisfying Definition 3. �



7. Thursday, Oct 1, 2020



Menger curvature

The Menger curvature of three points x, y, z ∈ Rn is c(x, y, z) = 1/R where R

is the radius of the circle passing through these points.

Equivalently,

c(x, y, z) =
2dist(x, Lyz)

|x− y||x− z|
,(7.1)

where Lyz is the line passing through y and z, or

c(x, y, z) = 2
sin θ

|x− y|
,(7.2)

where θ is the angle opposite [x, y] in the triangle with vertices {x, y, z}. The

perimeter of this triangle is denoted by `(x, y, x) = |x− y|+ |y − z|+ |z − x|.



Definition 12. Γ is chord-arc and satisfies∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2

`(x, y, z)
|dx||dy||dz| <∞.(7.3)

It is known that the conditions∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2|dx||dy||dz| <∞.(7.4) ∑
Q

β2
Γ(Q)`(Q) <∞,(7.5)

are equivalent, and the analog of dropping the length term from (7.5), would be

to divide by a term that scales like length in (7.4), which gives (7.3).

I will not prove this in class.

The preprint merely indicates how to modify certain lines of the proof of the

equivalence of (7.4) and (7.5) in Pajot’s book [54].



Recall that a Whitney decomposition of an open set W ⊂ Rn is a collection

of dyadic cubes Q with disjoint interiors, whose closures cover W and which

satisfy

diam(Q) ' dist(Q, ∂W ).

The existence of such decompositions is a standard fact (e.g., for each z ∈ W ,

take the maximal dyadic cube Q so that z ∈ Q ⊂ 3Q ⊂ W , see Section I.4 of

[29]).



Definition of ρ(Q):

Suppose U is a neighborhood of Γ ⊂ Rn and R : U → U ′ ⊂ Rn is a homeo-

morphism fixing each point of Γ. For each Whitney cube Q for W = Rn \ Γ,

with Q ⊂ U , define ρ(Q) to be the infimum of values ρ > 0 so that R is

(1 + ρ)-biLipschitz on Q and dist(z+R(z)
2 ,Γ) ≤ ρ · diam(Q) for z ∈ Q (the latter

condition ensures R(z) is on the “opposite” side of Γ from z). R is called an

involution if R(R(z)) = z.



Definition 13. There is homeomorphic involution R defined on a neigh-

borhood of Γ that fixes Γ pointwise, and so that∑
Q

ρ2(Q) <∞.(7.6)

The sum is over all Whitney cubes for Rn \ Γ that lie inside U .



Bi-Lipschitz reflections control beta-numbers:

We need some preliminary results. For a dyadic square Q′ define

P (Q′) =

 1

diam(Q′)

∑
Q⊂3Q′

ρ2(Q)diam(Q)

1/2

,

where we sum over Whitney cubes Q inside 3Q′.

Lemma 7.1. With notation as above,∑
Q′

P 2(Q′) .
∑
Q

ρ2(Q),

where the first sum is over all dyadic cubes in U Rn and the second is over

all Whitney cubes for U \ Γ. In particular, P (Q) is bounded if Definition

13 holds.



Proof. We use the defintion and reverse the order of summation (Tonelli’s thm):∑
Q′

P 2(Q′) =
∑
Q′

∑
Q⊂3Q′

ρ2(Q)
diam(Q)

diam(Q′)

=
∑
Q

ρ2(Q)
∑

Q′:Q⊂3Q′

diam(Q)

diam(Q′)

=
∑
Q

ρ2(Q)O

( ∞∑
n=1

2−n

)
.
∑
Q

ρ2(Q),

since the sum over Q′ only involves O(1) cubes of each size 2ndiam(Q). �



Lemma 7.2. A map R : U → U ′ satisfying Definition 13 is biLipschitz on

U .

Proof. Suppose z, w ∈ U , and and |z − w| ≤ 3 max(dist(z,Γ), dist(w,Γ)).

(This is the “hard” case; when z, w are relatively far apart, the argument is

easier and will be given below).

Without loss of generality we may assume dist(z,Γ) ≥ dist(w,Γ). Let S be the

segment between z and w. Then |R(z)−R(w)| ≤ `(R(S)).

The segment S may hit Γ, but R is the identity at such points, and S\Γ consists

of at most countably many open subsegments, each covered by its intersection

with Whitney cubes Q for Rn \ Γ.



The length of each such intersection is increased by at most a factor of ρ(Q).

Therefore,

|R(z)−R(w)| − |z − w| .
∑

Q∩S 6=∅

ρ(Q)diam(Q)),

where the sum is over all Whitney cubes that hit S.



By the Cauchy-Schwarz inequality, the right side above is less than

.

 ∑
Q∩S 6=∅

ρ2(Q)diam(Q)

1/2 ∑
Q∩S 6=∅

diam(Q)

1/2

.

`(S)
∑

Q∩S 6=∅

ρ2(Q)diam(Q)

1/2

.

`(S)
∑
Q⊂3Q′

ρ2(Q)diam(Q)

1/2

. P (Q′)diam(Q′),

. diam(Q′),

. |z − w|,
Thus |R(z)−R(w)| = O(|z − w|), as desired.



When |z − w| ≥ 3 max(dist(z,Γ), dist(w,Γ) we can choose z′, w′Γ, with |z −
z′| = dist(z,Γ) and similarly for w,w′. The previous case applies to each of

these pairs.

Since z′, w′ are fixed by R we thus have

|R(z)−R(w)| ≤ |R(z)− z′| + |z′ − w′| + |w′ −R(w)| . |z − w|.
Then R is Lipschitz. Since R = R−1 is an involution, it is automatically biLip-

schitz. �



8. Tuesday, Oct 6, 2020



biLipschitz involution implies β-numbers:

Lemma 8.1. Definition 13 implies Definition 11.

Proof. First note that∑
Q′

P 2(Q′) =
∑
Q′

∑
Q⊂3Q′

ρ2(Q)
diam(Q)

diam(Q′)

=
∑
Q

ρ2(Q)
∑

Q′:Q⊂3Q′

diam(Q)

diam(Q′)
.
∑
Q

ρ2(Q),

since the sum over Q′ only involves O(1) cubes of each size. Thus it suffices to

show that β(Q′) = O(P (Q′)).



Normalize so `(Q′) = 1. Choose two points p, q ∈ Γ∩ 3Q′ with |p− q| ' 1 and

let L be the line through p and q. Choose w ∈ Γ ∩ 3Q′

Now choose w to maximize the distance on Γ∩3Q′ from L. Let β = dist(w,L0.

It suffices to show that β = O(P (Q′)).

We may fix a large M < ∞ and assume that P (Q′) ≤ 1/M 2 and MP (Q′) ≤
β ≤ 1/M , for otherwise there is nothing to do. We will show this gives a

contradiction if M is large enough.



Let w′ be the closest point on L to w and let z be the point on the ray from w′

through w so that dist(z, L) = 1
2`(Q

′).

Let Q be the Whitney square for Rn \ Γ containing z and let z′ = R(z). Note

that the p, q, w, w′, z, z′ all lie in a three dimensional sub-space, so, without loss

of generality, we may assume L is the z-axis in R3, w′ = 0, w = (β, 0, 0), and

z = (1, 0, 0).

z

p

p’

z’

ww’

L



z

p

p’

z’

ww’

L

The points p, q satisfy |p| ' |q| ' |p − q| ' 1. Since z and z′ are the same

distance from each of these points, up to a factor of O(P (Q′)), we deduce z′ lies

inside a O(P (Q′)) neighborhood of the circle x2 + y2 = 1 in the xy-plane.



z

p

p’

z’

ww’

L

Similarly, since z and z′ are equidistant from w, up to a factor of O(P (Q′)),

the points z′ lies within a O(P (Q′)) neighborhood of the sphere of radius 1− β
around z.

However, since P (Q′) � β � 1, these two regions only intersect in the half-

space {x > 0} and thus z′ also lies in this half-space. Thus q = (z + z′)/2

has x-coordinate ≥ 1/2 and, by the definition of ρ, it is within ρ(Q) of a point

q′ ∈ Γ. But ρ(Q) . P (Q′)� 1 (since it is one of the cubes in the sum defining

P (Q′)).



This implies there is a point q′ of Γ that is about unit distance from L, contra-

dicting the assumption that the maximum distance was β ≤ 1/M � 1. Thus

β(Q′) ≤ M · P (Q′), as desired, and we have proven that Definition 13 implies

Definition 11. �



The Smith conjecture:

We can also extend R to be a biLipschitz involution on the sphere Sn, except

in the case when Γ is knotted in R3. This is imposible because the (positive)

solution of the Smith conjecture implies the fixed set of an orientation preserving

diffeomorphic involution of S3 is an unknotted closed curve. See [47].

Except for knotted curves in R3, we can say that Weil-Petersson curves are

exactly the fixed point sets of biLipschitz involutions of Sn that satisfy (7.6).



Although the Smith conjecture was stated for diffeomorphisms, John Morgan

explains on page 4 of [47] that its proof extends to homeomorphisms when the

fixed point set is locally flat (locally ambiently homeomorphic to a segment).

This holds in our case by Theorem 4.1 of [34] (finite Möbius energy implies

tamely embedded), and the fact that Definition 13 implies Definition 8.

This completes the proof that (1)⇒ (11)⇒ (3) and hence the proof of Theorem

1.6 in the plane, since (3) ⇒ (1) is already known.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Diagram of implications between previous definitions.

Edge labels refer to sections of my preprint.



Beta-numbers imply (discrete) Jones conjecture for n ≥ 3:

Lemma 8.2. Definition 11 implies Definition 10.

Proof. Let {Γj} be a dyadic decomposition of Γ. For each j, choose a dyadic

cube Qj that hits Γj and has diameter between diam(Γj) and 2 ·diam(Γj). Note

that any such dyadic square can only be associated to a uniformly bounded

number of arcs Γj in this way, because there are only a bounded number of arcs

Γj that have the correct size and are close enough to Qj; this uses the fact that

Γ is chord-arc. Because Γ is chord-arc, diam(Γj) ' `(Γj) ' diam(Qj).



Recall the TST for Jordan arcs: If Γ ⊂ Rn is a Jordan arc, then

∆(Γ) = `(Γ)− crd(Γ) = O

(∫
Rn

∫ ∞
0

β2
Γ(x, t)

)
Using this,

∆(Γj) '
∑
Q⊂3Qj

β2
Γj

(Q)`(Q).

Since βΓj(Q) ≤ βΓ(Q), we get∑
j

∆j

`(Γj)
'
∑
j

∑
Q⊂3Qj

β2
Γj

(Q)
`(Q)

`(Qj)

.
∑
j

∑
Q⊂3Qj

β2
Γ(Q)

`(Q)

`(Qj)
'
∑
Q

β2
Γ(Q) ·

∑
j:Q⊂3Qj

`(Q)

`(Qj)
.



Note that for each Q with diam(Q) ≤ diam(Γ) and Q ∩ Γ 6= ∅, there is a cube

of the form Qj from above, that has diameter comparable to diam(Q) and such

that Q ⊂ 3Qj. Moreover, there there can only be a uniformly bounded number

of dyadic squares Qj of a given size so that 3Qj contains Q, so each Qj can only

be chosen a bounded number of times.

Thus the sum over the j’s in the last line above is bounded by a multiple of a

geometric series and so is uniformly bounded. Thus∑
j

∆(Γj)

`(Qj)
.
∑
Q

β2
Γ(Q). �(8.1)

This proves (6)-(11) are equivalent in all finite dimensions, assuming the TST

for Jordan curves in all finite dimensions.

What about infinite dimensions?



9. Thursday, Oct 8, 2020



ε-numbers versus β-numbers:

Towards a Möbius invariant version of β-numbers.

Next, we give a variation of the β-numbers that uses solid tori instead of cylinders

and provides a stepping stone to the hyperbolic conditions discussed later.

We start with the definition in the plane. Given a dyadic square Q let εΓ(Q)

be the infimum of the ε ∈ (0, 1] so that 3Q hits a line L, a point z and a disk

D so that D has radius `(Q)/ε, z is the closest point of D to L and neither D

nor its reflection across L hits Γ.



Q
diam(Q)/ ε

ε diam(Q)

Γ



In higher dimensions the disk D is replaced by a ball B of radius diam(Q)/ε

that attains its distance ε from L at z ∈ Q, and that the full rotation of B

around L does not intersect Γ. Thus Γ is surround by a “fat torus”. The centers

of the balls form a (n−2)-sphere that lies in a (n−1)-hyperplane perpendicular

to L.



If no such line, point and disk exist, we set εΓ(Q) = 1.

It is easy to see that βΓ(Q) = O(εΓ(Q)), but the opposite direction can certainly

fail for a single square Q. Nevertheless, we will see that that the corresponding

sums over all dyadic squares are simultaneously convergent or divergent.

Definition 14. Γ is chord-arc and satisfies∑
Q

ε2
Γ(Q) <∞(9.1)

where the sum is over dyadic squares hitting Γ with diam(Q) ≤ diam(Γ).



Lemma 9.1. Definition 11 is equivalent to Definition 14.

Proof. It is easy to see that βΓ(Q) . εΓ(Q), but the reverse direction can

certainly fail for a single square Q. However, we shall prove that the sum of

ε2
Γ(Q) over all dyadic squares is bounded iff the sum of β2

Γ(Q) is.

Fix x ∈ Γ and a dyadic cube Q0 containing x with diam(Q0) ≤ diam(Γ), for

some N ≥ 10. Renormalize so diam(Q0) = 1. For k ≥ 1, let Qk be the dyadic

cube containing Q0 and with diameter diam(Qk) = 2kdiam(Q0). Let

ε = 2A

∞∑
k=1

2−kβΓ(Qk) = 2A
∑

Q′:Q⊂Q′
βΓ(Qk)

diam(Q)

diam(Q′)
,

where the constant 0 < A <∞ will be chosen later. I claim that εΓ(Q) . ε.



To prove this, we construct a large ball B whose rotations are disjoint from Γ.

Let L be a line through x that minimizes in the definition of βΓ(Q0). Let L⊥ be

the perpendicular hyperplane through x and let z ∈ L⊥ be distance 1/ε from

x. Let B = B(z, r) where r = (1/ε)− ε.

2
k

Q

k−1
2 Q

Q

θ

ε 2
2k



2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

Then dist(B,L) = ε and for 0 ≤ n ≤ N = blog2
1
εc, simple trigonometry shows

that dist(B\3Qn, L) ≥ C1ε2
2n (we can do the calculation in the plane generated

by L and z.



2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

On the other hand, the distance between Γ∩3Qn and L is≤ C2

∑n
k=0 βΓ(Qk)2

k,

because the angle between the best approximating lines for Qk and Qk+1 is

O(βΓ(Qk+1)). Therefore B and Γ∩2QN will be disjoint, if for every 0 ≤ n ≤ N

we have
n∑
k=0

βΓ(Qk)2
k < (C1/C2)ε22n.



2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

Note that

max
0≤n≤N

2−2n
n∑
k=0

βΓ(Qk)2
k ≤

N∑
n=0

2−2n
n∑
k=0

βΓ(Qk)2
k

≤
N∑
k=0

βΓ(Qk)2
k

N∑
n=k

2−2n ≤
N∑
k=0

βΓ(Qk)2
−k = ε/(2A) = (C1/C2)ε,

if we take A = 1
2C2/C1. This holds for every choice of z in L⊥ that is distance

1/ε from L, so we have proven that εΓ(Q) . ε, as claimed.



2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

The part of the ball of radius diam(Q)/ε(Q) that lies in 2kQ \ 2k+1Q makes

angle θ ' ε2k with the perpendicular ray from L to z and hence (since we are

assuming diam(Q) = 1) is distance approximately ε−1(1−cos(θ)) ' εθ2 = ε22k

from the line L.



Summing over all dyadic cubes gives∫
Q

ε2
Γ(Q) .

∑
Q

 ∑
Q′:Q⊂Q′

βΓ(Q′)
diam(Q)

diam(Q′)

2

.
∑
Q

 ∑
Q′:Q⊂Q′

βΓ(Q′)

(
diam(Q)

diam(Q′)

)3/4(
diam(Q)

diam(Q′)

)1/4
2

and by Cauchy-Schwarz we get

.
∑
Q

 ∑
Q′:Q⊂Q′

β2
Γ(Q′)

(
diam(Q)

diam(Q′)

)3/2
 ·
 ∑
Q′:Q⊂Q′

(
diam(Q)

diam(Q′)

)1/2
 .



The second term is dominated by a geometric series, hence bounded. Thus∫
Q

ε2
Γ(Q) .

∑
Q′

β2
Γ(Q′)

∑
Q:Q⊂Q′

diam(Q)3/2

diam(Q′)3/2
.

Since Definition 11 implies Γ is chord-arc, the number of dyadic cubes inside Q′

of size diam(Q′)2−k and hitting Γ is at most O(2k).



Thus the right side is bounded by

.
∑
Q′

β2
Γ(Q′)

∞∑
k=0

O(2k)2−3k/2 .
∑
Q′

β2
Γ(Q′)

∞∑
k=0

2−k/2 .
∑
Q′

β2
Γ(Q′)

and so the ε2-sum is finite if the β2-sum is finite, as desired. �



It is sometimes convenient to assume that the balls in the definition of εΓ are

small compared to diam(Γ). This is easy to obtain if we replace εΓ(Q) by

ε̃Γ(Q) = max(εΓ, (diam(Q)/diam(Γ))α)

for some 1/2 < α < 1. Because α < 1, we get

diam(D)

diam(Γ)
=

diam(Q)/ε̃Γ(Q)

diam(Γ)
≤
(

diam(Q)

diam(Γ)

)1−α
→ 0.

Clearly εΓ ≤ ε̃Γ. Moreover,∑
Q:Q∩Γ6=∅

ε̃2
Γ(Q) .

∑
Q

ε2
Γ(Q) +

∑
Q

(
diam(Q)

diam(Γ)

)2α

where the second sum is finite because α < 1/2 and Γ being chord-arc implies

the number of dyadic squares of size ' 2−n hitting Γ is O(2n).

For chord-arc curves either type of ε-number works and second one allows us to

get more local estimates.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Diagram of implications between previous definitions.

Edge labels refer to sections of my preprint.



10. The traveling salemans theorem in all dimensions

These lectures use a different sets of slides based on my

preprint ”The traveling salesman theorem for Jordan

curves”.



11. Hyperbolic conditions in 3 dimensions
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