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1. Introduction and overview



Jones’s theorem in [3] says that the shortest curve Γ containing E ⊂ R
2 has

length

ℓ(Γ) ≃ diam(E) +
∑

Q

β2
E(Q)diam(Q).(1.1)

Actually, [3] states that for any δ > 0 and E ⊂ R
n, 2 ≤ n < ∞,

ℓ(Γ) ≤ (1 + δ)diam(E) + C(δ)
∑

Q

β2
E(Q)diam(Q).(1.2)

For general setsE, this does not hold for δ = 0. For example, ifE = {0, 1, iβ} ⊂
R

2 with 0 < β << 1, then the shortest curve Γ containing E satisfies ℓ(Γ) =

1 + β, but diam(Γ) =
√

1 + β2 = 1 + O(β2). It is not hard to check that the

β2-sum for E is O(β2) ≪ β. Thus the term C(δ) must tend to ∞ as δ ց 0.

However, we will show that (1.2) does hold for δ = 0 when E = Γ a Jordan

curve.



Theorem 1.1. For any Jordan arc in R
n,

ℓ(Γ)− diam(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.3)

where the sum is over all dyadic cubes.

In fact, we can do even better than this. Let crd(Γ) = |z−w| where {z, w} are

the endpoints of Γ; this is the “chord length” of Γ. We always have crd(Γ) ≤
diam(γ), so Theorem 1.1 implies

ℓ(Γ)− crd(Γ) &
∑

Q

β2
Γ(Q)diam(Q).(1.4)

The opposite direction is less obvious, but also holds:

Theorem 1.2. For any Jordan arc Γ ⊂ R
n,

ℓ(Γ)− crd(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.5)

where the sum is over all dyadic cubes.



Plan: For E a set and Γ a Jordan curve we will prove:

ℓ(Γ)− diam(Γ) .
∑

Q

β2
Γ(Q)diam(Q),(1.6)

ℓ(E) ≤ (1 + δ)diam(E) + C
∑

Q

β2
Γ(Q)diam(Q),(1.7)

ℓ(Γ)− diam(Γ) &
∑

Q

β2
Γ(Q)diam(Q),(1.8)

ℓ(Γ)− crd(Γ) .
∑

Q

β2
Γ(Q)diam(Q),(1.9)



First we prove the inequality

ℓ(Γ)− diam(Γ) .
∑

Q

β2
Γ(Q)diam(Q),(1.10)

We will define a sequence of nested, compact sets {Γn}∞0 that shrinks down to

Γ. Γ0 is the convex hull of Γ.



In general, suppose that Γn is the union of a collection Rn of compact, convex

sets that cover Γ and that each set R ∈ Rn is the convex hull of R∩Γ. For each

such set R, choose a diameter segment I of R and divide I into two equal halves.

Let R1, R2 be the convex hulls of the parts of R ∩ Γ than project orthogonally

onto each of these segments.

G

R

R1
R2

I



We call this process splitting R. The collection Rn+1 is obtained by splitting

very element of Rn in this way. Thus Rn+1 has twice as many elements as Rn.

We will think of these elements as the nth generation of a binary tree whose

root is R0. Below we will show that the diameters of these sets tend to zero

uniformly in n and that the sets are well dispersed in space (only a bounded

number with diameter ≃ r can be within distance r of each other).

For a convex set R we define

β(R) = inf
I
sup
z∈R

dist(z, I)

diam(R)
,

and the first supremum is over all diameters I of R. (diameters are segments

connecting pairs of points z, w ∈ ∂R with |z − w| = diam(R)).



Lemma 1.3. If R is split into R1, R2 as above, then

diam(R1) + diam(R2) ≤ diam(R) +O
(

β2(R)diam(R)
)

.

Proof. The subset R1 ⊂ R is contained in a cylinder W with axis length

diam(R)/2 and radius β(R)diam(R), so diam(R1) ≤ diam(W ) = 1
2diam(R) +

O(β2(R)diam(R)). Similarly for R2, and adding the estimates proves the

lemma. �



Lemma 1.4. There is a constant M = M(n), so that if the splitting opera-

tion is performed M times, then each of the 2M resulting sets has diameter

at most 3
4diam(R).

Proof. Suppose not, that is, suppose there is an R with diam(R) = 1 and

a large integer M , so that after M splittings some subset still has diameter

> 3/4. After the first subdivision the projection onto the direction of the first

diameter segment has length 1/2, so the second diameter segment (or any of

the next M diameter segments) can’t point in the same direction. Indeed, since

all the next M diameters are > 3/4 then can’t lie within angle θ = cos−1(2/3)

of the first direction. Similarly, the third direction can’t be within θ of either

the first or second directions, and so on. Since the (n− 1)-sphere is compact, it

contains at most a bounded number C(n) of disjoint spherical caps of this size

and so M ≤ C(n) + 1, as desired. �



By considering an n-dimensional ball, we see that n splittings may have to

occur before the diameter drops at all. As a side remark, Borsuk’s conjecture

[2] asked if any bounded set in R
n could be partitioned into n + 1 subsets of

strictly smaller diameter, but this was disproven by Kahn and Kalai [4] who

gave examples of sets requiring ≥ (1.1)
√
n subsets when n is large. Schramm

had earlier shown that (1.3)n subsets always suffice. See also Chapter 18 of [1]

for some history and related results.



Using Lemma 1.3, induction and diam(Γ0) = diam(Γ), we get

∑

R∈Rn+1

diam(R) ≤
∑

R∈Rn

diam(R) +O





∑

R∈Rn

β2(R)diam(R)





≤ diam(Γ) +O





n
∑

k=1

∑

R∈Rk

β2(R)diam(R)







For a Jordan curve, the definition of ℓ(Γ) via the supremum of lengths of in-

scribed polygons agrees with the definition of 1-dimensional Hausdorff measure

H1(Γ) as the limit limδց0 inf
∑

j diam(XJ), where the infimum is over all cov-

erings of Γ by set of diameter less than δ.

By Lemma 1.4 our collections Rn form such coverings and hence

ℓ(Γ) = H1(Γ) ≤ lim sup
n→∞

∑

R∈Rn

diam(R).(1.11)



Therefore,

ℓ(Γ) ≤ diam(Γ) +O





∞
∑

n=0

∑

R∈Rn

β2(R)diam(R)



 .(1.12)

So all that remains to do is to show that the β2-sum over all the convex sets in

the tree T is dominated by the usual β2-sum over dyadic cubes.

Given a set R in someRn there is a dyadic cubeQ that intersects R and satisfies

diam(R) ≤ diam(Q) ≤ 2 · diam(Q). Then R ⊂ 3Q and β(R) = O(β(Q)). We

will be done once we know that only a uniformly bounded number of R’s can

be associated to the same Q. This is implied by:



Lemma 1.5. Suppose R is the convex hull of Γ ⊂ R
n, n ≥ 2. Consider

the binary tree of subsets obtained by the subdivision rule described above.

Given 0 < ǫ < diam(Γ) and a point x ∈ R
n, the number of descendants of

R that hit the ball B(x, ǫ) and have diameter between ǫ/2 and ǫ is bounded

depending only on the dimension n.

Proof. Rescale so ǫ = 1/1000 and x = 0. Let C be the collection of sets described

in the lemma. Choose a large integer N and remove all the sets that are within

distance N of the root; there are at most 2N of these, so it suffices to bound the

number of remaining sets.



Replace each remaining set by its smallest (in terms of containment) ancestor

to have diameter larger than 4. By Lemma 1.4 there must be such an ancestor,

if N is large enough (depending only on n), and at most 2N sets in C have the

same replacement. Thus it suffices to bound the number of minimal sets R in T

so that diam(R) ≥ 4 and R∩Bǫ 6= ∅. We call these sets admissible descendents

of R and denote them by A.



We say a set R′ in A has rank k if it contains a k-dimensional ball of radius 10−k

centered on the unit n-sphere. We will call the center of this ball the center of

R′. Since every admissible descendent hits Bǫ and has diameter ≥ 4, it contains

a segment that connects {|x| = 1/2} to {|x| = 3/2} and hence has rank at

least 1.

The maximum possible rank is n, and there are only a bounded number of such

sets in A since they contain disjoint balls of fixed volume centered on the unit

sphere. When considering the tree T , we will say a vertex has rank k if the

corresponding set does.



The key observation is the following. Suppose that δ = 10−n−4 and that

R1, R2 are two descendent sets whose center points are within δ of each other.

Suppose also that R2 has rank less than or equal to k, the rank of R1. Let

R0 be the smallest common ancestor of R1 and R2 (on the tree T , this is the

vertex where the paths from R1 and R2 to root first meet). Then R1 and R2 are

on opposite sides of the hyperplane H (possibly each intersecting H) bisecting

some diameter I of R0, and hence H must come within δ of the center of R1.



Thus the k-ball Bk in R1 is very close to parallel to H . The segment I is

perpendicular to H and hits H at a point at most distance diam(R0) from the

center of Bk. By definition, R0 contains the convex hull of its endpoints and

the k-ball Bk. Since diam(I) = diam(R0) ≥ diam(R1), R0 contains a (k + 1)-

ball Bk+1 with the same center as Bk and with radius at least 1/10 as big, in

particular, bigger than 10−k−1. Thus any common ancestor of two sets whose

center points are δ-close has strictly higher rank than either of them.

Bk

I

Bε H

|x|=1

Bk+1



Now choose a point x on the unit sphere in R
n and consider all the admissible

descendents whose centers are within δ of this point. These sets form the leaves

of a finite subtree of T , where the only vertices of degree 3 are smallest common

ancestors of some subcollection of the sets.

By our remarks above, each vertex of degree three has strictly larger rank than

any of the degree three vertices below it (closer to the leaves). Thus each leaf is

connected to the root by a path that has at most n degree three vertices on it

and so the tree is homeomorphic to a rooted binary tree with depth ≤ n. Thus

there are at most 2n leaves.

Since the unit sphere in R
n is compact, we can partition the set of all admissible

descendents intoN(n, δ) collections, each of which has all their centers contained

inside some ball of radius δ. By our previous argument, each such collection has

at most 2n elements, and this proves the lemma. �

This completes the proof of the upper bound.



TST upper bound for general sets: We have done most of the work

needed to prove the

ℓ(Γ) ≤ (1 + δ)diam(E) + C(δ)
∑

Q

β2
E(Q)diam(Q)(1.13)

for a general set E ⊂ R
n.

The only change is in the splitting procedure. As before, we start with Γ0 the

convex hull of E. In general, we will have a collection of convex sets Rn and

line segments Sn whose union is a closed, connected set Γn that contains E. As

before, each convex, compact set R ∈ Rn, will be convex hull of R ∩ E. The

intersection Γ = ∩Γn is a compact, connected set containing E and we wish to

bound its 1-dimensional Hausdorff measure.



Given R ∈ Rn, we take a diagonal curve I and split it into three equal thirds:

the middle segment J0 and the two ends J1, J2. If the orthogonal projection of

R∩E contains a point v ∈ J0, then cut I into two pieces I1, I2 using this point

and replace R by two pieces R1, R2 that are the convex hulls of the parts of

R ∩ E that project onto I1, I2 respectively.



If the projection of onto J0 is empty, then define R1, R2 as the convex hulls of

the parts of R ∩E that project onto J1, J2 respectively and a shortest possible

line segment S connecting R1 and R2. The union of the nth generation sets and

segments is clearly a connected compact covering of E, so the sum of the diam-

eters of these sets and segments is an upper bound for the shortest connected

set containing E (shortest in the sense of 1-dimensional Hausdorff measure).



The only change needed in the earlier proof to to Lemma 1.3. It becomes

Lemma 1.6. If R is split into R1, R2 sets and a segment S as above, then

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ diam(R) +O(
1

δ
)β2(R)diam(R).

Proof. For the first case of the new splitting procedure, there is no segment S

and each subset has diameter comparable to R, and the proof of Lemma 1.3 is

the same as before.



For the second case, first note that if β(R) ≥ δ/20, then

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ ℓ(J1) + ℓ(J2) + ℓ(J0) + 6β(R)|R|
≤ diam(R) +

120

δ
β2(R)diam(R)

If β(R) < δ/6, then because ℓ(S) = diam(R)/3,

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ ℓ(J1) + ℓ(J2) + 8β2(R)diam(R)

+(1− δ)(ℓ(J0) + 4β2(R)|R|)
≤ (1− δ

3
)diam(R) + 12β2(R)diam(R)

≤ (1− δ

3
)diam(R) + 12(δ/6)2diam(R)

≤ diam(R).

This proves the lemma. �



The rest of the proof now proceeds as before, except that since
∑

n

∑

S∈Sn
ℓ(S) ≤ ℓ(Γ),

we can replace (1.12) by

(1− δ)ℓ(Γ) ≤ diam(Γ) + lim sup
n

∑

R∈Rn

diam(R) +

n
∑

k=1

∑

S∈Sn
(1− δ)ℓ(S)

≤ diam(Γ) +O(
1

δ
)
∑

n

∑

R∈Rn

β2(R)diam(R).

Dividing both sides by (1− δ) proves (1.2).



This implies the smallest connected set Γ containing a set E satisfies

ℓ(Γ)− diam(E) ≤ (1 + δ)diam(E) +
C2

δ

∑

Q

β2
E(Q)diam(Q).

Later we prove that the lower bound

C1

∑

Q

β2
E(Q)diam(Q) ≤≤ ℓ(Γ)− diam(E)

holds for any curve Γ containing E.



Next we consider the lower bound:

ℓ(Γ)− diam(Γ) &
∑

Q

β2
Γ(Q)diam(Q).(1.14)

In the case n = 2 we will actually prove that

ℓ(Γ)− 1

2
prm(Γ) &

∑

Q

β2
Γ(Q)diam(Q),(1.15)

where prm(Γ) = ℓ(∂(ch(Γ))) denotes the perimeter of Γ, i.e., the length of the

boundary of its planar convex hull (twice the length of Γ if it is a line segment).

By noting that the orthogonal projection of a closed curve onto a diameter

segment is 1-Lipschitz and at least 2-to-1, we see that the perimeter of Γ is at

least twice its diameter. Hence (1.15) implies (1.8). In higher dimensions, the

perimeter is replaced by a quantity called the “mean width” of Γ, defined below.



Estimate (1.8) uses ideas from integral geometry. For the following facts, see [7].

There is a standard measure µ on the space of (n− 1)-hyperplanes in R
n, that

is invariant under rigid motions of Rn. In this proof “hyperplane” will always

mean a (n− 1)-dimensional affine space, and we will drop the explicit mention

of the dimension. Each hyperplane H ⊂ R
n (except those passing though the

origin; a set of µ measure zero) is determined by the point p ∈ H closest to the

origin. If p = rx with r > 0, x ∈ S
n−1 = {x ∈ R

n : |x| = 1}, the measure µ on

hyperplanes is given by dr times (n−1)-measure on the unit sphere Sn−1 ⊂ R
n.



Crofton’s formula says there is a constant cn > 0 so that

ℓ(Γ) = cn

∫

n(H,Γ)dµ(H),

where n(H,Γ) is number of points in H ∩ Γ. See [7]. As a special case the

measure of the set of hyperplanes hitting a line segment I is cnℓ(I) (almost

every hyperplane hits a given segment at most once).

The value of cn is explicitly known, but not important to us; indeed, from this

point on we normalize µ so that cn = 1. Note that if S is the chord of Γ then

µ({H : H ∩ Γ 6= ∅}) ≥ µ(H : H ∩ S 6= ∅}) = crd(Γ).(1.16)

The leftmost quantity in (1.16) is called the mean width of Γ; it is the average

over Sn−1 of the length of the projection of Γ onto the line every direction.



For n = 2, this is a multiple of the perimeter of the convex hull K of Γ, and for

n = 3 it is a multiple of the integral of the mean curvature over the surface of

K (and this is often easier to compute). More generally, it is the coefficient V1

of ǫ in Steiner’s formula vol(Kǫ) = vol(K) + V1ǫ+ V2ǫ
2 + · · ·+ Vnǫ

n, where Kǫ

is the ǫ-neighborhood of K.

The Vk’s are the intrinsic volumes of K and every rigid motion invariant on

convex sets is a combination of these. See, e.g., [5], [7].



Let D denote the collection of dyadic cubes in R
n and let D∗ be the union of

all possible translates of D by {−1
3, 0,

1
3} along any subset of the n coordinates.

The family D∗ has the property that any bounded subset of Rn is contained in

some member of D∗ of comparable size (the 1
3-trick, [6]). Also, the translate of

any dyadic cube by ℓ(Q)/3 along any subset of the coordinates is in D∗ (to see

this, note that one of 2n ± 1 is divisible by 3 hence 1
32

−n = ±1
3 + k2−n has a

solution). The set of all such translates of Q is denoted D∗(Q).



For Q ∈ D∗ let S(Q,Γ) be the set of hyperplanes that intersect both 5
3Q ∩ Γ

and (3Q \ 2Q) ∩ Γ. For a hyperplane H , let N(H,Γ) be the number of cubes

Q ∈ D∗ such that H ∈ S(Q,Γ).

Lemma 1.7. n(H,Γ)− 1 & N(H,Γ) whenever n(L,Γ) > 0.



Lemma 1.8. 1.7 a: Command not found. n(H,Γ)−1 & N(H,Γ) whenever

n(L,Γ) > 0.

Proof. Assume n(H,Γ) is finite (otherwise there is nothing to do). Since D∗

consists of a finite union of families of translations of the dyadic cubes D, its

suffices to bound the number of cubes belonging to each family. Since the

argument is the same for each family, we just consider the dyadic cubes.

By breaking the dyadic family into a finite number of sub-families, we may also

assume the cubes are “M -sparse”, i.e., there is a large constant M so that any

two cubes Q,Q′ of the same size satisfy dist(Q,Q′) ≥ Mdiam(Q) and cubes

Q,Q′ of different sizes satisfy either diam(Q) ≥ Mdiam(Q′) or the reverse

inequality. Let Q be one such a collection of sparse dyadic cubes.



We define a graph G = (V,E) with vertices V = H ∩ Γ and an edge between

z, w ∈ V if there is some cube Q ∈ Q with z ∈ 5
3Q and w ∈ 3Q \ 2Q. Let

C ⊂ Q be the cubes Q for which such a pair (z, w) exists.



We define a graph G = (V,E) with vertices V = H ∩ Γ and an edge between

z, w ∈ V if there is some cube Q ∈ Q with z ∈ 5
3Q and w ∈ 3Q \ 2Q. Let

C ⊂ Q be the cubes Q for which such a pair (z, w) exists.

Note that diam(Q) ≃ |z−w|, so the number of dyadic cubes associated to this

pair is uniformly bounded. Moreover, by sparseness there is at most one Q ∈ Q
associated to any pair (z, w). Thus #(C) ≤ #(E) (where # is cardinality).

In fact, if Q is associated to more than one edge in G, we remove all but one

of these edges from the graph (that we still call G), so that #(C) = #(E). We

claim that G is a forest, i.e., all its connected components are trees, e.g., G has

no cycles. If this holds, then #(C) = #(E) ≤ #(V )− 1 = n(H,Γ)− 1 and we

are done.



Note that if M is chosen large enough, and e1, e2 ∈ E are adjacent edges of

G whose lengths are comparable to within a factor of 100, then by sparseness,

e1 and e2 must correspond to the same cube Q, and hence e1 = e2. Thus

adjacent edges in G have lengths differing by a factor of at least 100. Now

suppose e1, . . . eN are the ordered edges of cycle in G. We want to show this is

impossible.



We will call a pair of edges ej, ek in the cycle a “good pair” if they have sizes

that are comparable within a factor of 100, but are connected by a non-empty

path of edges that are all smaller by a factor of 100. We may assume e1 is the

longest edge. Thus it is one element of a good pair; the other element is either

itself (if it is the only edge with comparable length in the cycle) or another edge

ek; in the latter case e1 and ek can’t be adjacent by our earlier remarks.



We claim there must be another good pair on the path connecting e1 to ek. If

not, then look at the connecting edges in groups of comparable size in decreasing

order: there is one element of the first group, at most two in the second group,

at most four in the third group, and so on.

Thus the total length of all the edges in the path is at most
∑∞

n=1 2
n·100−nℓ(e1) ≪

ℓ(e1). However, the path either connects the endpoints of e1, or connects e1 to

an edge ek whose distance from e1 is ≥ 100 · ℓ(e1). In either case, the path is

too short, so the assumption that there are no good pairs must be wrong.



So a good pair of edges ej, ei with diameters ≤ 100 · diam(e1) must exist.

But these edges are separated by distance at least 100 · diam(ej) and the same

argument as above implies the path between them contains another good pair

smaller by at least a factor of 100. Continuing in this way, we see the proposed

cycle in G contains arbitrarily many edges, and this contradicts the fact that G

is a finite graph. Thus G is a forest, and the lemma is proven. �



Continuing with the proof of (1.8), note that by (1.16)

ℓ(Γ)− crd(Γ) ≥
∫

n(H,Γ)dµ(H)−
∫

H∩Γ 6=∅
1dµ(H)

&

∫

N(H,Γ)dµ(H)

=
∑

Q∗
µ(S(Q∗,Γ).

To complete the proof we need

Lemma 1.9. For every dyadic cube Q there is a intersecting Q∗ ∈ D∗ of

comparable size so that β2
Γ(Q)diam(Q) . µ(S(Q∗,Γ)).



Given the lemma, we deduce that
∑

Q∈D
β2(Q)diam(Q) .

∑

Q∗∈D∗
µ(S(Q∗,Γ)),

and hence

ℓ(Γ)− crd(Γ) &
∑

Q∈D
β2(Q)diam(Q),

as desired.

To prove Lemma 1.9 we will need some preliminary facts.



Lemma 1.10. Suppose I is the unit segment between 0 and 1 on the x1-axis,

and suppose J is another unit length segment with at least one endpoint

inside {|x| < 100} and distance β > 0 from the x1-axis. Then the µ-measure

of the hyperplanes hitting both I and J is & β2.

Proof. Think of I as fixed and J as variable. The measure of the hyperplanes

hitting both I and J is a continuous function of J and is non-zero as long as J

is not a subset of X1, the x1-axis. Thus it is bounded away from zero as long as

J has one endpoint outside the cylinder of radius 1/100 around X1.



Since the lemma is true if β ≥ 1/100, now suppose β < 1/100. Then the

hyperplanes that hit both I and J have unit perpendicular vectors that are

close to the (n− 1)-unit-sphere Sn−1 in X⊥
1 , the orthogonal complement of X1.

Consider the linear map that is the identity on X1 and expands by a factor of

b = 1/(100β) on X⊥
1 .



In the p = rx parameterization of hyperplanes, this map can change r by a

factor of O(b) and changes the x parameter by increasing its distance from X⊥
1

by factor of at most O(b), and thus changes the (n − 1)-volume by a factor

of O(b) near Sn−1. Therefore the µ measure of hyperplanes hitting I and J

is increased by at most a factor of O(b2) = O(β−2) and the new measure is

bounded uniformly away from zero. This proves the lemma. �



Lemma 1.11. Suppose Q is a dyadic cube in R
n and Q∗ ∈ D∗ is cube of the

same size and is a translation of Q by at most ℓ(Q)/3 in each coordinate

direction. Then the distance from 2Q ∪ 2Q∗ to R
n \ (3Q ∩ 3Q∗) is at least

ℓ(Q)/6.

Proof. If z ∈ 2Q ∪ 2Q∗ then Pk(z) ∈ 2I ∪ 2I∗ = Pk(2Q) ∪ Pk(2Q
∗) for every

k = 1, . . . , n, where Pk is the orthogonal projection onto the kth coordinate

axis. Similarly, if w 6∈ (3Q ∩ 3Q∗) then Pk(z) 6∈ 3I ∩ 3I∗ = Pk(3Q) ∩ Pk(3Q
∗)

for some choice of k.

But in dimension 1, the distance between 2I ∪ 2I∗ and R \ (3I ∩ 3I∗) is easily

computed to be ℓ(I)/6, e.g., if I = [0, 1] and I∗ = [13,
4
3], then 2I∪2I∗ = [−1

2,
11
6 ]

and 3I ∩ 3I∗ = [−2
3, 2]. Hence |z − w| is at least this big. �



Proof of Lemma 1.9. The idea is simple: by Lemma 1.10 and the fact that any

hyperplane hitting a chord S of a sub-arc γ ⊂ Γ also hits γ, the estimate reduces

to finding two sub-arcs of Γ∩3Q whose chords are β far from lying one the same

line. Moreover, we need these chords to have lengths comparable to diam(Q)

and for one to lie in 3
2Q and the other in 3Q \ 2Q.



By rescaling we may assume Q has side length 1, and that Γ hits both Q and

3Qc. Set β = βΓ(2
23
24, Q). For any child Q′ of Q, 3Q′ ⊂ 2Q ⊂ 22324Q, so

βΓ(Q
′) ≤ β = βΓ(2

23
24, Q).

Thus the β-numbers for the children of Q are all bounded by O(β), that we

shall show is either O(µ(S(Q,Γ))) or O(µ(S(Q∗,Γ))) for some Q∗ ∈ D∗(Q).

Thus finding the two chords in Γ∩Q will actually bound the β numbers for the

children of Q.

Choose z ∈ Γ∩ ∂Q and define the ball B1 = B(z, 1
24). Choose w ∈ Γ∩ ∂B1 so

that z and w are connected by a sub-arc γ1 ⊂ Γ ∩ B1. Let S1 = [z, w] be the

segment connecting them.

Then S1 ⊂ 123Q and any hyperplane that hits S1 must also hit γ1 ⊂ Γ ∩ 123Q.

Let L1 be the line that contains S1 and let W0 ⊂ W1 be the cylinders of radius

β/1000 and β/2 respectively, both with axis L1. Since these radii are less than



β, we know Γ ∩ 22324Q contains a point outside the cylinder W1. There are two

cases to consider, depending on where this point is.



Case 1: Suppose there is a point v ∈ Γ ∩
(

22324Q \ 2 1
24Q

)

\W0.

u
v

1
242  Q

W0

W1
L1

z w

242  Q23

Q

3Q

Γ

Since Γ is path connected and has diameter ≥ diam(Q), v can be connected to

a point u ∈ Γ with |u− v| = 1
24 by a sub-arc γ2 ⊂ Γ that stays inside the ball

B2 = B(v, 1
24). Let S2 = [u, v] be the segment connecting these two points and

note that any line that hits S2 also hits γ2 ⊂ Γ ∩D2 ⊂ 3Q \ 2Q. Since S2 has

an endpoint outside W0, the measure of the set of lines that hits both S1 and S2

is & β2 by Lemma 1.10. Thus µ(S(Q,Γ)) & as well and the lemma is satisfied

with Q∗ = Q.



Case 2: Suppose Case 1 does not hold. Then there must be a point p ∈
Γ∩ (2 1

24Q\W1). Choose q with |p− q| ≤ 1
12 that is connected to p by a sub-arc

γ3 ⊂ Γ ∩B3, where B3 = B(p, 1
12) ⊂ 213Q.

u v

1
242  Q

L1

W1

W0

242  Q23

Q

3Q

L4

Γ
p

q



u v

1
242  Q

L1

W1

W0

242  Q23

Q

3Q

L4

Γ
p

q

Let S3 = [p, q]. As before, any line that hits S3 must also hit γ3. Choose an

element Q∗ ∈ D∗(Q) that is the same size as Q and translated by at most 1
3ℓ(Q)

in each coordinate direction (possibly Q itself) and so that B3 ⊂ 123Q
∗ (it is

easy to check there is at least one such cube Q∗ by considering the projections

onto each coordinate).



u v

1
242  Q

L1

W1

W0

242  Q23

Q

3Q

L4

Γ
p

q

By Lemma 1.11, Γ must contain a point u ∈ (3Q ∩ 3Q∗) \ (2Q ∪ 2Q∗) that is

at least distance ≥ 1
12 from the boundaries of both 2Q and 3Q. Therefore the

ball B4 = B(u, 1
24) is inside of 2

23
24Q \ 2 1

24Q. As before, we can find a radius S4

of B4 so that any line that hits S4 also hits a sub-arc γ4 ⊂ Γ ∩B4.



u v

1
242  Q

L1

W1

W0

242  Q23

Q

3Q

L4

Γ
p

q

Since γ4 lies inside the very thin cylinder w0, the line L4 containing S4 is almost

parallel to L1 (the axis of W0) and so L4 ∩ 3Q lies inside a cylinder of radius

β/4 around L1. Since p is outside the larger cylinder W1 we see that S3 and S4

satisfy Lemma 1.10, hence the measure of the set of lines that hit both S4 and

S3 is & β2 by Lemma 1.10. Thus µ(S(Q∗,Γ)) & β2, as desired. �



This completes the proof of (1.8), and hence of Theorem 1.1:

ℓ(Γ)− diam(Γ) ≃
∑

Q

β2(Q)diam(Q).



Next we prove

Theorem 1.12. For any Jordan arc Γ ⊂ R
n,

ℓ(Γ)− crd(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.17)

where the sum is over all dyadic cubes.



As noted earlier, “&” is immediate from Theorem 1.1 since crd(Γ) ≤ diam(Γ).

To prove the other direction, we may assume the β2-sum in (1.4) is finite, for

otherwise there is nothing to prove. Thus we may assume γ is rectifiable. We

may also assume diam(Γ) = 1. Let Q0 be a dyadic cube hitting Γ with 1 ≤
diam(Q0) ≤ 2, hence Γ ⊂ 3Q.

Suppose β0 is a small positive number (chosen to satisfy various conditions

described below). If βΓ(Q0) > β0, then the result is trivially true since then

crd(Γ) ≤ diam(Γ) = 1 ≤ 1

β2
0

β2
Γ(Q0)diam(Q0) . β2

Γ(Q0)diam(Q0),

(with constant depending on β0) and hence the crd(Γ) term in (1.4) can be

absorbed into the β2-sum term.



Therefore we may assume βΓ(Q0) ≤ β0. Let S = [x, y] be a diameter segment

of Γ and let γ0 be the open subarc of Γ connecting x and y. Then Γ\γ0 consists
of two arcs, γ1 connecting x to an endpoint z (possibly z = x) and γ2 connecting

y to the other endpoint w (possibly w = y). By rotating and rescaling, we may

assume that x = 1, y = −1 on the x1-axis.

γ1γ2 γ
0

y
w

x Qβ(     )0

z



γ1γ2 γ
0

y
w

x Qβ(     )0

z

Note that

crd(Γ) ≥ diam(Γ)− ℓ(γ1)− ℓ(γ2)

and hence using Theorem 1.1 we get

ℓ(Γ)− crd(Γ) ≤ ℓ(Γ)− diam(Γ) + ℓ(γ1) + ℓ(γ2)

≤ O





∑

Q

β2
Γ(Q)diam(Q)



 + ℓ(γ1) + ℓ(γ2).

Thus Theorem 1.2 will follow if we can show that both ℓ(γ1) and ℓ(γ2) are

bounded by a multiple of the β2-sum for Γ.



Because of the traveling salesman theorem and the fact that βγ1(Q), βγ2(Q)

are both at most βΓ(Q), it is enough to bound the diameters of these arcs by

the β2
Γ-sum; then the diameters can be absorbed into the sum by making the

comparability constant larger. The arguments for both arcs are the same, so we

only discuss γ1.



Let ǫ = diam(γ1). Assume ǫ > 0 (otherwise there is nothing to do). Let

Q1, . . . , Qk be the nested dyadic cubes containing x with diameters going from

diam(Q0) to ǫ. Note that k ≃ log(diam(Q0)/ǫ). If any one of these cubes

satisfies βΓ(Qj) ≥ β0, then

diam(γ1) ≤
β2
Γ(Qj)

β2
0

diam(γ1) . β2
Γ(Qj)

diam(Qj),

and hence diam(γ1) is dominated by the β2-sum, as desired.

For the remainder of the proof we may therefore assume that βΓ(Qj) ≤ β0 for

all j ∈ {0, 1, . . . , k}. Let Lj be a best line in the definition of βΓ(Qj).



Case 1: Assume that for some j ∈ {1, . . . , k}, the line Lj makes an angle larger

than 10β0 with the x1-axis. Since the angle between L0 and Lj is bounded by

O
(

∑j
i=0 β(Qi)

)

, and we have normalized so that the best line for Q0 is within

β0 of the x1-axis, we must have
∑k

j=1 βΓ(Qj) & β0 & 1. The Cauchy-Schwarz

inequality then implies

1 .





k
∑

j=1

βΓ(Qj)





2

≤





k
∑

j=1

β2
Γ(Qj)2

−j



 ·





k
∑

j=1

2j



 ≃ 2k
k

∑

j=1

β2
Γ(Qj)2

−j

so
∑k

j=1 β
2
Γ(Qj)2

−j & 2−k & ǫ, and hence

ǫ = diam(γ1) .

k
∑

j=1

β2
Γ(Qj)diam(Qj),

as desired.



Case 2: Next we assume that all the lines Lj, j = 0, . . . , k make angle ≤ 10β0

with the x1-axis. Consider a subarc γ′
1 ⊂ γ1 that is contained in, and connects

the boundary components of, the annulus

{p ∈ R
2 :

1

10
diam(γ1) ≤ |p− x| ≤ 1

5
diam(γ1)}.

Since γ1 and γ′
1 have comparable diameters, it is enough to bound diam(γ′

1).

For each p ∈ γ′
1 a dichotomy holds: either every dyadic cube Q containing p

with diam(Q) ≤ diam(γ1)/10 satisfies βΓ(Q) ≤ β0 or there is a cube Qp of this

form such that βΓ(Qp) > β0. Let E ⊂ γ′
1 be the set of points p where such a

Qp exists. Since we can assume γ1 is rectifiable, almost every point of γ1 is a

tangent point.



Lemma 1.13. If p ∈ γ′
1 \ E and p is a tangent point of Γ, then p has

the following “crossing property”: if Q is a dyadic cube containing p with

diam(Q) ≤ diam(γ1)/10 then γ1 must “cross” Q in the sense that the or-

thogonal projection of γ1 ∩ 3Q onto LQ covers LQ ∩Q, where LQ is a best

approximating line for the definition of βΓ(Q). In other words, γ1 must

connect the two components of W ∩ ∂3Q where W is a cylinder of radius

1/10 passing through p.

W

3Q
σ

γ

Q
L



W

3Q
σ

γ

Q
L

Proof. Note that because p is not in E, that γ has small β-number for Q and

for every dyadic subcube of Q that contains p. Using this, we claim we can

construct a surface σ so that

(1) σ cuts 3Q into two pieces,

(2) σ separates the endpoints of γ1 ∩ 3Q,

(3) σ contains p, but no other points of γ1, and

(4) σ∩3Q′\Q′ is nearly orthogonal to LQ′ for each dyadic Q′ with p ∈ Q′ ⊂ Q.



W

3Q
σ

γ

Q
L

To do this, choose a (n− 1)-sphere of the n-sphere of radius t = diam(Q)2−n

around p that is nearly orthogonal to the optimal line Ln passing through p for

the definition of β(p, 2−n) and then connecting these (n−1)-spheres by a surface

(e.g., project both onto the (n− 1)-plane L⊥
n orthogonal to Ln and connect two

points if the projections are on the same ray in L⊥
n ).



W

3Q
σ

γ

Q
L

If p is a tangent point of γ1, then σ has a tangent plane at p that is perpendicular

to γ1’s tangent direction. From this we see that γ1 crosses σ, i.e., it hits both

components of 3Q \ σ. Since γ1 only hits σ once, it must leave 3Q through a

different component of ∂(3Q)∩W than it entered through. This implies Lemma

1.13. �



Lemma 1.14. ℓ(E) = ℓ(γ′
1).

Proof. If not, then we can choose a non-empty subset F ⊂ γ′
1 \E that consists

entirely of tangent points of γ. Suppose p ∈ F and define d to be the distance

from p to γ0. By the assumption that every Lj is close to horizontal, we know

d = O(β0 diam(γ1)) < diam(γ1)/10. Also note that d is positive since p is not

on γ0.



Let Qp be the dyadic square containing p with diameter 2d < diam(Qp) ≤ 4d.

Because diam(Qp) ≤ diam(γ1)/10, the argument in the previous paragraph

applies, and γ1 must cross Qp inside a cylinder S of width β0diam(Qp).

Moreover, since diam(Qp) > 2d, the curve γ0 also hits 3Q and hence contains

a point q in the same cylinder S, and hence γ0 is at most distance β0 diam(Qp)

from γ1. For β0 small, this value is much smaller than d, giving a contradiction.

Thus no such p exists, and hence ℓ(E) = ℓ(γ′
1), so Lemma 1.14 holds. �



By the nested property of dyadic cubes, we can find a collection {Qj
p} of cubes

as in the definition of E that have disjoint interiors and that covers E. Hence

ℓ(γ′
1) ≃ ℓ(E) ≤

∑

j

ℓ(Qj
p ∩ E) .

∑

j






diam(Qj

p) +
∑

Q⊂Q
j
p

β2
E(Q)diam(Q)







where we have applied (1.2), say with δ = 1, to each set Qj
p ∩ E.

Note that usual formulation of the traveling salesman theorem is to sum over all

dyadic cubes in the plane, but if E ⊂ Q, then it suffices to sum over all cubes

contained in Q (including Q itself) since the β2-sum over all larger cubes that

hit E form a geometric series whose sum is O(β2(Q)diam(Q)).



Now we use the traveling salesman theorem and the fact that βE ≤ βΓ, to show

ℓ(γ′
1) .

∑

j

∑

Q⊂Q
j
p

β2
Γ(Q)diam(Q),

where we have also used βΓ(Q
j
p) ≃ 1 to absorb the diam(Qj

p) terms into the

β2-sums. Since this is a β2-sum over disjoint collections of dyadic cubes, it is

dominated by the full β2-sum, and this completes the proof of Theorem 1.2.
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