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In this paper we study the geometry of complete minimal submanifolds of 
hyperbolic space HI71. Specifically, we are interested in m-dimensional subman- 

ifolds whose second fundamental form A satisfies fM \A\m < oo where \A\ is 

the norm of A. 

To motivate this hypothesis we briefly outline the main results when the 

ambient space is Rn. Osserman [15] and Chern-Osserman [3], showed that 

for a complete minimal immersion (cmi for short) M2 —> Mn, with finite total 

curvature, it is possible to compactify M by the Gauss map g: M —> Gn^ 

which maps p 6 M to the 2-plane Tp(M). By the Weierstrass representation 
g is a holomorphic curve in (j?n,2, viewed as the complex quadric Qn-2 = 

{zl H h z* = 0} of the complex projective plane CP71-1. They showed that 

when the total curvature C(M) = JM K is finite, M is of finite conformal type, 

i.e., M is conformally equivalent to a closed surface M with a finite number of 

points removed, and that g extends holomorphically to M. In particular this 

implies that the total curvature is quantified by C(M) = 27rA;, k an integer, 

and that M is properly immersed. 

For a cmi Mmc—>lRn
5 m > 2) Anderson [2] has obtained a generalization of 

the Chern-Osserman result. He proved that |w4|(p) goes to 0, as the distance 

dfePo) of p to a fixed point po goes to infinity. Using the fact that the class 

of minimal submanifolds is invariant by the homotheties of Rn, he proved 

that \A\(p) = IJ<(p)/d2(p,po), where /x(p) —> 0 as dfapo) —> oo. Analysing 

the distance function of Rn restricted to M he concludes that M is properly 

immersed and that, outside a compact set, M is transversal to the spheres Sr 
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of Rn, with radius r and centered in po- In particular M is of finite topological 

type. Also, the flatness of Rn allows him to conclude the conformal type of M 

is finite. We state the result of [2] which will be our main concern. 

Theorem 0.1 (Anderson). .Le£Mm^->Rn be a cmi and suppose that JM lAl™ 
< oo. Then M is C00-diffeomorphic to a closed manifold M with a finite 

numbers of points removed. Also the Gauss map g: M —>. Gn)m extends to 

a Cn~2 map g: M —> G^m and the metric on M extends conformally to a 

metric of class Cn~2 of M. 

Thus each end of M™ is diffeomorphic to 5,m~1 x [0, oo). Furthermore, 

Anderson proves also that in the case m > 3 all ends are embedded. 

It is natural to consider the above problem when the ambient space is EIn. 

We make use of the Sobolev inequalities [12] and of Simons equation [17] for 

the Laplacian of A on M to show that \A\(p) goes to zero as distM(p,Po) —> oo, 

Po a fixed point of M. We do not have an estimate for the decreasing rate of \A\ 

as good as in the Euclidean case, but the properties of the distance function of 

EIn restricted to M will allow us to bypass the absence of homotheties in Hn 

to conclude that M is properly immersed and meets transversally the geodesic 

spheres Sr of E[n, at least outside some compact set of M. 

For the special case of a cmi M2<:->Mn, we prove that M cannot have finite 

conformal type. Also we prove that the index of the operator L = — A+2—\A\2 

is finite. When n = 3 this is just the stability operator. This extends in 

one direction a result of Fisher-Colbrie [6], namely, finite total "extrinsic" 

curvature fM \A\2 < oo implies the index of M is finite (the reciprocal assertion 

fails in the hyperbolic case). Here are the main results we will prove in this 

paper. 

Theorem A. Let <p: Mmc-»IHIn be a complete minimal immersion of a con- 

nected m-dimensional manifold M. Suppose that fM |^4|m < oo. Then M is 

properly immersed and is diffeomorphic to the interior of a compact manifold 

~M with boundary. Furthermore ip extends to a continous map (p: M ^ H , 

H   the compactified ofW1. 
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In the case of a minimal surface M we have information about the conformal 

type and the asymptotic behavior of M. 

Theorem B. Let M2c—>H[n be a complete connected minimal surface with 

JM l^l2 < 00' Then M is conformally equivalent to a compact surface M 

with a finite number of disks removed and the index of the operator L = 

—A + 2 — \A\2 is finite. Furthermore the asymptotic boundary d^M is a 

Lipschitz curve. 

We remark that the asymptotic behaviour of an immersion Mmc->E[n as 

above is very different from the situation in Rn. In fact, any compact closed 

submanifold yn~2 c Hn of class C2+Q:, a > 0, can be realized as the asymptotic 

boundary of a minimizing rectifiable current T71'1 of W1 [1]. The regularity 
result of Hardt-Lin [11] states that such a current is of class C2"1"^, /? > 0, in a 

neighbourhood of the sphere at infinity dooE71. When n < 7, Tn~l is a smooth 

submanifold of BIn. A direct calculation shows us that for a cmi Mmc->BIn, 

which extends to a C2-submanifold of H , we always have fM \A\m < oo. This 

provides us with a lot of hypersurfaces satisfying the hypotheses of theorem 

A and having arbitrary topological type at infinity, as long as n < 7. 

In view of theorem B a natural question arises : how regular at infinity is a 

surface satisfying the hypotheses of theorem B? It seems to the author that a 

C1 regularity up to the boudary is necessary. 

In section 1 we establish some notations and we prove a result about the 

essential spectrum of the Schrodinger operator over a complete Riemannian 

manifold. The index of this operator is also defined. In section 2 we develop 

the basic properties of the distance function of IHIn when restricted to a sub- 

manifold. We prove a compactification theorem for submanifolds whose second 

fundamental form is small outside some compact set. In section 3 we prove the 

analytical part of theorem A and B and we make use of the results in section 

2 to conclude the topological type is finite and that the immersion extends 

continuously to the compactified of M. The assertion about the conformal 

type in theorem B is proved in section 4. 

This paper is based upon the author's Doctorat dissertation at Universite 

Paris VII. I would like to express my gratitude to my advisor, H. Rosenberg, 
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for useful conversations and valuable advice. 

1. NOTATION AND KNOWN RESULTS 

1.1. Minimal submanifolds. Let Mm^Nn be a immersion of a m-dimen- 

sional manifold M into a n-dimensional Riemannian manifold N. Consider M 

with the metric induced by this immersion and denote by V and V the Levi- 

Civita connexions of TV and M respectively. For p G M, the tangent space 

TPN of N at p splits as an orthogonal direct sum TpN = TPM 0 MP{M), 

where NP(M) is the normal fiber to M at p. The second fundamental form of 

the immersion is the symmetric bilinear form over TVM defined by 

A{Xp,Yp) = {VxY)±{p)    ;    Xp,YpeTpM 

where X, Y are extensions of Xp and Yp which are tangent to M. 

Let us consider A as an element of Hom(<Sp(M), Afp) where SP(M) is the 

space of symmetric linear endomorphisms of TPM. For the natural internal 

product of Sp(M) and NP{M), let ^4* € B.om{Mp, SP{M)) be the transpose 

of A and set Bp — Ap o Ap. The norm of this application is by definition the 

norm \A\   of A. If {e;}i=iv..,m is an orthonormal frame of TP(M) then 
771 

The trace of A is called the mean curvature H of M. With respect to the 

frame {ei}i=:iv..>m we have 
1     m 

m   *    J 
2=1 

The immersion Mm^-^Nn is called minimal if H = 0. This is equivalent 

to saying that the immersion is a critical point for the volume functional, 

i.e., for any compact K C M with piecewise smooth boundary, and for any 

piece wise smooth variation F: IxM —» AT of 0, which leaves the exterior of K 

unchanged, we have ^-(0) = 0, where V(t) is the volume of the submanifold 

F(t,K). 

If M'rnc->Nn is minimal, a domain U C M is called stable if for any variation 

F as above whose variation vector field E = i^^l^Q is normal to M and 

compactly supported in U we have ^r(O) > 0. 
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Let TZ denote the curvature tensor of N and for v G NP(M) define Tt{v) 

by TZ{v) = YfiLi(T^ei,v^i)±' Note that for v unitary (TZ(v),v) is just the Ricci 

curvature Ric(v) of iV in the direction of v. If F is a normal variation of a 

minimal surface as above we have [14], 

^-(0) = -Ju(AE + nE) + B(E),E). 

In the case of a minimal oriented surface M2^->H3 the variation vector field 

is just E = £z/, where z/ is the normal vector of the immersion and £ is a 

compactly supported function on M. So M is stable if 

(1.1) Q(U)=/(|V£|2 + 2£2-|.4|2a>0 

forall£eC0
oo(M). 

1.2. Compactification of Hyperbolic Space. Two oriented rays 71(5) and 

72(5) of IHIn are said to be equivalent if there exists a real number c such that 

d(7i(s),72(s)) < c for all s > 0, where d(p,q) denotes the hyperbolic distance 

between the points p and q. The sphere at infinity dooB71 is defined as the space 

of equivalent classes of oriented rays. For a fixed point O G HP1, identify dooW1 

with the unit sphere Ui C TbH71, in the following way: for a unit vector v G Ui 

associate the equivalent class of the ray exp0 sv, s > 0. This provides dooHP1 

with a conformal sructure which is independent of the chosen point O. With 

this structure any isometry of B[n extends conformally to H   = M71 U <9ooHn. 

For p G HT1 \ {0} we define a "projection" P: W1 \ {0} -> Ui by P(p) = 

exp51(p)/|exp51(p)|. Let 5r be the geodesic sphere of IF1 of radius r and 

centered at O. If vp G Tp(5r), a comparison between the Jacobi fields along 

geodesies gives 

\dexp0 (vp)\ = 
sinhr 

where in the left term the norm is the Euclidean norm of TQIH
71
 and in the 

right \vp\ is the norm of vp G TpH
n. Thus, for a vector vp G Tp(Sr) we get 

(1.2) \(dP)(vp)\=   IVD] 

sinhr 
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1.3. The spectrum of the Schrodinger operator. Let M be a Rieman- 

nian manifold and let q be a real smooth function. The operator L = —A + q 

is formally self-adjoint over C^0(M), where A is the Laplacian on M. When q 

is bounded below by a real constant and M = Rn, Glazman [9] proved that L 

admits a unique self-adjoint extension to an unbounded operator on L2(M). 

The theorem of Dodziuk [5] stated below allows us to follow the steps of the 

Glazman's proof in the case of an arbitrary manifold M. For the sake of com- 

pleteness we prove this generalization of Glazman's result and we also prove 

a theorem about the essential spectrum of L. 

Theorem 1.1 (Dodziuk). Let M be a complete Riemannian manifold and 

let q G C00(M) be a real function bounded below by a constant Suppose 

'</> E C^iM) n L2(M) and L</> € L2(M). Then V0 e L2(M) and the functions 

(fKcj), q\(l)\2 belong to Ll(M). Also 

(-Afr (/>) = (V</>, V0    and   (L</>, 0) = (V0, V0 + (#, </>) 

where (.,.) is the product of L2(M). 

Theorem 1.2. Let M be a complete Riemannian manifold and let q G C00(M) 

be a real function bounded below by a constant Then the operator IJ = — A + q 

admits a unique self-adjoint extension to an unbounded operator on L2(M). 

Proof It suffices to prove that the spaces /C± = Image (L ± il)^ are trivial. 

Take 0 G /C+. As a distribution, </> satisfies the equation L0 = icfi. For any 

relatively compact domain Q C M, the operator L is strictily elliptic. By the 

Friedrichs's regularity result [7] we have cf) G C00(M) D L2(M). Therefore, by 

the Dodziuk's theorem stated above we obtain 

(L<M) = |0|2 + (9<M) = #|2 

But q is a real function, so (f> = 0 and /C+ = {0}. Analogously we have 

/C- = {0}.    D 

Recall that for a self-adjoint operator L on a Hilbert space, the essential 

spectrum ess(L) is the set of points A G R such that there exists a bounded 
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non-compact sequence {un}neN > ^n € Domain (L), satisfying 

lim ||(L-A/K|| = 0. 
n—>oo 

A sub-sequence of {^nlnGN for which there is no convergent sub-sequence is 

called characteristic for (A,L). 

Now let L = — A + q be as in theorem 1.2 and let AT be a domain of M 

which is relatively compact and has C00 boundary. Consider the operator 

lN = -A + q defined on C00(M \ N). The quadratic form Q(<£) = (Ziv<^</>) 

defined on CQ^M \ N) is bounded below, so it admits a closed extension. 

We define LJV to be the Priedrichs's extension of ZJV, determined by the closed 

extension of Q. We prove now the generalization of Glazman's theorem [9], p. 

68. When q = 0 this result was obtained by Donnelly [4]. 

Theorem 1.3. ess(L) C ess{L^). 

Proof. Suppose the sequence {ifcn}neN is characteristic for (A,L). Without 

loss of generality we can suppose it is an orthonormal characteristic sequence 

for (A, L). By virtue of theorem 1.2 (the operator is essentially self-adjoint) 

there exists {0n}neN   ? ^n € ^^{M)^ such that, for n G N, 

||0n -un\\<-    and    \\L(j)n - \jun\\ <-. 
n n 

This implies {</>n}n€N is also characteristic for (A, L) and in particular we have 

(L</>n — A0n, (f)n) —» 0    as n —» oo. 

So for n large enough we get 

||V<M|2 + (#n^n)-A||<M2<l. 

Let —go be a lower bound for q. We obtain, for n large, 

Thus {0n}n€N is bounded in W1,2(M), the space of functions / with / and 

V/ belonging to L2(M). Let Q! be a relatively compact neighbourhood of AT. 

The embedding W1,2(n/) c—► L2(fi,) is compact, so there exists a sub-sequence 

{^,n}n€N such that tfj& converges in L2(SV). Set ujn = (//2n+1 - <j)'2n and 

remark that ujn is still characteristic for (A, L) and that ujn —> 0 in L2(fi'). Let 



8 GERALDO DE OLIVEIRA FILHO 

Q be a neighbourhood of N such that N C H C W and let f G Cg^fi') be 

such that ^ = 1 on fi. We have 

(La;n — A6t;n, £2(jJn) —> 0    as n —> oo 

and by Dodziuk's theorem 

||£Vu;n||
2 + (fu;n, 2a;nV0 + (^n, ^n) - A(^a;n,^a;n) -> 0    as n -> oo. 

Since ||a;n||i,2(n') —> 0 and support(^) C Jl' we get ||Va;n||£,2(n) —► 0 as n —> oo. 

This allows us to construct a characteristic sequence for (A, L) which van- 

ishes on a neighbourhood of N. As a matter of fact, let U be a neighbourhood 

of N such that U C int(n), and let 6 be a smooth function which satisfies 

0 < 0 < 1, 0 = 0 in U and 6 = 1 in M \ £1 Set i;n = 0cc;n, n G N, and 

remark that tJn G CQ
C
(M \ N). Also the sequence {^n}n€N is bounded and 

non-compact and 

WLVn - AVnH < HL^n " Aun|| + (sup | Afl|) IKH^^) 
M 

+ 2(sup|Ve|)||Va;n||L2(n) . 
M 

Hence ||Lt;n — Xvn\\ —>• 0 as n —» oo and the sequence {^n}nGN is character- 

istic for (AJLTV).    D 

For a Riemannian manifold M and an operator L as in theorem 1.3 we define 

the index of L in the following way: Let fi be a relatively compact domain of 

M with piecewise smooth boundary. The number of negative engeinvalues for 

the Dirichlet problem 

Lu = Xu    ;    u/en = 0 

is finite. Let md^(L) be this number. Consider an exhaustion {fin}n€N of M 

by relatively compact domains with piecewise smooth boundary. The index 

indM(L) of L is defined by 

indM(L) = lim indnn(L) 
n—►oo 

This limit does not depend on the chosen exhaustion [6], so the indM(L) is 

well defined. 
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2.   SUBMANIFOLDS OF HYPERBOLIC SPACE 

In this section we develop some properties of the distance function of HP1 

restricted to a submanifold. In particular we will prove the following result: 

Theorem 2.1. Let Mrnc->Hn be a complete immersion of a connected man- 

ifold M. Suppose there exists e < 1 and a compact set C C M such that 

I^ICp) < € for p € M \C. Then the immersion is proper and for r large 

enough M is transversal to the geodesic spheres Sr ofW1. In particular M is 

diffeomorphic to the interior of a compact manifold with boundary M. Fur- 

thermore the immersion </) extends to a continuous map </>: Mc-^M. . 

2.1. The distance function of Mn restricted to submanifolds. Let O G 

W1 be a fixed point and let Mm(^En be a isometric immersion. Let d(q) be 

the distance of q £ EF1 to O and let r be the restriction of d to M. Denote by 

V and V the Levi-Civita connexions of IF1 an M respectively. Let J^ = Vd 

denote the unitary radial vector field centered at O and defined on IF1 \{0}. 

For p € M let {i2i}i=i,...,m be a frame tangent to M, defined in a neigh- 

bourhood of p € M, orthonormal at p and satisfying VEiEj{p) = 0, for 

i, j = 1,... ,ra. For j = 1,.. .,ra we have Ejr = (Jj,^), so 

d   „,      ,8 
EiEjr^iVE^E^ + ^V^Ej)    ;    i,^!,..., m 

where ( , ) is the metric of H". Recall that for a vector v € TpSr we have, 

V„^ = coth(r)w. As V^ ^ = 0, we obtain, for i = 1,..., m 

(2.1) (vs4)(p) = (Ei-(£;i,-)_)Coth,(P) 

and for i, j = 1,..., m we get at p 

(2.2) £;^jr=(^-(^,^)<^,^))cothr + (^,V£i^>. 

If the frame {£^i}i=i,...,m is orthonormal, the Laplacian of r at p is given by 

Ar(p) = T,?=i(EiE3r)(p)- Hence we obtain, at all p 6 M, p ^ O, 

(2.3) Ar = (m-|Vr|2)cothr + m<—,if). 
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In the special case where M is a curve 7 C W1 parametrized by the arc 

length s we get 

(2.4) r» = (1 - {r'{s)f) cothr + {^%wi{a)). 

A straightforward consequence of the above equations are the following 

lemmas: 

Lemma 2.2. Let Mrn^Wl be an immersion and let p G int(M) be a critical 

point of r. Suppose \A\{p) < 1. Then p is a point of strict minimum for r. 

Proof Let {ei}i=i,...,m be a orthonormal frame of TpM and let x be the nor- 

mal coordinate system adapted to {ej}^!,...,™, i.e., x = x0 (exPp)_15 where 

X: TPM -► W1 is given by x(E£i y*^) = {y\ ... ,ym). Since Vr(p) = 0 we 

can choose the frame {ei}^!,...^ such that d^.QX.(p) — 0? for * 7^ J- Setting 

Ei = ^-, z = 1,..., m, by equation (2.2) we get 

EiEir = cothr + (—, V^^). 
ad 

As V^Cp) = 0 we have iV^^Cp)) = KV^^fp))-1! < |^|(p) < 1.   So 

EiEir (p) > 0, for z = 1,..., m, which implies, by the Taylor series expansion 

of r, that p is a point of strict minimum.    □ 

Lemma 2.3. Let 7: [0,/) C IT1, 0 < I < 00, 6e a czxr^e parametrized by the 

arc length s. Suppose the geodesic curvature 0/7 satisfies |V7'(s)7'(s)| < e, for 

some e < 1.  Then d(7(0), 7(5)) > y/l-es ,0<s<l. 

Proof First observe that the curve 7 is necessarily embedded ; otherwise, 

taking the intersection point as the origin of HP1, the distance function r(s) 

defined over 7 would have a interior maximum, which contradicts lemma 2.2. 

Now taking the origin to be the point 7(0), equation (2.4) says that 

r"(s) = (1 - (r'is))2) cothr(S) + (±, Vy(s)7'(S)) 

for all 0 < s < L Also r(0) = 0 and lim^o^s) = 1. It suffices now to prove 

that /(s) > \/l — e, for all 0 < s < I. Suppose this is not the case and let Si 

be the smallest positive real number for which r'^i) = \/l "" e- Then 

r"(Sl) =ecothr(s1) + (^,VY{3l)7'(s)) 
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which, under the hypotheses of the lemma, implies r"(si) > 0. But this implies 

the existence of SQ, 0 < SQ < Si, with r'(so) < ^'(si), violating the choice of 

si.   D 

2.2. Proof of theorem 2.1. First we prove that the immersion is proper 

and tranversal to the geodesic spheres SV, for r large. 

2.3. The immersion is proper. 

Proof. Let f = supqeCr(q). For p G M \ C let 7 be a geodesic of M, 

parametrized by arc length, which realises the distance between C and p. Say 

7(0) € dC and ^(l) = p, where I is the length of 7. Of course 7(5) C M \ C, 

for all s 6 (0, Z]. As 7 is a geodesic of M, we have |V7/(S)7/(5)| < |*A|(7(s)), 

s G [0,1]. From lemma 2.3 we obtain 

rCp) = d(0,p) > ^(7(0),7(0) " d(Oi7(0)) 

> Vi - c Z - f . 

Thus when d(p, C) goes to infinity we get r(p) —> 00, which means the immer- 

sion is proper.   Q 

2.4.  M is transversal to Sr for r large. 

Proof. Let Oi = M 0 Bf, where l?r denotes the closed geodesic ball of W1 

of radius r. As the immersion is proper, f2i is a compact set of M and by 

definition of f, |*4.| < e in M \ fix. Suppose that there exists a critical point p 

of r in M \ fix. By lemma 2.2 p is a strict minimum for r. If 7 is any geodesic 

joining p to dSli then the maximum of the function r(s) over 7(5) is greater 

then max(f, r(p)). So this maximum is attained at a point p G M\f2i, which is 

impossible by lemma 2.2 applied to the geodesic 7. This contradiction implies 

that r has no critical points in M\n1, i.e., M is transversal to Sr for r > f.    □ 

We have therefore a complete proper immersion Mrn^>Wl such that the 

function r has no critical points in M\Qi where Qi = Mn5f, for some f > 0. 

Furthermore |<4| < e < 1 in M \ fii. Let E(r) = M fl 5r, so for r > f, E(r) is 

a compact m — 1 dimensional submanifold of M. On M \ fix define the fields 
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f = Vr/|Vr| and Y = Vr/|Vr|2. Let % be the flow of Y. Thus % maps S(f) 

diffeomorphically into E(f +1), for t > 0. For a point p in E(f) and t > 0, 

define a(p, t) = A/1 — |Vr|2 (pt), where pt = *t(p)- For p E E(f) this function 

satisfies 

(2-5) ^l"2 = _(^'e)' li>" a2 coth(f+*>• 
Moreover if r/ € rpS(r), for r > r, we have 

9 
(2.6) -^(a2) = -V^^?<^,0, ^>. 

To see this let {Ni}, i — 1,..., k, be a normal frame to M in a neigh- 

bourhood of pt, where A; = n — m is the codimension of M.   Write Vr = 

53 " E*=i {Nu id)^- For a vector E e rpt
M we have 

so from equation (2.1) we obtain 

VBVr =(E- (E, Vr)Vr) cothr - ^ (JVi, ^>(VBJVi)r. 
1=1 

Prom iVs|Vr|2 = (V^Vr, Vr) we get 

(2.7)        ^V£|Vr|2 = (EtVr)(l - |Vr|2) cothr + \Vr\(^A(E,0) 

where we made use of the fact that (V^A^,^) = —(iVi, Vjsf) and that Vr = 

|Vr|£. Taking E = £ and remarking that J^ = £/|Vr| we obtain 

i||Vr|2 = (1- |Vr|2) cothr + (^,A(E,0) 

which, after replacing |Vr|2 by 1 — a2, is equation (2.5).   In the same way, 

equation (2.6) is obtained from (2.7) with E = rj. 

Now we get the asymptotic behaviour of |Vr|. 

Lemma 2.4. On M\Qli the function |Vr| satisfies 

|Vr|2(pt)>(l-€)(l-e-2')    ;    Vp€E(f). 
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Proof. By equation (2.5), for p £ S(r) the function a(t) = a(p, i) satisfies, for 

t>0,   . 

i(a2y(i)<e-a2(i) 

Let /(t) = e + (1 - e)e-2< be the solution of ^/'(t) + /(*)' = e, with /(0) = 1. 

The function h(t) = /(*) - a2(t) satisfies ^'(t) + /i(t) > 0 for t > 0 and 

h(0) > 0. This implies that h(t) > 0, for all t > 0. Thus for all p e E(f) and 

t > 0 we have, at Pt, 

l-|Vr|2<c + (l-c).e-2t.   D 

We are now able to finish the proof of theorem 2.1. 

2.5.  Asymptotic behavior. 

Proof. If M is non orientable we replace M by the orientable double cover 

of M and remark that the hypotheses \A\ < e outside a compact set is still 

satisfied. Let P: EP1 \ {0} —> Ui be the projection on the unit sphere of 

TQW
1
 as described in section 1. Denote by %: E(f) x [0, oo) —► Ui the map 

^(p? t) = Po ^t(p). We must prove that the 1-parameter family of immersions 

{Xt}, given by Xt(p) = x(P>*) converges uniformly in p 6 S(f) as t —> oo. 

Observe that |^(p, t)| = |dP(7'(£))| where 7(t) = ^tip) is the integral curve 

of Y with 7(0) = p. From equation (1.2) we have, after projection of the vector 

YonTPtSr+u 

dt M y/l - |Vr 
iVrlsinh^ + t)' 

By lemma 2.4, given 6, with e < 8 < 1, there exists £1 such that for i > £1, 

we have |Vr|(pfc) > \/l — 8. From the above equation we get, for t > £1, 

1 

!<»'> 
< 

and this inequality implies 

Jo 
\dx 
\dt (P,*) 

Vl-^sinh(f + t) 

dt —► 0    as t —> 00 

uniformly in p G S(r), so Xt converges uniformly to a continous map Xoo: S(r) 
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2.6. Immersions transversal to geodesic spheres. Here we consider pro- 

per immersions Mmc->]HIn which are transversal to the geodesic spheres Sr of 

jjn for r > f^ w^ are interested in the volume growth of E(r) = M fl Sr. 

We suppose M to be orientable and denote by LJ the volume form of M. On 

M \ B(f) define a = £Ju;, where £ = Vr/|Vr|. If r > f and v: S(r) —> M is 

the inclusion, let ar = a*<7 be the volume form of E(r). Up to sign, cu = t;b A <T, 

where £6 is the 1-form dual to the field £. For p E S(f) and t > 0 define /(p, t) 

to be the positive function such that /(p, t)crf = ^^cr^+t. By definition of the 

function / we have, for s, £ > 0 and p G S(f), 

Also, as the field Y = Vr/|Vr|2 is invariant by the flow tyt we get 

It follows that the Lie derivative of ut in the direction Y is given by 

LMpt) = Tab) (PM - iw^l^H • 
But Lyw = divyw and |(|Vr(pt)|) = j-^flVrDfo). Also 

|Vr|2 |Vr|2§U     U 

because (V(|Vr|), Vr) = |Vr|£(|Vr|). Prom these equations it follows that 

(2-8) /Ar = |Vr|2^/ + /£(|Vr|). 

Let 7(5) be a integral curve of £ such that 7(0) = pt. Let r(s) = ^(7(5)) 

and recall that, since £ is unitary (^, V7/(o)7/(5)) = (Jg, »4(^, ^)). From equa- 

tion (2.4) we have 

r"(s) = (1 - (r'(S))2) cothr(5) + <^Mtt,0> 

and using the fact that r'(s) = | Vr| we get 

f(|Vr|) = (1 - |Vr|2)cothr + <^,^,0>- 
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From equations (2.3) and (2.8) we obtain, with a2 = 1 — |Vr|2, the desired 

equation for / 

(2.9)      l(l-a2)^tf = (m-l)cothr-(^A^0) + m(H,^). 

3. MINIMAL IMMERSIONS 

In this section we prove theorem A and B. The statement about the con- 

formal type of M in theorem B will be proved in the next section. First we 

state some basic inequalities. 

3.1. Simons and Sobolev inequalities. Let </?: Mmc-^Hn be a cmi and 

denote u = |^4|. Simons'equation [17], applied to minimal submanifolds of H72, 

tell us that u satisfies 

(3.1) Au + mu + mu3>0 

in the distribution sense. Let £ be a compactly supported smooth function on 

M and let q > 1 be a real number. Multiplying (3.1) by ^u29"1, integrating 

by parts, rearranging terms and taking square roots we obtain 

(3.2) m^h^c^iW^h + Uu^h + Wu^^h) 

for a constant Ci which depends only on m. 

From Sobolev inequality [12], for any smooth function h compactly sup- 

ported in M we have 

(3.3) ||/i||_Sr<c2||V/i||1 

where C2 does not depends on h. From (3.3) and the Holder inequality we 

have, for 1 < r < m, 

(3.4) iifcii^ < cj.r^ziiiivfcll... 

These inequalities are valid in case h is a bounded compactly supported 

function and h £ W1,r, the space of functions in Lr(M), whose gradient Vh 

also belongs to Lr(M). We remark that this is the case when h = t;uQ, £ a 

smooth function compactly supported on M. 
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3.2. Proof of theorem A. We first prove an analytical lemma. 

Lemma 3.1. Given m>2, there exists universal constants e > 0 and c > 0, 

depending only onm, with the folowing property : Iftp: Mm<^IHIn is a minimal 

immersion of an open manifold M, andxo £ M is such that the closed geodesic 

ball B(l) of radius 1 centered at XQ is compact in M, then f fB,ls |*4.|m )     < e 

implies 

\A\(x0)<c(f    W 
\JB(I) 

Proof We deal separetely the cases m > 3 and m = 2. 

case m>3. For £ G C^0(B(1)) denote by x the characteristic function of the 

support of £. If s > 2 the Holder's inequality gives us 

[eww < iixmitiKvi^ = iixMifiKtiiv 
JM 3 

We take r = 2 in the Sobolev inequality (3.4), apply (3.2) and the above 

inequality to obtain 

(3.5)       He^H^ < ^(MVfllla"+ llfti'lla + ||xW2|||lKtt«||A) 

where C4 depends only on m. Suppose that 

With this assumption, from (3.5) with s = m and q = y we have 

||^||^<c5[||^|Ve|||2 + ||^||2] 

and 

11^*11^ < c5(sup|V<| + 8upK|)( /    W)* 
m""a B(l) B(l) ^B(l) 

where C5 = C4V^m. Taking £ such that 0 < £ < 1, f = 1 on J3(|), £ = 0 on 

the exterior of B(l) and such that |V£| < 8, we have by the above inequality 

(3.7) 111^11^(3) < 10c5( /    I^H* 
m-2        \4/ <yBa) 

^(i)    "   /     "2* 
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where the norm in the left side is taken over the ball JB(|). We want to use 

(3.7) to get control of the L^_ norm of ^v? in terms of its L^ norm. 

Let e be the greatest positive real number such that if /B(1) \A\m < em then 

inequality (3.6) and 

(3.8) 10CB(/    |.Ar)*<l 
JB(1) B(l) 

m-2 are satisfied. The constant e depends only on m. Remark that for s =   " 

i9 il n l    A 1121 II — MM ...    _   III   A\  2       m 
J'^U^ 

we have 

iMHi^f) = ipr 
Therefore, assuming /B(1) \A\m < €m, from (3.5) and (3.7) we get, for 5 = j^, 

(3.9) II^H^ < 2c4v^(||^|Ve|||2 + H^'Ha + M jfc) 

for all smooth ^ with support in the ball £?(!). 

On the other hand, for 5 = ^5, and any 5 > 0 we have the interpolation 
formula 

(3.10) ||^||^<<5||^||^+r-||^||2. 

where a = ■^^. Given q > 1 we chose 5 such that Ci8^/q = |. Thus 8'" = 

{teiYq* and from (3-9) and (3-10) we get. for any ^ € C?(B{\)) 

(3.11) WWW**, <<Vg(|K|V,£|||2 + (1 + ^)||^||2) 

for some constant CQ which depends only on m. 

Now we iterate to obtain a bound for \A\ over B(\). For i G N, let Bi = 

B(j + 2iTr)- Let ^, 0 < ^ < 1, be a Lipschitz function which satisfies 

' & = 1     on Bi+1     ;    & = 0   on M \ B* 

and such that |V^| < 2i+2. From (3.11) with f = ^ we get 

||^||2.<c6V^(2^3 + ^)||X^||2 

where x^ is the characteristic function of support(^).   Squaring the above 

inequality we obtain 
x 

(3.12) (^   |^|2^)"<c^(2i+3 + ^)2^|^. 
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Let 2q = ma' and observe that, for this choice of q we have clq(2i+3+q1^) < 

cl
7 for some constant c7 depending only on m. Hence from (3.12) we obtain 

(3.13) ([    l^r^V <4 [ \A\m(T\ 
\JBi+1 J JBi 

Define U = [fsjAl™^. From (3.13) we get /i+1< cf It. Since a > 1 

the series Y^i ^r converges. Thus there exist a real number c depending only 

m such that 

/m<cmJo. 

This implies the norm L00 of |^4|m over the ball B(\) is bounded by cm JB{1) |^|m 

which is the conclusion of the lemma for m > 3.    D 
i 

case m = 2. We prove first there exist 6 such that if (JB^ \A\2)2 < 6 then 

the operator L = — A + 2-|.4|2is positive defined on the ball B(|). In the 

case n = 3 this means that the ball B(^) is stable. 

Let £ be a smooth compact supported function on -B(l) and x the char- 

acteristic function of the support of £. From the Sobolev inequality (3.3) we 

have 

||^2||2<2c2(||^Vu||1 + ||u2V^||1) 

and by the Cauchy-Schwartz inequality we get 

||^2||2<2c2||X«||2(||^V«||2 + ||«Ve||2) 

Taking q = 1 in (3.2) and rearranging terms we obtain 

(3.14) |KV«||2 < 2Cl(||£i||2 + ||<£u2||2 + ||UV£||2) 

and from these last two inequalities we get 

(3.15) |KVu||2 < c8(Uu\\2 + ||x«||2(||$V«||2 + UnV^lb) + ll«V$||2) 

for some constant c8 which does not depends on £. Let 6i = min(2^, 1) and 

suppose 

(3.16) (/B(lH'£S" 
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Prom (3.15) we get 

(3.17) ||£Vu||2<2c8(||^||2 + 2||uV£||2) 

for all £ compactly supported in B(l). 

Now take £ with compact support in -B(l) and satisfying 

(l       ;     on 5(|) 
?      10       ;     on 5(1) \ 5(f) 

0 < £ < 1    ;    |V^| < 8. 

For any such £ we have, from (3.17) 

(3.18) ||£Vu||2<20c8|M|2 

Let 0 be a smooth compactly supported function on JB(|) and let £ be as 

above, so that (3.18) is verified. Prom Sobolev inequality (3.3) with £ replaced 

by £(/) and from Schwartz inequality we have 

(3.19) ^-||^e||2 < IKVMHaMa + ||^l|2||V0||2 + ||0||2P|V^|||2. 
2C2 

By (3.18) there exist 6 < 6i such that if 

Ml2) * < * 

then 

mA\\\2<± ; IIMII2<^ ; wmh<-^. 

Therefore, if (jBW \A\2) * < 8 we have, from (3.19), 

(3.20) f |^|V2 <2 [ <f>2+ [ \V<t>\2 

JM JM JM 

for all $ e Cf (B(i)). 

Since the immersion is minimal we have by the Gauss equation K = — 1 — 

||^l|2. Also our surface satisfies the "stability" equation (3.20) on the compact 

ball of radius |, the Sobolev inequality (3.3) and Simon's inequality (3.1). So 
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we have all the requirements to apply Schoen's stability result [16]: there exists 

constants eg, cio and 0 < /JL < |, not depending on the immersion such that 

(3.21) (Wl + W)    <<* 
[SUPB^) |^| < cio 

This enable us to find a bound for |v4| on B(^) in terms of the L2 norm of 

1.41 on B(IJL). Prom (3.4) we have, with r = |, 

iiewiu^cniiv^nii 
for some constant Cn and for any function £ compactly supported in B(ii). 

Prom Holder inequality and the estimate on the area given by (3.21) we get 

ii^rii4<c12||v^Hi2 

for some constant C12 which does not depends on the immersion. By (3.2) and 

the bound of |*/4| on B(/J,) we obtain, for some constant C13, 

mA\*\U < cuy/Q fsup K| + sup |Vf l) \\x\A\%. 

where x is the characteristic function of B(p). 

An iteration method analogous to that used in the proof of case m > 3 gives 

that there exists constants C14 and e < b such that if (/^n) |*4|2)2 ^ € then 

sup|^|<c14(/     \AA 
B(f) \JB{e) ) 

and this finishes the proof of the lemma.    □ 

Now theorem A is an easy consequence of lemma 3.1.   In fact, for a cmi 

jym^jjn satisfying /M |^|m < 00, there exists ro > 0 such that 

(/ /Af\B(ro) 

e as in lemma 3.1. Thus we have 

sup    \A\<c{\ \A\m\m 

■\B(r+l) \JM\B(r) J M\B(r+l) \JM\B(r) 

for r > TQ. Therefore |>l|(p) goes uniformly to 0 as p —► 00. The result now 

follows from theorem 2.1 of section 2. 
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Another consequence of lemma 3.1 is a "topological gap phenomenom" 

Corollary 3.2. Let Mmc—►HP1 be a connected complete minimal immersion. 

Then there exists e such that if JM \A\m < e then M is simply connected. 

Proof. It suffices to take e = e/c for e and c as in lemma 3.1. Thus \A\ < 1 on 

M. If TTI (M) is non trivial then there exists a geodesic 7 of M with coincidents 

ending points. As M is minimal |V7'7/| < 1. The contradiction follows from 

lemma 2.3. Thus 7ri(M) is trivial.   □ 

3.3. Proof of theorem B. The assertion about the conformal type will be 

proved in the next section. 

3.4. ^^(M) is a Lipschitz. 

Proof. We assume M is orientable. From theorem A we know that a cmi 

cp: M2c->Hn satisfying fM \A\2 < 00 is properlly immersed and \A\(p) —> 0 as 

p -» 00. In particular M meets transversally the geodesic spheres Sr centered 

at a fixed point O € HP2, for r > f, f large enough. Let E(r) = M D Sr as in 

section 2. Recall that for p £ S(f) and t > 0, /(p, t) is the norm of d1ift(ri(p)) 

where tyt is the flow of Y = Vr/| Vr|2 and 7] is the unitary vector field defined 

on M \ B{f) and orthogonal to £ = Vr/|Vr|. Let I be the length of E(f) and 

let 7: [0,1] —► S(f) be a parametrization of E(f) by arc length. Define 

x: [0,0 x [0,oo)i->M\£(f) 

and remark that ||((9, t) = f(0, t)r)(6, t) where f(drt) = f{i(0), t) and 7?(<9, t) = 

r](x(0,t)). Also §f(0, i) = y(a;(^, t)). In the coordinate system given by 

x the area element is dS = (f/\Vr\)d0dt. Set a:(0, f) = a(x(^, i)), where 

a = ^1 - |Vr|2. When H = 0, equations (2.5), (2.6) and (2.9) give 

(3.22) l|a2 = ^(^a^y^a2coth(f + i) 

>,2 l^a2 ., w    ^   d 

(3-24) 1(1 - a2)|/ = coth(f + t)- (^Afoi))' 
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Prom (3.22) and (3.24) we obtain 

(3.25) jp = coth(f + t) + j^ coth(f + *) + ~ ln(l - a2). 

Assume for the moment that there exists a positive real number C such 

that 

/•OO 

(3.26) /   a2(e,t)dt<C   ;    V0 e [0,/]. 

Since \A\(p) —> 0 as p —> oo we take f large enough to have \A\ < \ and a2 < \ 

on M \ -B(f). This is possible by lemma 2.4. Integrating both sides of (3.25) 

and using (3.26) we obtain 

(3.27) /(p,t) = et+/l^) 

for some bounded function h{p, t) defined on M \ B(f). 

Let %: E(f) x [0,oo) —► Ui be as in the proof of theorem 2.1, Ui the unit 

sphere of ToEF1, so that Xt{p) "^ x(P^) ^s Just the projection of the curve 

S(f +1) in the sphere at infinity dooE71 = C/i. Prom equation (1.2) we have 

that 

l«*>0Kri>l-^ 
and hence, by (3.27), we get a bound for the length of the immersions Xt(E(r)). 

But a sequence of uniformly convergent curves of Ui whose lengths are uni- 

formly bounded converges to a Lipschitz curve of J7i. 

To prove (3.26) we first prove that a € Z^M). 

As a2 < \ on M \ B(f) we have |Vr| > f and therefore fdOdt < dA < 

IfdOdt. Let Dt = {^s(p) \ P € E(f); 0 < s < t} be the annuli of M bounded 

by E(f + t) and E(f). Since (Afot)^) = ((V^)"1, (^)±)) by the Cauchy- 
Schwartz inequality we have 

d_ 
dd1 

Prom (3.22) and (3.24) we get 

(3.28) 1(^,0, h\ < \A\yJ\-\VT\* = \A\a. 

1^/) + ^-/a»oath(f + .*) = - (f^) Mm I) 
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and, making use of (3.28), we have 

dV    /;^2|Vr| - 3  |Vr| 

Integrating this inequality over [0,/] x [0,£], using Holder inequality in the 

right term and remembering that /(0,0) = 1, V0 G [0, Z], we obtain 

1 i 

ftfw,t)de- jla\e,o)de + \ j^?<\(JD\A\^*(^a2^) . 

As / > 0 this implies that a e I/2(M). By equation (3.24) and the fact 
that \A\ < 1 on M\ B{f) we have |f > 0 for < > 0. Thus / > 1 on 

M \ B(r). As a G I^-M")? this implies that the integral f0f™a2 dQdt is finite. 

Hence for almost all 0 G [0, /] the integral f™ ot2{6) t)dt is finite. Changing the 

parametrization of S(f) if necessary we can assume that 

/ 
oo 

,2 a2(0,t)dt<oo. 
/o 

Define J(fl,t) = /oV(0,s)ds. Prom (3.23) we have for QQ G [0,Z], 

i(e0,t)-i(o,t) = J —(d,t)de<2j J f\A\adtd6. 

Thus, since dA > fdOdt, we have by the Cauchy-Schwartz inequality 

i(0o, *) < m t)+2 (^I^I
2
) 

T (^2)5 • □ 

3.5, The operator L = —A + 2 — \A\2 has finite index. 

Proof. From theorem A we know that \A\(p) -* 0 as p ~> oo, so for any 

€ G (0,2) there exists a compact set N€C M such that 

(L^)>(-A0 + €^)    ^GCc
00(M\iVe). 

Therefore the spectrum of the restriction LJV of L to the exterior of N€ is 

contained in the interval [e, oo). By theorem 1.3 we have that the essential 

spectrum of L is contained in [e, oo). Thus for any 6 < e, the number of eigen- 

values of L smaller than 6 is finite. In particular the index of L is finite.   □ 
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4.   CONFORMAL TYPE OF MINIMAL SURFACES 

It's well known that there exists no complete conformal metric ds2 — e2u\dz\ 

on the complex plane C, whose Gauss curvature satisfies K < — 1. In this 

section we prove that any conformal metric on the complex plane, whose Gauss 

curvature is sufficiently negative outside a compact set must necessarily have 

non-negative total curvature. This will enable us to prove that the punctured 

disk Z?* — {0 < 12:| < 1} can't be conformally immersed in W1 in such a 

manner that the immersion is a complete (at the origin) minimal surface. 

Lemma 4.1. Let ds2 = e2u\dz\ be a conformal metric defined on C. Suppose 

that the Gauss curvature satisfies K(z) < —l/\z\2 oustide a compact set Cl C 

C. Then JcKdA>0. 

Proof. Let (p, 9) be the polar coordinates of C and let dA = e2updpd9 be the 

area element for the metric ds2. For r > 0 we integrate both sides of the Gauss 

equation Au = —Ke2u over the disc {\z\ < r} to obtain 

/     Audxdy = -      /   e2uKpdpd6 = -        KdA. 
J\z\<r JO  JO J\z\<r 

Let /(r) = -^ JQ* u(r)Q)d9 and denote by /'(r) the derivative of /(r). By 

the Green's formula and the above equation we get 

Taking derivatives with respect to r gives 

;lri,(r)r = 4jf^* 
Let ro > 0 be such that fi C {\z\ < ro}. Then, for \z\ > ro we have 

K(z) < —l/\z\2 and by Jensen's inequality we get 

(4.2) r[rJ'(r)]' > — /   e2u^e) d9 > e*Jo  2u^de = e2I{r). 
27r Jo 

Set t = Inr, and m(t) = /(e*). Denoting derivatives with respect to t by a 

dot we have 

^(t) - ((r/,(r))(et)    and    m(t) = (rfr/'^^eO 
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From the above we get, with to = logro, 

m(t) = -^-[     KdA 
27r y|2|<e* 

m(t) > e2mW    for t>to. 

Suppose now that the conclusion of the lemma is not verified. From the 

above equations and the fact that the integral of K over the disc {\z\ < e*} 

is a decreasing function of t for t large, there exists real numbers a > 0 and 

ti > to such that rh(t) > a for all t > ti. Thus 

-f-(m(t))2 = 2m(t)m(t) > 2m{t)e2m^ = ^-e2m(t)    ;    t > t^ 
at at 

Integrating both sides from ti to t > ti we get 

m2(i)>e2m(t)(l + ce-2m^)    ;    c = m2^) - e2m^K 

Since rh(t) > a for t > ti we have m(i) —■» oo as t —* oo. Take t2> h such 

that for t>t-2we have ce_2m(') > —|. Thus for t > fo we obtain 

m(i)e-m(t)  > - v / - 2 

and integrating both sides from t2 to t> ^2 we get 

-e-TO(t) +e-m(t2)   > -(t-i2). 

But the left side of this inequality is bounded and the variable t is supposed 

to be defined all over the reals. This contradiction establishes that for t large 

enough we have J\z\<et KdA > 0, that proves the lemma.    □ 

For the sake of completeness we prove the following known lemma. 

Lemma 4.2. Let ds2 = e2u\dz\ be a complete conformal metric defined on C 

such that the Gauss curvature K satisfies K < — 1 outside some compact set. 

Let d(z) be the distance from the origin with respect to the metric ds2 and let 

B(r) = {z | d(z) < r} be the geodesic ball of radius r. Let L{r) denote the 

length of dB{r). Then L{r) —> 0 as r —> oo. 
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Proof. By the precedent lemma /c KdA exists and is non-negative. As K < — 1 

outside a compact set, the total area of the complete surface (C, ds2) is finite. 

A result of Huber [13, theorem 12] tells us that for a complete surface of finite 

total curvature and finite total area we have equality in the Cohn-Vossen 

inequality; thus 

[KdA = 27rx(C) = 27r 
Jc 

where x(C) is the Euler characteristic of the plane.   For almost all r the 

boundary dB(r) is a finite union of piecewise differentiable Jordan curves and 

for those r the derivative L'(r) exists and satisfies [18, theorem 1] 

L'(r) < 27r(2 - 2h(r) - c(r)) - [   KdA 
JB{T) 

where c(r) = number of connected components of dB{r) and h{r) = number 

of handles inside B{r). In our case h(r) = 0 and c(r) > 1, so 

rJ[r) < 2<K - / 
JBi: 

KdA 
r) 

Let ro be such that for r > ro we have K < —1 on C* \ B(r0). Thus, for 

r > ro, /B(rx KdA is a decreasing function of r which goes to 27r as r —»■ oo. 

Hence L^r) < 0 for r > r0. By the co-area formula we have 

rL(r) dr<  f" ( [        iVrl^ds] dr = Area(C, ds2). 
JO JO     \JdB(R) / 

Therefore /Q
00

 L(r) dr < oo and I/(r) < 0 for almost all r > ro and this implies 

that L(r)■—> 0 as r —* oo.   D 

4.1. Proof of theorem B (conformal type). For r > 0, we denote by 

D*(r) the punctured disc {0 < \z\ < r} and we let D* be the unit punctured 

disc. The assertion about the conformal type of the ends of a minimal surface 

in hyperbolic space is a consequence of the following 

Lemma 4.3. Letx: D*^-^Mn be a conformal minimal immersion. Then there 

exists a path 7: [0,1) —> D* converging to the origin 0 as t —> 1 and such that 

f ds < 00, where ds2 is the metric on D* induced by the immersion x. 
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Proof. We consider the Poincare model of HIn so that HIn is the unit ball 

{|a;| < 1} of Mn endowed with the metric dr)2 = A\dx\2/(1 - |a;|2)2. The area 

element dA of the metric ds2 is given by 

(4.3) dA = h\Vx\\2dudv 

where z = u + iv is a point of C and ||Va;||2 = 1 f .2 (\xu\2 + \xv\2) is the 

hyperbolic norm of Vx = (Vx1,..., Vxn). 

As x is minimal we have by Gauss equation K < —1 on D*. Extend the 

metric ds2 to a smooth metric ds2 on C* U {oo} such that inside D*(^) it 

coincides with ds2. Let us suppose that the conclusion of the lemma does not 

hold. This means the metric ds2 is a complete conformal metric on C* U {oo} 

satisfying K < — 1 outside some compact set. By lemma 4.1 the total curvature 

is finite and in particular the area /jwi) dA of x(D*(l)) is finite. Therefore 

(4.4) /     \\Vx\\2dudv < oo. 

Also, by the monotonicity theorem of Anderson [1], x(D*(^)) is contained in 

a compact set of Hn; otherwise x(D*(^)) would have infinite area. This fact 

and (4.4) implies that the restriction of the immersion x to D*(^) belongs to 

iJ2
1(JD(^),Mn), the space of maps /: D(±) >-+ W1 such that / and |V/| belong 

to L2m±)) (v. [10]). 
On -D*(|) the conformal minimal immersion x satisfies the system of equa- 

tions 

(4.5) Axi = Fi(x,Vx)    ;    fort = l,...,n 

where 

We assert that a; is a weak solution of (4.5) on D(^).   In fact if (/) = 

((f)1,..., (j)71) is a smooth map compactly supported in D(^) then the integrals 

h = /     ((S7x\ Vft) + F*(x, Vx)^*) dudv    ;    i = 1,..., n 
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are well defined since x is bounded in D{^) and x G Hi(D(~), HP1). Let ZQ G C* 

be a fixed point and let B{r) be the geodesic ball for the metric ds2, of radius 

r and centered in ZQ. For i = 1,..., n the integrals li can be written as 

li = lim  / ((Vx\ Vtf) + F'ix, Vx)<A dudv. 
r-ooJj0*(J)nB(r)\ / 

Observe that for r large enough the boundary dB{r) is contained in D{^) 

and that, by lemma 4.2, the length of 5J5(r) goes to 0 as r —► oo. Let 1^}, 

fc G N, be a sequence with r^ —>• oo as k —> oo, and such that dB(rk) is a finite 

union of piecewise smooth curves. By equation (4.4) and Green's formula we 

get 

1,= lim  /        ^|dz| 

where u is the interior normal to dB^k), defined but for a finite number of 

points. Since |f£| < |Vx| we have that \%\\dz\ < ds on D*(±). Hence 

17,1 <( max H) f       ds. 

As the length of dB[rk) goes to 0 as k —> oo we have li = 0 for i = 1,..., n, 

and therefore x is a weak solution of (4.5) on D(^). By the regularity result 

of Griiter [10, theorem 3.8] a minimal immersion x as above is of class C1,a on 

JD(|), for all 0 < a < 1. But this implies that any path 7 converging to the 

origin and having finite Euclidean length has also finite length in the induced 

metric ds. This contradiction establishes the lemma.    □ 
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