Remark on "Locally univalent functions, VMOA and the Dirichlet space" by Gallardo-Gutiérrez, González, Pérez-González, Pommerenke, and Rättyä.

This note describes what I believe is a small error in the proof of Theorem 4 of [1]: **Theorem 4:** If f is conformal on the unit disk \mathbb{D} , log f' is in the Dirichlet class and $\Gamma = f(\mathbb{T})$ then

$$\int_{\Gamma} \int_{\Gamma} \frac{\ell(w_1, w_2) - |w_1 - w_2|}{|w_1 - w_2|^3} |dw_1| |dw_2| < \infty.$$

I believe the result itself is true (I have a proposed alternate proof that uses a refinement of Peter Jones' traveling salesman theorem). The proof in [1] starts with Lemma 10 on page 581. This lemma correctly states that for h in the Hardy space H^1 , we have

$$\frac{1}{|I_a|} \int_{I_a} |h(t)| |dt| - \frac{1}{|I_a|} \left| \int_{I_a} h(t) |dt| \right| \le 20 \left(\int_{\mathbb{T}} |h(t)| P_a(t) |dt| - |h(a)| \right),$$

where $I_a \subset \mathbb{T}$ is the arc centered at a/|a| of length $2\pi(1-|a|)$. However, it is possible for the left side to be much smaller that the right side. This happens, for example, when h(z) = z. The left side above then has size $\simeq (1 - |a|)^2$ but the right side is $\simeq 1 - |a|$. On page 582, Lemma 10 is applied to g', where w = g(z) is a conformal map, to deduce

$$\begin{split} I(g) &\equiv \int_{\Gamma} \int_{\Gamma} \frac{\ell(w_1, w_2) - |w_1 - w_2|}{|w_1 - w_2|^3} |dw_1| |dw_2| \\ &\lesssim \int_{\Gamma} \int_{\Gamma} \frac{|I_a|}{|w_1 - w_2|^3} \left(\int_{\mathbb{T}} |g'(t)| P_a(t) |dt| - |g'(a)| \right) |dw_1| |dw_2| \\ &\simeq \int_{\Gamma} \int_{\Gamma} \frac{|I_a|}{|w_1 - w_2|^3} \left(\int_{\mathbb{D}} \frac{|g''(z)|^2}{|g'(z)|} (1 - |\varphi_a(z)|^2) dA_{\rho}(z) \right) |dw_1| |dw_2| \end{split}$$

where $\varphi_a(z) = (z - a)/(1 - \overline{a}z)$ and the second inequality follows from a standard application of Green's theorem. However, the last line above can be infinite when I(g)is finite. For example, if g is conformal on a neighborhood of $\overline{\mathbb{D}}$ and $|g''/g'| \simeq 1$ on \mathbb{D} . For example, consider the conformal map onto a domain with analytic boundary; then g' is non-zero on a neighborhood of the boundary and we can replace g(z) by g(rz), to get an example where g'' is non-zero on the boundary too. Given this, then $\log g'$ is certainly in the Dirichlet class and $|w_1 - w_2| = |g(z_1) - g(z_2)| \simeq |z_1 - z_2|$. The latter estimate implies

$$\begin{split} \int_{\Gamma} \int_{\Gamma} \frac{|I_a|}{|w_1 - w_2|^3} \left(\int_{\mathbb{D}} \frac{|g''(z)|^2}{|g'(z)|} (1 - |\varphi_a(z)|^2) dA_{\rho}(z) \right) |dw_1| |dw_2| \\ &\simeq \int_{\Gamma} \int_{\Gamma} \frac{|z_1 - z_2|}{|z_1 - z_2|^3} \left(\int_{\mathbb{D}} (1 - |\varphi_a(z)|^2) dA_{\rho}(z) \right) |dz_1| |dz_2| \\ &\simeq \int_{\Gamma} \int_{\Gamma} \frac{|z_1 - z_2|}{|z_1 - z_2|^3} |z_1 - z_2| |dz_1| |dz_2| \\ &\simeq \int_{\Gamma} \int_{\Gamma} \frac{|dz_1| |dz_2|}{|z_1 - z_2|} = \infty. \end{split}$$

However, for smooth curves $\ell(w_1, w_2) - |w_1 - w_2| \leq |w_1 - w_2|^3$, so I(g) is finite. Thus even in smooth cases, the proof is bounding the finite value I(g) by an infinite quantity. This possibly infinite quantity is mistakenly proven to be finite due to a slight error on the fourth line of page 584. Lemma 11 gives a correct estimate

$$\iint_{F(z)} \frac{|d\zeta_1| |d\zeta_2|}{|\zeta_1 - \zeta_2|^3} \simeq \frac{1}{1 - |z|},$$

where $F(z) \subset \mathbb{T} \times \mathbb{T}$ is the set of pairs $\{\zeta_1, \zeta_2\}$ so that $z \in Q(\zeta_1, \zeta_2)$ whose base interval has endpoints $\{\zeta_1, \zeta_2\}$. However, on the fourth line of page 584, it is mistakenly stated that this lemma implies that

$$\iint_{F_k(z)} \frac{|d\zeta_1| |d\zeta_2|}{|\zeta_1 - \zeta_2|^3} \simeq \frac{2^k}{1 - |z|},$$

where $F_k(z)$ is the set of pairs so that $z \in 2^k Q(\zeta_1, \zeta_2)$; the correct bound is

$$\iint_{F_k(z)} \frac{|d\zeta_1| |d\zeta_2|}{|\zeta_1 - \zeta_2|^3} \simeq \frac{4^k}{1 - |z|},$$

but this causes the factor $\sum_{k=0}^{\infty} 2^{-k}$ in line 12 of page 584 to become $\sum_{k=0}^{\infty} 1$, which obviously diverges. To see that 4^k is correct (at least as a lower bound), note that the arc I_z contains 2^k pairs of intervals of length $\simeq 2^{-k}(1-|z|)$, separated by $\simeq 2^{-k}(1-|z|)$ and so that $z \in 2^k Q(\zeta_1, \zeta_2)$, where one of ζ_1, ζ_2 is chosen from each interval of a pair. Thus each such pair contributes $2^k/(1-|z|)$ to the integral, and hence the 2^k pairs together contribute $4^k/(1-|z|)$.

References

 Eva A. Gallardo-Gutiérrez, María J. González, Fernando Pérez-González, Christian Pommerenke, and Jouni Rättyä. Locally univalent functions, VMOA and the Dirichlet space. Proc. Lond. Math. Soc. (3), 106(3):565–588, 2013.