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• Hyperbolic conditions on codimension 1 surfaces: Can our defini-

tions be generalized to codimension 1 surfaces inRn (or to general codimension)?

For example, we could take Γ to be an image of Sn−1 ⊂ R
n under a self-

homeomorphism of Rn (we will call this a Jordan surface) and consider the

corresponding hyperbolic convex hull and minimal sub-manifolds in (n + 1)-

dimensional hyperbolic space Hn+1.



To begin with, what is the correct generalization of the β2-sum condition? It is

easy to check that
∑

Q β2(Q) diverges for the (n− 1)-sphere in R
n, but both

∑

Q

β2
Γ,n−1(Q)diam(Q)n−1 < ∞,

∑

Q

βn−1
Γ,n−1(Q) < ∞,

hold. The second implies the first, is scale invariant, and does not allow “cor-

ners”, so is probably the more natural generalization of the Weil-Petersson condi-

tion to surfaces. Is it equivalent to natural generalization of our other conditions

in term so Sobolev parameterizations, inscribed polyhedron, hyperbolic minimal

surfaces and renormalized volumes?

What should renormalized volume mean? The hyperbolic volume of the trun-

cated hyper-surface St may involve several negative powers of t.



• Comparing different quantities: The work of Takhtajan and Teo [30],

Rohde and Wang [26] and Viklund and Wang [31] includes many explicit for-

mulas relating the Dirichlet norm of log f ′ to the Kahler potential of the Weil-

Petersson metric on universal Teichmuller space and the Loewner energy of the

curve Γ. Are there similar formulas that relate these quantities to quantities

discussed in this paper, e.g., Möbius energy, β2-sums, Menger integrals, the cur-

vature integral of a minimal surface associated to Γ or the renormalized area of

this curve? If there is more than one such minimal surface, which surface?



Examples in the preprint indicate there may not be any simple relation between

these different quantities, but the estimates in this paper should prove that

LE(Γ), Möb(Γ), |RA(Γ)| and ∑Q β2
Γ(Q) should all be comparable for quasi-

circles with small constant. Example 2 in Section 23 shows that Möb(Γ) need

not be comparable in size to the other three in general, but are the other three

always comparable to each other (at least when the values are large)?



• Other knot energies: There are a variety of other knot energies besides

Möbius energies. For example,

Ej,p(Γ) =

∫

Γ

∫

Γ

(

1

|x− y|j −
1

ℓ(x, y)j

)p

dxdy,

blows up for self-intersections if jp ≥ 2 and is finite for smooth curves if jp ≤
2p + 1. Sobolev smoothness properties for curves with finite Ej,p energy are

studied by Blatt in [8] (but there is a typo in Theorem 1.1, s should be s =

(jp− 1)/(2p)).



Another class of knot energies considered in [28] are the Menger energies

Mp(Γ) =

∫

Γ

∫

Γ

∫

Γ

cp(x, y, z)|dx||dy||dz|,

with M2(Γ) being the usual condition that is equivalent to rectifiability. They

show that for p ≥ 3, finite energy curves are Jordan curves and for p > 3

then are even C1,α and establish bounds on the β-numbers. The endpoint case

p = 3 seems the most interesting, as this is the only scale-invariant Menger

energy. Since c(x, y, z) . 1/ℓ(x, y, z), M3(Γ) is less restrictive than the Weil-

Petersson condition. What are the corresponding geometric characterizations of

these curves?



• In the definition of renormalized area, we truncate a minimal surface in R
3
+

with asymptotic boundary Γ at height t above the boundary. This gives a new

curve Γt. Does this have lower energy than Γ (either Loewner or Möbius)? Is

energy monotone in t? Are these truncations close to a geodesic in the Weil-

Petersson metric? When the topology of Γt changes corners form, so the energies

must blow up, so we may want to consider only simply connected surfaces.



• Gradient flow on energy: The idea of knot energies is that if we start

with a knot in R
3, and flow “downward”, e.g., follow the gradient of energy,

then the curve never crosses itself and we end at a “nice” representative of the

same knot. This flow has been studied by various investigators; see [19], [24].

For Weil-Petersson curves in the plane does this flow always lead to a circle? Is

it related to the Weil-Petersson metric or geodesics for this metric?



• Wildness of fixed points of involutions: Fixed point sets of C1 invo-

lutions are locally flat by a result of Bochner [9], but this can fail for involutions

in the Sobolev space W 1,p, 1 ≤ p < 2, see [22]. Can the fixed point sets of W 1,2,

quasiconformal and biLipschitz involutions be wild curves?



• Length convergence on minimal surfaces: The estimates in this pa-

per prove that if Γ is Weil-Petersson, S is a minimal surface with asymptotic

boundary Γ and Γt is the curve on S at height t above the boundary, then
∫ 1

0

|ℓ(Γt)− ℓ(Γ)|dt
t2

< ∞.

Does the converse hold? The direction stated above follows by writing

|ℓ(Γt)− ℓ(Γ)| ≤ |ℓ(Γt)− ℓ(Γn)| + |ℓ(Γn)− ℓ(Γ)|,
where Γn is the usual dyadically inscribed polygon with 2−n−1 < t ≤ 2−n.

The second term on the right is integrable by Theorem 1.3 of the preprint, and

is controlled using the β-numbers at scales smaller than t. The first term is

controlled by Seppi’s estimate and the ε-numbers at scale t; these, in turn, are

controlled by sums of β-numbers over scales larger than t. Thus the question is

whether ℓ(Γt) can be a much better approximation to ℓ(Γ) than ℓ(Γn) for some

non-Weil-Petersson curves?



• Harmonic measure on curves in R
3: Harmonic measure on a plane

curve can be defined as the hitting distribution of a Brownian motion. In higher

dimensions, a Brownian motion almost surely never hits a fixed smooth curve,

so this does not make sense. An alternative possibility is to think harmonic

measure as the equilibrium probability measure that minimizes energy with

respect to the Newton kernel (log 1
z in the plane, |x|n−2 in R

n). For curves in

R
n no measure supported on a smooth curve gives finite energy, but we there

are finite energy probability measures on an ǫ-thickening of the curve.



In particular there is an energy minimizing one (the equilibrium distribution

of a unit charge constrained to stay on the ǫ-tube). What measure do these

converge to as ǫ ր 0? Is it absolutely continuous with respect to arc-length?

AreH3/2 curves inR4 characterized by some property of this measure, e.g., being

comparable to arclength measure? Perhaps there some connection to recent work

of David, Engelstein, Feneuil, Mayboroda defining harmonic measure on subsets

of Rn with codimension greater than 1. See [14], [13].



• Möbius energy and SLE: Yilin Wang showed Weil-Petersson curves are

related to the large deviations theory of Schramm-Loewner evolutions (SLE) as

the parameter κ tends to zero. It is intriguing that they are also characterized

in terms of the rate of blow-up of a self-repulsive energy that prevents self-

intersections. Is there some more direct connection between these two ideas?

A SLE(κ) curve has Hausdorff dimension 1 + κ/8 for 0 < κ ≤ 8 and we expect

the ǫ-truncation of the energy integral for an α-dimensional measure and kernel

|x|2−d to grow like ǫ2−d+α. Do SLE paths have energy that grows like ǫ−1+κ/8,

or are they, in some sense, optimal among such curves?

Is there something interesting to say regarding hyperbolic convex hulls and min-

imal surfaces of an SLE path when κ > 0, e.g. can we compute an “expected

curvature” for the corresponding minimal surface? When κ ≥ 8 the paths be-

come plane filling, but do the corresponding minimal surfaces still make sense

and if so, can we characterize their properties (e.g., growth rate of renormalized

area) in terms of κ?



• Brylinski’s beta function: Given a rectifiable curve γ ⊂ R
3, in [12] Jean-

Luc Brylinski defines a function Bγ(s) =
∫

γ

∫

γ |z − w|sdzdw, where dz, dw

denote arclength measure. This integral converges and defines a holomorphic

function for R(s) > 0. For example, if γ is a circle, then he shows

Bγ(s) =
Γ(12)Γ(

s+1
2 )

2Γ(s2 + 1)
,

where Γ is the usual Gamma function, the analytic extension of
∫∞
0 xs−1e−xdx.

More generally, he shows that if γ is smooth, then Bγ(s) extends to be meromor-

phic on the whole plane with poles only possible at the negative odd integers.

He also shows that for smooth curves Bγ(−2) = Möb(γ)− 4 and

Möb(γ, s) =

∫

γ

∫

γ

(ℓ(z, w)s − |z − w|s)dzdw,

extends to be holomorphic in R(s) > −3. Is this extension (or something like

it) true for all Weil-Petersson curves, not just the smooth ones?



• Renormalized volume of hyperbolic 3-manifolds: Let G be a quasi-

Fuchsian group, M its hyperbolic quotient 3-manifold, R1, R2 the two Riemann

surfaces comprising the boundary at ∞ of M , and Γ its limit set. There are

a variety of papers that relate the volume CH(Γ), the renormalized volume of

M , and the Weil-Petersson distance between R1 and R2. For example, see [10],

[11], [21], [27].

The ideas in these papers seem very similar to our results characterizing Weil-

Petersson curves Γ in terms of the “thickness” of the hyperbolic convex hull of

Γ and the renormalized area of a surface with boundary Γ. Is there a precise

connection between the results of this paper and the papers mentioned above? In

[30], Takhtajan and Teo show that the usual Weil-Petersson metric for compact

surfaces can be recovered from their Weil-Petersson metric on the universal

Teichmüller space. Is this helpful in making the connection suggested above?



• Computing minimal surfaces: Given a planar closed curve Γ can we

efficiently compute a minimal surface S ⊂ R
3
+ that has Γ as its asymptotic

boundary? Can we compute all such surfaces? Efficiently compute the number

of minimal surfaces with boundary Γ?



• How do minimal surfaces lie in the convex hull?: Sullivan’s convex

hull theorem, e.g., [15], [29], [6], says that there is a K-quasiconformal map

from a simply connected domain Ω to its dome that is the identity on Γ = ∂Ω

and K is bounded, independent of Ω. If Γ is a Jordan curve, then Sullivan’s

theorem also applies to the other complementary component Ω∗. In general,

any L-quasiconformal reflection across Γ might have L much larger than K,

and hence any QC map between the domes of Ω and Ω∗ fixing Γ also has large

constant.



Suppose S is a simply connected minimal surface with asymptotic boundary

Γ. Is S about half-way between the two domes quasiconformally, i.e., there are

O(
√
L) quasiconformal maps from S to each of the convex hull boundaries?

Any bound in terms of L? Can S remain O(1)-quasiconformally close to one of

the domes as L ր ∞? What if Γ is not a quasicircle; can S be quasiconformally

equivalent to either dome by a map fixing Γ?



•Detecting Weil-Petersson components of T (1): The Hilbert manifold

topology of Takhtajan and Teo divides the universal Teichmüller space into

uncountable many connected components. Can we geometrically characterize

when two curves belong to the same component? The current paper has done

this for the component containing the unit circle. Perhaps some condition can

be given saying that the convex hulls are quasi-isometric with constants that

tend to 1 in a square integrable sense near the boundary of hyperbolic space.

Are Γ1,Γ2 in the same component iff Γ2 = f (Γ1) for some planar QC map f

whose dilatation is in L2 for hyperbolic area on the complement of Γ1? This

may be known.



• A closely related problem is to construct a natural section for universal Te-

ichmüller space, i.e., a natural choice of one quasicircle from each connected

component. A good starting point might be Rohde’s paper [25] that gives such

a choice for quasicircles modulo biLipschitz images.



• Alexakis and Mazzeo also prove that if a minimal surface minimizes renor-

malized area, then it is area minimizing, i.e., if S1, S2 are embedded minimal

surfaces with the same asymptotic boundary Γ and S1is area minimizing in R
3
+

then RA(S1) ≤ RA(S2), and equality holds if and only if S2 is also an area

minimizer. Can this be extended to non-Weil-Petersson curves by replacing the

inequality between renormalized area by a comparison of their growth near the

boundary?



In [2] Alexakis and Mazzeo impose an L2 curvarture condition but integrate

against a weight that blows up logarithmically near the boundary, in order to

obtain C1 control of the boundary curve Γ. They note that this by itself is not

enough to allow such control: the current paper shows precisely what boundary

curves are possible under this weaker hypothesis.

In terms of β-numbers, their stronger condition roughly says that
∑

Q

β2
Γ(Q)| log diam(Q)|2p < ∞,

for some p > 1. It would be interesting to explore the consequences of this

assumption in terms of the conditions given in this paper, and to explore the

possible analogs of this paper’s results in the higher dimensional settings con-

sidered in [1].



• Characterizing subsets of Weil-Petersson curves: Peter Jones’s

traveling salesman theorem characterizes the subsets of the plane that lie on

some rectifiable curve by
∑

Q β2
E(Q)diam(Q) < ∞. Does the analogous sum

∑

W β2
E(Q) < ∞ characterize subsets of Weil-Petersson curves? This condition

is obviously necessary since the β2-sum for any such curve would dominate

the sum for the set. More generally, if we define a collection of sets by the

convergence of some series involving β-numbers, is every set in that collection

always contained in a curve from that collection?



• Curves with smoothness between Weil-Petersson and rectifi-

able: What can we say about a curve if e.g.,
∑

Q

β2
Γ(Q)diam(Q)s < ∞,

a condition interpolating between rectifiability (s = 1) and the Weil-Petersson

class (s = 0)? Are these H(3−s)/2-curves? See Corollary 2 of [16], but β means

something different there and is not directly comparable to our β-numbers.

Similar sums occur in [4] and [5] related to Hölder parameterizations of curves.

In [18], Silvia Ghinassi considers curves for which
∫ 1

0

β2
Γ(x, t)t

−2αdt < M < ∞,

and shows they have parameterizations that are C1,α, i.e., f ′ is α-Hölder. The

β-sum definition implies the Weil-Petersson class forms a subset of the α = 1/2

case.



• Sharper Schwarzian estimate: The refined version of the traveling sales-

man theorem should have an analog for the Schwarzian derivative. In Lemma

3.9 of [7], Peter Jones and I proved that for a conformal map f : D → Ω, where

Γ = ∂Ω is a quasicircle, we have

ℓ(Γ) . diam(Γ) +

∫∫

D

|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy.

Recalling that S(f ) ≡ 0 implies Γ is a circle, can we improve this to

ℓ(Γ)− π · diam(Γ) ≃
∫∫

D

|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy?

Is there a similar estimate for estimating ∆(γ) = ℓ(γ)− crd(γ) for sub-arcs?



A first guess for a function theoretic analog might be

∆(γ) ≃
∫∫

Q

|f ′(z)||S(f )(z)|2(1− |z|2)3dxdy,

where γ = f (I) and Q is the Carleson square with base I , but this fails for any

Möbius transformation taking D to a disk (the right side is zero and the left

is not), so some modification is needed. Finding the correct version of this, or

its analogs in terms of log f ′ or µ, should give new ways to deduce geometric

conditions from function theoretic ones.



• Angles of inscribed dyadic polygons: Suppose {znj } are a choice of

dyadic points in Γ, and

θ(n, k) = arg

(

znj+1 − znj
znj − znj−1

)

,

be the angles between adjacent nth generation segments. It is not hard to show

that if Γ is Weil-Petersson, then
∞
∑

n=1

2n
∑

k=1

θ2(n, k) < ∞,

with a uniform bound independent of the choice of dyadic base point. Is the

converse true? What if we also assume Γ is chord-arc?

In general, θ can be zero at a point, even if β is large, e.g., at the center of a

spiral. This is reminiscent of the longstanding ǫ2-conjecture of Carleson, recently

proved by Jaye, Tolsa and Villa [20].



•The medial axis: The medial axis MA(Ω) of a domain Ω is the set of centers

of disks D(x, r) ⊂ Ω so that dist(x, y) = r for at least two points y ∈ ∂Ω. See

[17] for its basic properties (it is called the skeleton of Ω there). David Mumford

has asked if Weil-Petersson curves can be characterized in terms of the medial

axis of their complementary domains. This means we know both the set and

the distance function to the boundary, (a line segment, with different distance

functions, can be the medial axis of both WP and non-WP curves).



The cleanest statement I am aware of is the following. The region Ω \MA(Ω) is

foliated by directed line segments that connect each point to its unique nearest

point on ∂Ω. For each hyperbolic unit ballBρ(w, 1) in Ω we assign the supremum

of the difference between directions for the segments hitting B. Then Γ is Weil-

Petersson iff Γ is chord-arc and this function is in L2(Ω, dAρ). This says Γ is

Weil-Petersson iff the nearest point foliation is orthogonal to the boundary with

an L2 error. Is there a “nice” characterization in terms of the medial axis itself?







• New characterizations of old curve families: The function theoretic

characterizations of the Weil-Petersson class are exactly analogous to known

characterizations of other classes, e.g., when log f ′ is in VMO [23] or BMO [3],

[7]. Do these classes have other characterizations analogous to the ones discussed

in this paper? For example, Michel Zinsmeister has asked if anything interesting

can be said about the domes and minimal surfaces associated to boundaries of

BMO domains.
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