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1. Thursday, November 5, 2020



2. Hyperbolic conditions in 3 dimensions

These slides continue earlier ones on the characterizations of Weil-Petersson

curves in terms of Euclidean geometric conditions and a set of slides on Peter

Jones’s traveling salesman theorem.

These slides describe characterizations in terms of hyperbolic gometry, the cur-

vature of mininal surfaces in hyperbolic space with asymptotic boundary Γ, and

the renormalized area of these surfaces.



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

Definition Description

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Diagram of implications between previous definitions.

Edge labels refer to sections of my preprint.



Many of our previous conditions involve sums or integrals over points x ∈ Γ and

scales 0 < t ≤ diam(Γ).

Thinking of t as a height instead of scale, we could interpret these as integrals

over the cylinder Γ× (0, diam(Γ)] ⊂ Hn+1 = {(x, t) : x ∈ Rn, t > 0}. Many of

the conditions in this section will be integrals over various other surfaces in the

upper half-space whose boundary on Rn is Γ.



The hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D or in

the n-dimensional ball Bn is given by integrating
ds

1− |z|2
,

along the curve. In the upper half-space Hn we integrate ds/2t.

Note that this definition differs by a factor of 2 from that given in some sources;

we have made our choice so that hyperbolic space has Gauss curvature −1.



The hyperbolic distance between two points is given by taking the infimum of

all hyperbolic lengths of paths connecting the points. In the ball, hyperbolic

geodesics are either diameters or subarcs of circles perpendicular to the bound-

ary. In half-space model Hn+1, hyperbolic geodesics are either vertical rays or

semi-circles centered on the boundary.



The hyperbolic metric ρ = ρΩ on a simply connected planar domain Ω is

defined by transferring the hyperbolic metric on D by a conformal map (the

choice of the map makes no difference). The quasi-hyperbolic metric on Ω is

defined by integrating

dρ̃ =
ds

dist(z, ∂Ω)
.

and Koebe’s estimate for conformal maps implies

ρΩ(z, w) ≤ ρ̃Ω(z, w) ≤ 4 · ρΩ(z, w).



Given a closed curve Γ (or more generally, a compact set E) the hyperbolic

convex hull, denoted CH(Γ), is the convex hull in Hn+1 of all infinite geodesics

that have both endpoints in Γ.

The complement of the convex hull is a union of hyperbolic half-spaces. Each

such half-space intersects Rn in am open Euclidean ball (or half-space or exterior

of a ball) that does not hit Γ. Conversely, each ball in Rn that does not intersect

Γ corresponds to a hyperbolic half-space in the complement of CH(Γ).



In the planar case it is only necessary to consider medial axis disks, i.e., those

that hit the boundary in at least two points.



A planar curve Γ divides R2 into two components and the boundary of CH(Γ)

has two corresponding connected components (unless Γ is a circle) called the

domes of the two sides of Γ. In higher dimensions, the complement of a Jordan

curve is connected and ∂CH(Γ) has a single component.























As noted above, the boundary CH(Γ) ⊂ R3
+ has two connected components,

S1, S2. Each of these surfaces meets R2 exactly along Γ and each is isomorphic

to the hyperbolic unit disk when given its hyperbolic path metric.

Each of these surfaces is also a pleated surface. This means that it is a disjoint

union of non-intersecting infinite geodesics for B3 (possibly uncountably many)

and at most countably many regions lying on hyperbolic planes, each region

bounded by disjoint hyperbolic geodesics. Roughly speaking, each surface is a

copy of the hyperbolic disk that has been “bent” along a collection of disjoint

geodesics, and there is an associated bending measure that gives the amount of

bending on each geodesic.



The bending measure actually measures arcs that are transverse to the bending

geodesics and in general it may have both atoms and continuous parts. However,

for convex hulls of Weil-Petersson curves, no atoms will occur. For more about

convex hulls and pleated surfaces, see [5] by Epstein and Marden (or the revised

version [6]). For an overview of domes and convex hulls see Marden’s paper [10];

also his book [9] for a discussion related to hyperbolic 3-manifolds.



For a point z ∈ CH(Γ) we define δ(z) = max(distρ(z, S1), distρ(z, S2)), i.e.,

δ(z) is the hyperbolic distance to the farther of the two boundary components

of CH(Γ). For z inside the convex hull, δ(z) measures the “thickness” of the

convex hull of Γ near z.



δ(  )z

CH(   )Γ
z

For z ∈ CH(Γ), δ(z) measures “width” of convex hull near z.

δ(z) = 0 iff Γ is a circle (hull has no interior).



Definition 15. ∫
∂CH(Γ)

δ2(z)dAρ(z) <∞,(2.1)

where dAρ denotes hyperbolic surface area on ∂CH(Γ).

We have integrated over all of ∂CH(Γ), but the proof will show that if the

integral over one component is finite, then so is the integral over the other one.

We want to show this follows from Definition 14 on ε-numbers.



Recall from before:

Given a dyadic square Q let εΓ(Q) be the infimum of the ε ∈ (0, 1] so that 3Q

hits a line L, a point z and a disk D so that D has radius `(Q)/ε, z is the

closest point of D to L and neither D nor its reflection across L hits Γ.

Q
diam(Q)/ ε

ε diam(Q)

Γ



In higher dimensions the disk D is replaced by a ball B of radius diam(Q)/ε

that attains its distance ε from L at z ∈ Q, and that the full rotation of B

around L does not intersect Γ. Thus Γ is surround by a “fat torus”. The centers

of the balls form a (n−2)-sphere that lies in a (n−1)-hyperplane perpendicular

to L.



If no such line, point and disk exist, we set εΓ(Q) = 1.

Definition 14. Γ is chord-arc and satisfies∑
Q

ε2
Γ(Q) <∞(2.2)

where the sum is over dyadic squares hitting Γ with diam(Q) ≤ diam(Γ).



Next we show ε controls δ.

Recall that each ball B ⊂ Rn is the boundary of a hyperbolic half-space H in

Hn+1, and two balls are disjoint iff the corresponding half-spaces are disjoint.

Lemma 2.1. Suppose B1, B2 ⊂ Rn are disjoint balls of radius r that are

distance ε apart. Then the hyperbolic distance between the corresponding

half-spaces is '
√
ε/r.



Proof. The nearest points on the half-spaces will occur over the line connecting

the centers of B1 and B2, so it suffices to do this calculation in the copy of

the hyperbolic upper half-plane lying above this line; this is a simple calculus

exercise.

We can normalize so the balls both have have radius 1 and the distance between

them is η = ε/r. The intersection of the hemispheres with this plane are two

half-circles. At height t above R2, these circles are Euclidean distance η+O(t2)

apart, hence hyperbolic distance ' t + η/t apart. This is minimized when

t =
√
η =

√
ε/r. �



Lemma 2.2. If z ∈ CH(Γ), then δ(w) = O(δ(z)) for all w ∈ CH(Γ) ∩
Bρ(z, 1).

Proof. The point is that if H1, H2 are two disjoint hyperbolic half-planes that

both within distance δ of a point z, then their boundaries remain within distance

O(δ) of each other inside Bρ(z, 1) (imagine z = 0 in the ball model). �



Lemma 2.3. Definition 14 implies Definition 15.

Proof. Lemmas 2.1 and 2.2 imply that if εΓ(Q) is small (say less than 1/100),

then δ(z) . εΓ(Q) for every point z ∈ T (Q) = Q × [`(Q)/2, `(Q)] ⊂ Hn+1.

Thus
∑

Q δ
2(Q) is bounded by a uniform multiple of ε2

Γ(Q). �



It is fairly easy to show Definition 15 implies Definition ?? directly using Lemma

3.3 from [1]. Next we recall Lemma 3.3 from [1]

Lemma 2.4. Suppose Ω is simply connected and

{|z| < 1− δ} ⊂ Ω ⊂ D.
If F : D→ Ω is conformal map such that F (0) = 0 and F ′(0) > 0, then

|F (z)− z| = O(δ),

for all |z| ≤ 1/2 and

max(|F ′(0)− 1|, |F ′′(0)|, |F ′′′(0)|) = O(δ).

In particular, |S(F )(0)| = O(δ).



Combined with our earlier discussion, and the fact that the Schwarzian is in-

variant under post-composition by Möbius transformations, this gives

Lemma 2.5. Suppose Γ is closed curve on the sphere with complemen-

tary domains Ω1,Ω2, whose domes are denoted S1, S2. If f : D → Ω1 is

conformal, then

|S(f )(z)|(1− |z|2)2 = O(δ(N(f (z))),

where and N is the nearest projection map from Ω1 to S1.



If Γ is a quasicircle, then each point z of one boundary component is within a

uniformly bounded hyperbolic distance δ(z) of the other boundary component,

i.e., if Γ is a quasicircle then δ(z) ∈ L∞(∂CH(Γ), dAρ).

This holds because both complementary components of a quasicircle are uni-

form domains [11], and thus for every x ∈ Γ and 0 < r ≤ diam(Γ), both

complementary components contain disks of diameter ' r inside D(x, r).

The converse is not true, since non-quasicircles may also have δ(z) ∈ L∞.



Definition 15 says that the Weil-Petersson class corresponds to

δ(z) ∈ L2(∂CH(Γ), dAρ)

. The condition δ(z) ∈ L1(∂CH(Γ), dAρ) is equivalent to CH(Γ) having finite

hyperbolic volume.

However, for a closed curve, this is always either zero (for lines and circles) or

infinite (everything else); we leave this as an exercise.



The part of the convex hull within unit distance of z has hyperbolic volume

bounded by O(δ(0)). Therefore Definition 15 can be restated as:∫∫
B

dist(z,B \ CH(Γ))dV (z) <∞,(2.3)

here dV denotes hyperbolic volume.



As mentioned above, each boundary component of CH(Γ) is is ‘pleated” surfaces.

This means that the foliation supports a transverse measure: this assigns mass

to any curve that crosses the foliation transversely.

In the case of a region Ω that is a finite union of disks, the boundary component

CH(∂Ω) that faces Ω lies on a finite union of hemispheres and the transverse

measure is atomic: is assigns a mass to each bending geodesic equal to the angle

formed by the two hemisphere that meet along that geodesic.



Every simply connected planar domain Ω can be exhausted by finite unions of

disks in such a way that the domes converge to the dome of Ω and the atomic

bending measures converge to the bending measure for the dome of Ω. See [5].

For z ∈ ∂CH(Γ), let Bnd(z) denote the amount of bending in a unit neighbor-

hood of z on the component of ∂CH(Γ) containing z.

Proposition 2.6. Γ is WP iff it satisfies∫
∂CH(Γ)

Bnd(z)2dAρ(z) <∞,(2.4)

where dAρ denotes hyperbolic surface area.

As in Definition 15 if is equivalent to just integrate over one of the connected

components of ∂CH(Γ).



3. Tuesday, November 10, 2020



If we use the ball model of hyperbolic space, assume 0 ∈ S, then we can rotate

so that the xy-plane is the tangent plane to S at 0 and S looks like the graph of

κ1x
2 + κ2y

2 (plus higher order terms), where κ1, κ2 are the principle curvatures

of S at 0.

The mean curvature is H = (κ1 + κ2)/2, and the norm-squared of the second

fundamental form is |K|2 = κ2
1 + κ2

2, the norm of the 2× 2 diagonal matrix K

with entries κ1, κ2.

The mean curvature of a minimal surface is zero.



Definition 16. Γ ⊂ R2 is the boundary of a smooth surface S ⊂ R3
+ such

that K(z)→ 0 as z tends to the boundary of hyperbolic space and∫
S

|K(z)|2dAρ(z) <∞,(3.1)

where K is the second fundamental form of S.



Lemma 3.1. Definition 15 implies Definition 16.

Proof. In both n = 2 and higher dimensions we create a triangulated surface

where adjacent triangles are very close to parallel, and smooth this surface to

obtain a surface with small principle curvatures.

In dimensions ≥ 2, the discrete surface can be the dyadic dome, discussed later,

and the principle curvatures are controlled by the β-numbers.

In the special case n = 2, we can also use a discretization of the usual hyperbolic

dome of one side of Γ.



Suppose S is one component of ∂CH(Γ). It is known that S, with its hyper-

bolic path metric, is isomorphic to the hyperbolic disk (e.g., [6], [10], [9]). The

hyperbolic unit disk can be triangulated by geodesic triangles with hyperbolic

diameters ' 1 and angles bounded strictly between 0 and π, e.g., take the tes-

selation corresponding to a Fuchsian triangle group, or obtain a triangulation

by connecting the center of each Whitney box for D to the box’s vertices.



Fix such a triangulation of D and map the vertices to S via the isometry. Each

triple of image vertices corresponding to a triangle on D lies on a hyperbolic

plane and determines a triangle on this plane. Create a new surface S1 by

gluing these triangles together along their edges.



Because the vertices lie in CH(Γ), convexity implies each triangle, and hence all

of S1, also lie in CH(Γ).

Consider two triangles T1, T2 in S1 that meet along a common edge e. Normalize

so that one endpoint of e is the origin in the ball model of hyperbolic 3-space,

e lies along the x axis and T1 lies in the xy-plane. Then T2 lies in Euclidean

plane that makes some angle θ with the xy-plane, and by our assumptions, it

contains a point p (e.g., the vertex of T2 not on e) that is hyperbolic distance

' 1 from 0 and Euclidean distance ' 1 from the x-axis.



Then p is Euclidean distance ' θ from the xy-plane. Because both triangles

lie inside CH(Γ) and CH(Γ) is trapped between two hyperbolic half-planes that

each come within hyperbolic distance δ(0) of the origin, we must have θ . δ(0)

(we are using Lemma 2.2).

If T is component triangle of S1, let θ(T ) be the maximum angle T makes with

any of its neighboring triangles, and think of θ(z) as a function on S1 that is

constant on triangles. Since θ(z) can be bounded by a uniform multiple of δ(w)

for a point w that is a uniform hyperbolic distance away, we get∫
S1

θ2(z)dAρ(z) .
∫
S1

δ2(z)dAρ(z) <∞.



The principle curvatures of S1 are zero inside each triangle and a measure along

the edges. However, by smoothing S2 we can obtain a surface S2 so that the

principle curvatures tend to zero as we approach infinity and are bounded by

O(maxT ∗ θ(z)), where T ∗ denotes the union of all component triangles that

touch T (including those that only touch at a vertex). Then∫
S2

|K|2(z)dAρ(z) .
∫
S1

δ2(z)dAρ(z) <∞.

For n ≥ 2 essentially the same proof works if we take the dyadic dome for our

triangulated surface with asymptotic boundary Γ. The angles between adjacent

faces are easily bounded by the β-numbers of the corresponding arcs of Γ, which,

after smoothing, proves that Definition 15 implies Definition 16. �



Lemma 3.2. For n = 2, Definition 16 implies Definition 3.

Proof. This implication is due to Charles Epstein [4]. He proves that for a surface

S ⊂ R3
+ whose principle curvatures |κ1(p)|, |κ2(p)| are bounded strictly below

1, the Gauss map from the surface to the plane at infinity is quasiconformal.

Recall that the Gauss map sends a point p on S to the endpoint on R2 of the

hyperbolic geodesic ray starting at p that is normal to S. There are actually

two Gauss maps from S to R2 depending on which “side” of S the geodesic ray

is in.



In the case when the surface has asymptotic limit Γ, a curve on R2, the compo-

sition of one of these maps with the inverse of the other defines a quasiconformal

reflection across Γ.

By Proposition 5.1 of [4], the dilatation of the composed Gauss maps is

D(z) = max

(∣∣∣∣1 + κ1(p)

1− κ1(p)
· 1− κ2(p)

1 + κ2(p)

∣∣∣∣1/2 , ∣∣∣∣1− κ1(p)

1 + κ1(p)
· 1 + κ2(p)

1− κ2(p)

∣∣∣∣1/2
)

= 1 + O(|κ1(p)| + |κ2(p)|),
where p ∈ S is the point corresponding to z ∈ R2.



Therefore the dilatation satisfies

|µ(z)| = O(|κ1(p)| + |κ2(p)|).
Moreover, on page 121 of [4], Epstein shows that the Jacobian J of this map

satisfies

C1|(1∓ κ1)(1∓ κ2)| ≤ J ≤ C2|(1± κ1)(1± κ2)|.
In particular, J ' 1 if |κ1|, |κ2| are both uniformly bounded below 1.



Definition 16 implies that κ1, κ2 are both small outside some compact ball B

around the origin. Thus the Gauss map for S defines a quasiconformal reflection

in some neighborhood U of Γ and inside this neighborhood∫
U

|µ(z)|2dAρ(z) .
∫
S\B
|K0(z)|2dAρ(z),

where dAρ is the hyperbolic area measure on R2 \ Γ and S respectively and K0

is the trace-free second fundamental form of S.



Extend this reflection to the rest of R2 by some diffeomorphism of one component

of R2 \U to the other that agrees with the reflection given by the Gauss map on

∂U . This gives a global quasiconformal reflection across Γ that satisfies (??),

as desired. �



Recall that a Whitney decomposition of an open set W ⊂ Rn is a collection

of dyadic cubes Q with disjoint interiors, whose closures cover W and which

satisfy

diam(Q) ' dist(Q, ∂W ).

The existence of such decompositions is a standard fact (e.g., for each z ∈ W ,

take the maximal dyadic cube Q so that z ∈ Q ⊂ 3Q ⊂ W , see Section I.4 of

[8]).



Definition of ρ(Q):

Suppose U is a neighborhood of Γ ⊂ Rn and R : U → U ′ ⊂ Rn is a homeo-

morphism fixing each point of Γ. For each Whitney cube Q for W = Rn \ Γ,

with Q ⊂ U , define ρ(Q) to be the infimum of values ρ > 0 so that R is

(1 + ρ)-biLipschitz on Q and dist(z+R(z)
2 ,Γ) ≤ ρ · diam(Q) for z ∈ Q (the latter

condition ensures R(z) is on the “opposite” side of Γ from z). R is called an

involution if R(R(z)) = z.



Definition 13. There is homeomorphic involution R defined on a neigh-

borhood of Γ that fixes Γ pointwise, and so that∑
Q

ρ2(Q) <∞.(3.2)

The sum is over all Whitney cubes for Rn \ Γ that lie inside U .



Lemma 3.3. For n ≥ 2, Definition 16 implies Definition 13.

Proof. We consider only points z on S that are at height ≤ t0 above Rn where

t0 is chosen so small that that if z = (x, t) ∈ R × (0, t0), then the principle

curvatures at z are all very small, say ≤ 1/100.

There is an (n− 1)-sphere of directions in the tangent space of Hn+1 at z that

are perpendicular to S. These directions define a tangent (n − 1)-dimensional

hyperbolic hyper-plane Hz that passes through z, and the boundary of Hz on Rn

is a Euclidean (n− 2)-sphere Sz whose center is within O(t · supw maxj |κj(w)|)
of x. We define R on this sphere by taking the antipodal map.



We claim that such circles foliate a neighborhood U of Γ and that R is Lipschitz.

If so, then R is a biLipschitz involution that fixes Γ. Let Kr = Kr(z) be an

upper bound for max |κj‖ in a hyperbolic r-ball around z.

Given z, w ∈ S that are t < r apart in the hyperbolic metric, let γ be the

geodesic segment in Hn+1 connecting them. The perpendicular hyperplanes

Hz, Hw are both within O(Kr) of orthogonal to γ and hence the corresponding

spheres Sz, Sw are within O(Kr · t) of each other, but are also at least distance

& K · t apart (this is easiest to see in the ball model of hyperbolic space, setting

z = 0 ∈ Bn+1).



Thus the antipodal maps preserve distance between points on the same sphere

and increase the distance between points on different spheres by at mostO(K ·t).
Thus R is Lipschitz, as desired.

Moreover, if two such spheres intersect the same Whitney cube Q of Rn \ Γ,

then then both have radii ' `(Q) and centers that are within O(`(Q)) of each

other. Thus the corresponding points on S are within hyperbolic distance O(1)

of each other.

Therefore the argument above implies that ρ(Q) = O(Kr(z)) for some point

z ∈ S and
∑

Q ρ
2(Q) is finite if ≤

∫
S |Kr(z)|2 is. Hence Definition 16 implies

Definition 13. �
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The following is due to Andrea Seppi [13]:

Lemma 3.4. Suppose S is an embedded minimal disk in B3 that has an

asymptotic bounding quasicircle Γ ⊂ S2. Suppose 0 ∈ S and that S lies

between two disjoint hyperbolic planes that both at most distance ε from

0, one on either side of the xy-plane. Then the tangent plane of S at 0

makes angle at most O(ε) with the xy-plane and the absolute values of the

principle curvatures of S at 0 are both bounded by O(ε).

This is essentially Propositions 4.14 and 4.15 of [13]; see Equation (32) in

particular.



Given a minimal surface S that is trapped between two hyperbolic planes

P−, P+, Seppi considers the function u(z) = sinh(dist(z, P−)) for z ∈ S and

uses the fact that this satisfies the equation ∆Su − 2u = 0, where ∆S is the

Laplace-Beltrami operator for the surface S. The Schauder estimates for this

equation imply that

‖u‖C2(B(x,r/2)) ≤ C‖u‖C0(B(x,r)).

In order to get a uniform bound for C, we must bound the curvature of S, and

Seppi gives an argument for this assuming the boundary of S is a quasicircle (this

covers our application, since Weil-Petersson curves are quasicircles). Finally, the

sup norm of u is bounded in terms of the distance between P− and P+ near z,

and that we have shown is O(δ(z)), e.g. Lemma 2.2.



One small technical point is that Seppi requires the point z to be on a geodesic

segment that meets both P− and P+ orthogonally. However, it is very simple

to see that if z is between two disjoint hyperbolic planes that each come within

ε of z, then there are also two disjoint planes that come within O(ε) and satisfy

the orthogonality condition for z.



Seppi’s estimate implies that near the boundary of hyperbolic space we have∫
S

|K|2dAρ .
∫
∂CH(Γ)

δ2(z)dAρ <∞,

when Γ is Weil-Petersson. Thus, for n = 2 Definition 15 implies Definition 17.



As we discussed in the introduction to the course, a 2-surface S ⊂ Hn+1 with

boundary curve Γ ⊂ Rn is said to have finite renormalized area if

RA(S) = lim
t↘0

[Aρ(St)− Lρ(∂St)]

exists and is finite, where

St = {(x, y, s) ∈ S : s ≥ t}, ∂St = {(x, y, s) ∈ S : s = t}.

t



Lemma 3.5. For n = 2, Definition 15 implies 19.

Proof. Using the Gauss-Bonnet theorem

Aρ(St)− Lρ(∂St) =

∫
St

1dAρ −
∫
∂St

1dLρ

=

∫
St

(1 + κ2)dAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −
∫
St

KdAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −2πχ(St) +

∫
∂St

κgdLρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −2πχ(St)−
∫
St

κ2dAρ +

∫
∂St

(κg − 1)dLρ

where κt is the geodesic curvature of ∂St in St.



Since we are assuming Definition 15 holds, we know from earlier results that

the β’s tend to zero and this implies that near the boundary, any minimal

surface is nearly vertical (trapped between nearly touching hyperbolic planes)

and therefore it has finite Euler characteristic.

Seppi’s estimate implies ∫
St

κ2dAρ = O(

∫
St

δ2dAρ).

Since Γ is Weil-Petersson, our earlier results imply this integral converges to a

finite limit as t↘ 0.



The geodesic curvature κg of the boundary curve comes from two components.

There is a vertical component of size 1 due to the curve lying on the horizontal

plane. There is a horizontal component due to the curvature of ∂St in this plane.

This component has size bounded by the principle curvatures of the surface, that

by Seppi’s estimate are bounded by O(δ(z)).

The geodesic curvature κg is given by projecting this vector onto the tangent

space of St, that our previous estimates show makes an angle at most O(δ) with

the vertical. Thus |κg| = 1 + O(δ2). Hence∫
∂St

(κg − 1)ds = O

(∫
∂St

δ2(z)ds

)
(3.3)



Note that since δ2 has finite integral over the whole surface its integral over the

annulus At = St \ St+1 tends to zero with t. Moreover, Lemma 2.2 implies the

integral of δ2(z) over ∂St is dominated by a multiple of the area integral over

At and hence the boundary integral in (3.3) must tend to zero. This proves the

lemma. �



The estimate |κg| = 1 + O(δ2) also follows from from Equation (2.4) of [3]:

κg =
1

∇r
(coth r + 〈K(e, e),∇ ⊥ r〉),

where r is the hyperbolic distance to some fixed point (say the origin in the ball

model), Dr is the gradient of r in Hn+1, ∇r is the projection of Dr onto the

tangent space of S, ∇⊥r is the projection of Dr onto the normal space of S,

and K is the second fundamental form of S.



Corollary 3.6. Suppose S ∪n Kn ⊂ R3
+ is a minimal surface where K1 ⊂

K2 ⊂ . . . are nested compact sets such that S \Kn is a topological annulus

for all n. Then

−2πχ(S)−
∫
S

κ2(z)dAρ,= RA(S) = lim
n→∞

sup
Ω⊃Kn

[Aρ(Ω)− Lρ(∂Ω)]

where the supremum is over compact domains Kn ⊂ Ω ⊂ S bounded by a

single Jordan curve. As above, either all terms are finite and equal, or all

are −∞.



Proof of Corollary 3.6. The inequality

RA(S) ≤ sup{Aρ(Ω)− Lρ(∂Ω)}
is obvious since the truncated surfaces in the definition of RA(S) are among

the domains used in the supremum on the right.

To prove the other direction note that if D(z,R) ⊂ Ω, then χ(S) = χ(Ω) =

χ(Ωt) for all 0 ≤ t ≤ T/2 if R is large enough. Then by Lemma 3.7

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ε)χ(D(z,R/2))− (1− ε)
∫
D(z,R/2)

κ2dAρ.

Taking R↗∞, and applying the Monotone Convergence Theorem, we get

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ε)χ(Ω)− (1− ε)
∫
S

κ2dAρ.

Then taking ε↘ 0 gives

lim sup
R↗∞

sup
Ω:Ω⊃D(z,R)

Aρ(Ω)− Lρ(∂Ω) ≤ −2πχ(Ω)−
∫
S

κ2dAρ. �



Suppose that S ⊂ Hn+1 is a minimal surface with asymptotic boundary Γ ⊂ Rn.

As before, for t > 0 let St = S ∩ {(x, s) ∈ Rn× (t,∞)} be the part of S above

height t and let S∗t = S \ St be the part below height t.

We assume that for t small enough, S∗t is real analytic and a topological annulus.

Suppose Ω ⊂ S∗t is a compact sub-annulus with one boundary component equal

to Γt = S ∩ Rn × {t}, and the other boundary component a smooth curve Γ.



Let T = T (Ω) be the distance in S between Γ and Γt. For 0 ≤ s ≤ T , let

Ω(s) = {z ∈ Ω : dS(z,Γ) > s}, Γ(s) = {z ∈ Ω : dS(z,Γ) = s}.
Here dS refers to distance on the surface S. Note that Γ(0) = ∂Ω and Ω(0) = Ω.

Also note that χ(Ω) = 0 (it is an annulus) and χ(Ω(s)) ≥ 0 since Ω(s) is the

union of a topological annulus and possibly some disks.

Let A(s) be the hyperbolic area of Ω(s) and L(s) the hyperbolic length of

Γ(s) = ∂Ω(s) \ Γt. In particular, A(0) = Aρ(Ω) and L(0) = Lρ(Γ).



The Gauss-Bonnet theorem says that∫
Ω(s)

KdAρ +

∫
∂Ω(s)

κgdLρ = 2πχ(Ω(s))

where κg is the geodesic curvature of ∂Ω in Ω. For points in Γt ⊂ ∂Ω, this is

the negative of κSg , the geodesic curvature of Γt in St. Since ∂Ω(s) = Γt ∪ Γ(s)

and χ(Ω(s)) ≥ 0 , we get

−
∫

Γ(s)

κgdLρ =

∫
Γt

κgdLρ +

∫
Ω(s)

KdAρ − 2πχ(Ω(s)) ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ



Lemma 3.7. Suppose 2
T < ε ≤ 1. With notation as above,

Lρ(∂Ω)− Aρ(Ω) ≥ −C(S, t) + (1− ε)
∫

Ω(1/ε)

κ2dAρ,

where

C(S, t) = max

(∫
Γt

κSg dLρ, Lρ(Γt)

)
.

Proof. This follows from known facts about the isoperimetric inequality on neg-

atively curved surfaces. Our presentation follows that of Chavel and Feldman

[2], although they attribute the basic facts to Faila [7].

As shown in [7], the function A(s) is continuously differentiable and decreasing

on [0, T ], and A′(s) = −L(t) (Theorem 5 of [7]). Similarly, by Theorem 3 of

[7], L(s) is continuous on [0, T ], analytic except for finitely many points, and

(except for these points)

L′(s) ≤ −
∫

Γ(s)

κgdLρ.



Using the remarks about Gauss-Bonnet before the lemma, we get

L′(s) ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ.(3.4)

Thus

L′(s)− A′(s) ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ + L(s)

=

∫
Γt

κgdLρ −
∫

Ω(s)

(1 + κ2)dAρ + L(s),

which implies

L′(s)− A′(s) ≤ L(s)− A(s) +

∫
Γt

κgdLρ −
∫

Ωs

κ2dAρ.(3.5)



By the isoperimetric inequality for surfaces with K ≤ −1 (e.g., Equation (4.30)

of [12]), we have

Lρ(∂Ω(s))2 = (L(s) + Lρ(Γt))
2 ≥ 4πχ(Ωs)A(s) + A(s)2,

and this implies

L(s)− A(s) ≥ 4πχ(Ωs)A(s)

L(s) + Lρ(Γt) + A(s)
− Lρ(Γt) ≥ −Lρ(Γt)(3.6)

since χ(Ωs) ≥ 0.



Assume for the moment that

L(0)− A(0) ≤ −Lρ(Γt) +

∫
Ω(1/ε)

κ2dAρ.(3.7)

Then we claim there must be a s ∈ [0, 1/ε] so that

L′(s)− A′(s) ≥ −ε
∫

Ω1/ε

κ2dAρ.(3.8)

If not, then by integrating and using (3.7) we get

L(
1

ε
)− A(

1

ε
) = L(0)− A(0) +

∫ 1/ε

0

L′(x)− A′(x)dx

< −Lρ(Γt) +

∫
Ω(1/ε)

κ2dAρ +
1

ε

[
−ε
∫

Ω(1/ε)

κ2dAρ

]
= −Lρ(Γt)

which contradicts (3.6) for s = 1/ε, proving there is at least one such point s.



Let a be the infimum of values s where (3.8) holds. Since we have assumed that

κ is not constant zero, this bound is negative if ε is small enough (which forces

T to be large). Thus L(s) − A(s) has a negative derivative except for finitely

many points in [0, a] and therefore L(a)−A(a) ≤ L(0)−A(0). Using (3.8) and

(3.5) with s = a,

−ε
∫

Ω(1/ε)

κ2dAρ ≤ L′(a)− A′(a)

≤ L(a)− A(a) +

∫
Γt

κgdLρ −
∫

Ω(a)

κ2dAρ

≤ L(0)− A(0) +

∫
Γt

κgdLρ −
∫

Ω(a)

κ2dAρ



This implies

L(0)− A(0) ≥ −
∫

Γt

κgdLρ +

∫
Ωt

κ2dAρ − ε
∫

ΩE

κ2dAρ.

Now since 0 ≤ a ≤ 1/ε, we have Ω(1/ε) ⊂ Ω(a), so∫
Ω(a)

κ2dAρ − ε
∫

Ω(1/ε)

κ2dAρ ≥ (1− ε)
∫

Ω(a)

κ2dAρ ≥ (1− ε)
∫

Ω(1/ε)

κ2dAρ

and hence

L(0)− A(0) ≥ −
∫

Γt

κgdLρ + (1− ε)
∫

Ω(1/ε)

κ2dAρ.(3.9)

Thus either (3.7) fails or (3.9) holds. In either case we have proven the lemma.

�



Lemma 3.8. Definition 18 implies 17.

Proof. Fix a point z ∈ S and a large disk D = D(z,R) around z. For n large

enough, Ωn contains D(z, 2R) and so Ωn(R) contains D(z,R). So if R is large

enough, κ is as small as we wish in Ω∗n(R) = Ωn \ Ωn(R). Lemma 3.7 with

ε = 1/2 then implies∫
D(z,R)

κ2dAρ ≤ 2C(S, t) + 2[Lρ(∂Ωn)− Aρ(Ωn)].

The first term on the right is independent of n, and Definition 18 says the second

term is bounded independent of n. Therefore∫
D(z,R)

κ2dAρ = O(1),

with a bound independent of R. Taking R ↗ ∞ and applying the Monotone

Convergence Theorem shows
∫
S∗t
κ2dAρ <∞, as desired. �



Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding midpoints

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

Definition Description

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves
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Diagram of implications between previous definitions.

Edge labels refer to sections of my preprint.



Next we discuss an idea that combines our Eulcidean and hyperbolic character-

izations in one object.

Define a “dyadic cylinder” associated to Γ by X =
⋃∞
n=0 Γn × (2−n−1, 2−n],

where Γn is the 2n-gon inscribed in Γ corresponding to a dyadic decomposition

of Γ into subarcs of length 2−n`(Γ).

Note that each “layer” of X between heights 2−n and 2−n+1 consists of 2n

Euclidean rectangles (or “panels”) in vertical planes that meet along vertical

edges (called “hinges”). Alternate vertices of the top edge of one layer agree

with the bottom vertices of the next layer up, but there are triangular horizontal

“holes” between the layers.











Lemma 3.9. If Γ a closed rectifiable Jordan curve, then Γ is Weil-Petersson

if and only if every corresponding dyadic cylinder X has finite renormalized

area.

Proof. First we show that the Weil-Petersson condition implies finite renormal-

ized area. A simple calculation as above shows that the part of X between

heights 2−n and 2−n+1 has hyperbolic area 2n−1`(Γn).



Similarly, if 2−n−1 ≤ t ≤ 2−n, then

Aρ(Xt) =

n∑
k=0

2k−1`(Γk) + (
1

t
− 2n)`(Γn+1).

and hence

Aρ(Xt)−
1

t
`(Γ) = Aρ(Xt)− (

1

t
− 2n + 1 +

n∑
k=1

2k−1)`(Γ)

= −`(Γ)−
n∑
k=1

2k[`(Γ)− `(Γk)] + (
1

t
− 2n)(`(Γ)− `(Γn+1)

= −`(Γ)−
n∑
k=1

2k[`(Γ)− `(Γk)] + O(2n[`(Γ)− `(Γn+1)])

→ −`(Γ)−
∞∑
k=1

2k[`(Γ)− `(Γk)]

since the infinite series is convergent when Γ is Weil-Petersson.



Finally, for 2−n−1 ≤ t ≤ 2−n, note that `(∂Xt) = `(Γn+1)/t, so
1

t
[`(∂Xt)− `(Γ)] ≤ 2n+1[`(Γn+1)− `(Γ)]→ 0,

since these are terms of a summable series. Thus Aρ(Xt)−Lρ(∂Xt) has a finite

limit and X has finite renormalized area.



Next we consider the converse: finite renormalized area implies Γ is Weil-

Petersson. Suppose RA(X) < ∞. First we deduce that Γ is rectifiable. If

t = 2−n, then

Aρ(Xt)− Lρ(∂Xt) =

(
n∑
k=1

2k−1`(Γk)

)
− 2n`(Γn) = O(1),

or equivalently,

`(Γn) =
1

2
`(Γn) +

1

4
`(Γn−1) + · · · + 2−n`(Γ1) + O(2−n),

and hence (since {`(Γn)} is non-decreasing),

`(Γn) =
1

2
`(Γn−1) +

1

4
`(Γn−2) + · · · + O(2−n)

≤ 1

2
`(Γn−1) +

1

4
`(Γn−1) + · · · + O(2−n)

≤ `(Γn−1) + O(2−n)

which clearly implies `(Γ) <∞.



To show that Γ is Weil-Petersson, note that

Aρ(Xt)− Lρ(∂Xt) =

(
n∑
k=1

2k−1`(Γk)

)
− 2n`(Γn)

=

(
n∑
k=1

2k−1`(Γk)

)
− (1 + 1 + 2 + . . . 2n−1)`(Γn)

= −1

2

n∑
k=1

2k[`(Γn)− `(Γk)]− `(Γn).

By the Monotone Converge Theorem (for counting measure on N), this tends

to

−1
2

∑∞
k=1 2k[`(Γ)− `(Γk)]− `(Γ).



Thus if Aρ(Xt)− Lρ(∂Xt) is bounded below, then
∞∑
k=1

2k[`(Γ)− `(Γk)] <∞,

with a bound independent of the choice of the dyadic decomposition.

Hence finite renormalized area implies Γ is Weil-Petersson. �



Next we want to show that finite renormalized area for the dyadic cylinder

implies it for the minimal surface.

Lemma 3.10. Let X denote the dyadic cylinder associated to Γ. If X has

finite renormalized area, then Aρ(St)− Aρ(Xt) has a finite limit as t↘ 0



Proof. If Definition 20 holds, so does Definition 14. For each vertical rectangle R

making up a side (or a “panel”) of X , we have a Lipschitz map from this panel

to a portion of S that changes area by at most an additive factor of O(ε2
Γ(Q)),

where Q is the dyadic cube associated to the center of R.

Due the vertical “hinges” between adjacent panels, some points of S might be hit

twice or not at all by the Lipschitz maps associated to those panels. However, the

angles between these panels are bounded by O(εΓ(Q)) and hyperbolic distance

between S and X is also bounded by O(εΓ(Q)). Thus the total error is at most

O(ε2
Γ(Q)), which is summable over all the panels of X . Thus the difference

between the hyperbolic areas of S and X above height t has a finite limit

t↘ 0. �



Lemma 3.11. With X as above, Lρ(St)−Lρ(Xt) had a finite limit as t↘ 0

Proof. The same argument as in the previous lemma works again: the Lipschitz

map from each panel of X to S, preserves length up to an additive factor

of O(ε2
Γ(Q)) and the errors caused by the corners are bounded by the same

magnitude. �

So if the dyadic cylinder has finite renormized area, then limt↘0 Aρ(Xt) −
Lρ(∂Xt) exists and is finite. The preceding lemmas imply the same for S, so it

also has finite renormalized area.
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