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2 BRIAN WHITE

Introduction

Minimal surfaces have been studied by mathematicians for several centuries,
and they continue to be a very active area of research. Minimal surfaces have also
proved to be a useful tool in other areas, such as in the Willmore problem and in
general relativity. Furthermore, various general techniques in geometric analysis
were first discovered in the study of minimal surfaces.

The following notes are slightly expanded versions of four lectures presented
at the 2013 summer program of the Institute for Advanced Study and the Park
City Mathematics Institute. The goal was to give beginning graduate students an
introduction to some of the most important basic facts and ideas in minimal surface
theory. I have kept prerequisites to a minimum: the reader should know basic
complex analysis and elementary differential geometry (in particular, the second
fundamental form and the Gauss-Bonnet Theorem).

For readers who wish to pursue the subject further, there are a number of good
books available, such as [CM11], [Law80], and [DHS10]. Readers may also enjoy
exploring Matthias Weber’s extensive online collection of minimal surface images:
http://www.indiana.edu/~minimal/archive/. Except for Figure 6, all of the
illustrations in these notes are taken from that collection.

If I had a little more time, I would have talked more about the maximum principle
and about the structure of the intersection set for pairs of minimal surfaces. See
for example [CM11, 1.§7, 6.§1, 6.§2].

If I had a lot more time, I would have talked about geometric measure theory,
which has had and continues to have an enormous impact on minimal surface the-
ory. Almgren’s 1969 expository article [Alm69] remains an excellent introduction.
Morgan’s book [Mor09] is a very readable account of the main concepts and results.
In many cases, he describes the key ideas of proofs without giving any details. For
complete proofs, I recommend [Sim83].

In the last few years, there have been a number of spectacular breakthroughs in
minimal surface theory that are not mentioned here. See [MP11] for a survey of
many of the recent results.

I would like to thank Alessandro Carlotto for running problem sessions for the
graduate students attending my lectures and for carefully reading an early version
of these notes and making a great many suggestions. I would also like to thank
David Hoffman for additional suggestions. The notes are much improved as a result
of their input.

http://www.indiana.edu/~minimal/archive/
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1. The First Variation Formula and Consequences

Let M be an m-dimensional surface in Rn with boundary Γ. We say that M
is a least-area surface if its area is less than or equal to the area of any other
surface having the same boundary. To make this definition precise, one has to
specify the exact meaning of the words “surface”, “area”, and “boundary”. For
example, do we require the surfaces to be oriented? But for the moment we will
be vague about such matters, since the topics we consider now are independent of
such specifications.

In the Plateau problem, one asks: given a boundary Γ in Euclidean space (or,
more generally, in a Riemannian manifold), does there exist a least-area surface M
with boundary Γ? If so, how smooth is M? For example, if m = 1 and Γ consists of
a pair of points in Rn, then the solution M of the Plateau problem is the straight
line segment joining them.

In general, however, even proving existence is very nontrivial. Indeed, in 1936
Jesse Douglas won one of the first two1 Fields Medals for his existence and regularity
theorems for the m = 2 case of the Plateau problem. We will discuss those results
in lecture 4.

Now we consider a related question: given a surface M , how do we tell if it
a least-area surface? In general, it is very hard to tell, but the “first-derivative
test” provides a necessary condition for M to be a least-area surface: If Mt is a
one-parameter family of surfaces each with boundary Γ, and if M0 = M , then(

d

dt

)
t=0

area(Mt)

should be 0.
For the test to be useful, we need a way of calculating the first derivative:

Theorem 1 (The first variational formula). Let M be a compact m-dimensional
manifold in Rn. Let φt : M → Rn be a smooth one-parameter family of smooth
maps such that

φ0(p) ≡ p.
Let X(p) =

(
d
dt

)
t=0

φt(p) be the initial velocity vectorfield. Then(
d

dt

)
t=0

area(φtM) =

∫
M

divM (X) dS

=

∫
∂M

X · ν∂M ds−
∫
M

H ·X dS,

where

divM X :=

m∑
i=1

ei · ∇ei
X

for any orthonormal basis e1(p), . . . , em(p) of TanpM , where H(p) is mean curva-
ture vector of M at p, and where ν∂M (x) is the unit vector in the tangent plane to
M at x that is normal to ∂M and that points away from M .2

1Ahlfors won the other one.
2The notation ν∂M suggests that the vector depends only on ∂M . However, it depends on M

and thus arguably should be written in some other way such as ν∂M ;M .
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It is perhaps better to refer to the first equality(
d

dt

)
t=0

area(φtM) =

∫
M

divM (X) dS,

as the “first variation formula” and to the second equality∫
M

divM X dS =

∫
∂M

X · ν∂M ds−
∫
M

H ·X dS

as the “generalized divergence theorem”. Note that when the vectorfield X is
tangent to M , the generalized divergence theorem is just the ordinary divergence
theorem.

Proof of the first variation formula. Note that

area(φtM) =

∫
M

Jm(Dφt) dS

where Jm(Dφt) is the Jacobian determinant
√

det(DφTDφ), so(
d

dt

)
t=0

area(φtM) =

∫
M

(
d

dt

)
t=0

Jm(Dφt) dS.

Thus it suffices to calculate that(
d

dt

)
t=0

Jm(Dφt) = divM X.

By definition of X,

φt(p) = p+ tX(p) + o(t),

so

Dφt(ei) = ∇ei
(φt) ∼= ∇ei

(p+ tX(p)) = ei + t∇ei
X,

where a ∼= b means a− b = o(t). Thus

Jm(Dφt) =
√

det(Dφt(ei) ·Dφt(ej))

∼=
√

det((ei + t∇ei
X) · (ej + t∇ej

X))

∼=
√

det(δij + t(ei · ∇ejX + ej · ∇eiX))

Recall that for a square matrix A,

det(I + tA) = 1 + t trace(A) + o(t).

Thus

Jm(Dφt) ∼=
√

1 + 2t
∑
i

(ei · ∇ei
X)

∼=
√

1 + 2tdivM X ∼= 1 + tdivM X.

�
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Proof of the generalized divergence theorem. Splitting X into the portion XT tan-
gent to M and the portion XN normal to M , we have, by the ordinary divergence
theorem, ∫

M

divM X dS =

∫
M

divM (XT ) dS +

∫
M

divM (XN ) dS

=

∫
∂M

XT · ν∂M ds+

∫
M

divM (XN ) dS

=

∫
∂M

X · ν∂M ds+

∫
M

divM (XN ) dS.

Thus we need only show that divM (XN ) = −H ·X. Using the summation conven-
tion,

divM (XN ) = ei · ∇ei
(XN )

= ∇ei
(ei ·XN )− (∇ei

ei) ·XN

= ∇ei(0)− (∇eiei)
N ·X

= −H ·X.

�

Remark. The first variation formula and the generalized divergence theorem are
also true for submanifolds of a Riemannian manifold N . They can be deduced from
the special case by isometrically embedding3 N in a Euclidean space Rn. The first
variation formula in N then becomes a special case of the first variation formula
in Rn. To see that the generalized divergence theorem is true in N , note that
the submanifold M ⊂ N ⊂ Rn has two mean curvatures vectorfields: the mean
curvature HN of M as a submanifold of N and the mean curvature H of M as a
submanifold of Rn. Note that HN (p) is the orthogonal projection of H to TanpN .
If X is a vectorfield on M that is tangent to N (as it will be if φt(M) ⊂ N for all
t), then H ·X = HN ·X, and therefore∫

M

divM X dS =

∫
∂M

X · ν∂M ds−
∫
M

X ·H dS

=

∫
∂M

X · ν∂M ds−
∫
M

X ·HN dS,

which is the generalized divergence theorem for M as a submanifold of N .

Exercise: Let u : Rn → R be a C1 function. Prove (under the
assumptions of theorem 1) that(
d

dt

)
t=0

∫
φtM

u dS =

∫
M

∇u ·X dS +

∫
M

udivM X dS

=

∫
∂M

uX · ν∂M ds+

∫
M

((∇u)⊥ − uH) ·X dS.

where (∇u)⊥ is the component of ∇u normal to M .

3Such an isometric embedding exists by the Nash Embedding Theorem [Nas56]. A more
elementary proof was discovered by Günther [Gün89]. See [Yan98] for a very readable account of

Günther’s proof.
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Definition. An m-dimensional submanifold M ⊂ Rn (or of a Riemannian mani-
fold) is called minimal (or stationary) provided its mean curvature is everywhere
0, i.e., provided it is a critical point for the area functional.

Theorem 2. Let M be a compact m-dimensional minimal submanifold of Rn.
Then

(1) m area(M) =

∫
x∈∂M

x · ν∂M ds.

Proof. We apply ∫
M

divM X dS =

∫
∂M

X · ν∂M −
∫
M

X ·H dS

to the vectorfield X(x) ≡ x. Now divM X ≡ m and H ≡ 0, so we get (1). (To
see that divM X = m, note that ∇vX = v for every vector v, and thus that∑
i(ei · ∇ei

X) = m for any orthonormal vectors e1, . . . , em.) �

Remark. Even if M is not minimal, the same proof shows that

(2) m area(M) =

∫
x∈∂M

x · ν∂M ds−
∫
x∈M

x ·H dS.

Monotonicity

Theorem 3 (Monotonicity Theorem). Let M be a minimal submanifold of Rn and
let p ∈ Rn. Then

Θ(M,p, r) :=
area(M ∩B(p, r))

ωmrm

is an increasing function of r for 0 < r ≤ R := dist(p, ∂M).
Indeed, (

d

dr

)
Θ(M,p, r) ≥ 0

with equality if and only if M intersects ∂B(p, r) orthogonally.

Here ωm is the m-dimensional area (i.e., Lebesgue measure) of the unit ball in
Rm. Thus Θ(M,p, r) (which is called the density ratio of M in B(p, r)) is the
area of M ∩ B(p, r) divided by the area of the cross-sectional m-disk in B(p, r).
Equivalently, it is the area of M ∩B(p, r) after dilating by 1/r.

Proof of monotonicity. We may assume that p = 0. Let Mr = M ∩B(0, r), so

∂Mr = M ∩ ∂B(0, r).

Let A(r) be the m-dimensional area of Mr and L(r) be the (m − 1)-dimensional
measure of ∂Mr. (When m = 2, A(r) is an area and L(r) is a length.)

Then

A′(r) ≥ L(r).

This follows from the coarea formula applied to the function x ∈ M 7→ |x|. But
intuitively (in the case m = 2 for simplicity) A(r + dr) \ A(r) is a thin ribbon of
surface: the length of the ribbon is L(r) and the width is ≥ dr. (The width is equal
to dr at a point p ∈ ∂Mr if and only if M is orthogonal to ∂B(0, r) at p.) Hence
A(r + dr)−A(r) ≥ L(r) dr.
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By theorem 2,

mA(r) =

∫
∂Mr

x · ν∂Mr
ds ≤ rL(r).

Combining these last two inequalities gives:

A′ −mr−1A ≥ 0,

so

r−mA′ −mr−m−1A ≥ 0,

and therefore

(r−mA)′ ≥ 0.

�

Remark. The monotonicity theorem follows from the more general monotonicity
identity [Sim83, 17.4]:

Θ(M,p, b)−Θ(M,p, a) =

∫
M(a,b)

|(∇r)⊥|2

rm
dS

+
1

m

∫
x∈M(a,b)

(
1

rm
− 1

bm

)
(x− p) ·H dS

+
1

m

∫
x∈M(0,a)

(
1

am
− 1

bm

)
(x− p) ·H dS,

where 0 < a < b ≤ dist(p, ∂M), where r(·) = dist(·, p) = |(·) − p|, and where
M(a, b) = M ∩ (B(p, b) \ B(p, a)). Note that if M is minimal, then the last two
integrals vanish. One can use the monotonicity identity to prove a version of the
monotonicity theorem in a general Riemannian manifold N by embedding N iso-
metrically in Rn. (If M is a minimal submanifold of N ⊂ Rn, then M has locally
bounded mean curvature as a submanifold of Rn.) See [Sim83, 17.6], for example.

We define the density of M at a point p ∈M \ ∂M to be

Θ(M,p) := lim
r→0

Θ(M,p, r).

For a smooth, immersed surface, the density of M at a point p ∈M \ ∂M is equal
to the number of sheets of M that pass through p. In particular, Θ(M,p) ≥ 1.

Density at infinity

Let M be a properly immersed minimal surface without boundary in Rn. Then
Θ(M,p, r) is increasing for 0 < r <∞. Thus limr→∞Θ(M,p, r) exists. (It may be
infinite.) Note that

B(p, r) ⊂ B(q, r + |p− q|)
from which it easily follows that limr→∞Θ(M,p, r) is independent of p and therefore
can be written without ambiguity as Θ(M). We call Θ(M) the density of M at
infinity.

For example, the density at infinity of a plane is 1, and the density at infinity of a
union of k planes is k. Near infinity, a catenoid (figure 1) looks like a multiplicity 2
plane. (To be precise, if we dilate the catenoid by 1/n about its center and let
n→∞, then the resulting surfaces converge smoothly (away from the center) to a
plane with multiplicity 2.) It follows that the catenoid has density 2 at infinity.
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Figure 1. The catenoid (left) and Scherks’s surface (right) each
have density 2 at infinity.

Similarly, Scherk’s surface (figure 1) resembles two orthogonal planes near infin-
ity, so its density at infinity is also 2.

The following theorem characterizes the plane by its density at infinity:

Theorem 4. Let M be a properly immersed minimal m-manifold without boundary
in Rn. Then Θ(M) ≥ 1, with equality if and only if M is a multiplicity 1 plane.

Proof. Let p ∈M . Then by monotonicity,

(3) 1 ≤ Θ(M,p, r) ≤ Θ(M).

This proves the inequality. If 1 = Θ(M), then we would have equality in (3), so M
would intersect ∂B(p, r) orthogonally for every r. That implies that M is invariant
under dilations about p, i.e., that M is a cone with vertex p. Since we are assuming
that M is smooth, M must in fact be a union of planes (with multiplicity) passing
through p. Since Θ(M) = 1, M is a single plane with multiplicity 1. �

Extended monotonicity

According to the monotonicity theorem (theorem 3), if M is minimal, then the
density ratio

(4) Θ(M,p, r) =
area(M ∩B(p, r))

ωmrm

is an increasing function of r for 0 < r < R = dist(p, ∂M). The theorem is

false without the restriction r < dist(p, ∂M). For example, if M ⊂ B(p, R̂), then

the density ratio is strictly decreasing for r ≥ R̂, because the numerator of the
fraction (4) is constant for r ≥ R̂.

However, there is an extension of the monotonicity theorem that gives informa-
tion for all r:
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Theorem 5 (Extended Monotonicity Theorem [EWW02]). Suppose that M ⊂ Rn

is a compact, minimal m-manifold with boundary Γ, and that p ∈ Rn \ Γ. Let
E = E(p,Γ) denote the exterior cone with vertex p over Γ:

E = ∪q∈Γ{p+ t(q − p) : t ≥ 1}.

Let M̃ = M ∪ E. Then the density ratio

Θ(M̃, p, r) :=
area(M̃ ∩B(p, r))

ωmrm

is an increasing function of r for all r > 0. Indeed,(
d

dr

)
Θ(M̃, p, r) ≥ 0,

with equality if and only if: (i) ν∂M + ν∂E ≡ 0 on Γ∩B(p, r) and (ii) M̃ intersects
∂B(p, r) orthogonally.

Remark. In the definition of Θ(M̃, p, r), we count area with multiplicity. For
example, if exactly two portions of E overlap in a region, we count the area of that
region twice. Of course if M is embedded and if p is in general position, then such
overlaps do not occur.

In proving the extended monotonicity theorem, we may assume that p = 0. As
before, we will apply the first variation formula (or, more precisely, the generalized
divergence theorem) to the vectorfield X(x) = x.

Lemma 6. Let E be the exterior cone over Γ with vertex 0. Among all unit
vectors v that are normal to Γ at x ∈ Γ, the maximum value of x · v is attained by
v = −ν∂E(x).

Consequently, x · v ≤ −x · ν∂E(x) and therefore x · (v + ν∂E(x)) ≤ 0 for every
such vector v. The proof of the lemma is left as an exercise.

Proof of extended monotonicity. Let Mr, Er, M̃r, and Γr be the portions of M , E,
M̃ , and Γ inside the ball Br = B(0, r). By the generalized divergence theorem,

(5)

∫
Mr

divM X dS =

∫
∂Mr

X · ν∂Mr ds−
∫
Mr

H ·X dS

=

∫
∂Mr

X · ν∂Mr ds

since H ≡ 0 on M . Similarly,

(6)

∫
Er

divE X dS =

∫
∂Er

X · ν∂Er
ds−

∫
Er

H ·X dS

=

∫
∂Er

X · ν∂Er
ds

because H · X ≡ 0 on E, since H is perpendicular to E and X is tangent to E.
Also, divM X ≡ divE X ≡ m, so the left sides of these equations are m area(Mr)
and m area(Er). Adding equations (5) and (6) gives

(7) m area(M̃r) ≤
∫
∂Mr

x · ν∂Mr dS +

∫
∂Er

x · ν∂Er dS.
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Note that ∂Mr consists of two parts: M ∩ ∂Br and Γr. Likewise ∂Er consists of
E ∩ ∂Br and Γr. By combining the two integrals over M ∩ ∂Br and E ∩ ∂Br, and
by also combining the two integrals over Γr, we can rewrite (7) as

m area(M̃r) ≤
∫
∂M̃r

x · ν∂M̃r
ds+

∫
Γr

x · (ν∂Mr
+ ν∂Er

) ds.

By lemma 6, the second integrand is everywhere nonpositive. Thus

m area(M̃r) ≤
∫
x∈∂M̃r

x · ν∂M̃r
ds.

The rest of the proof is exactly the same as the proof of the monotonicity theorem.
�

Corollary 7. Let p ∈ M , Γ, and E = E(p,Γ) be as in the extended monotonicity
theorem. If p ∈M \ Γ, then 1 ≤ Θ(M ∪E), with equality if and only if M ∪E is a
multiplicity 1 plane, i.e., if only if M is a star-shaped region (with respect to p) in
an m-dimensional plane.

Proof. The proof is almost identical to the proof of theorem 4. �

As a consequence of the extended monotonicity theorem, we can show that a
minimal surface must stay reasonably close to its boundary:

Theorem 8. Let M be a compact m-dimensional minimal submanifold of Rn.
Then for p ∈M ,

mωm dist(p, ∂M)m−1 ≤ |∂M |.
where |∂M | is the (m−1)-dimensional measure of ∂M . Furthermore, equality holds
if and only if M is a flat m-disk centered at p with multiplicity 1.

Proof. We may assume that p = 0. Let Γ = ∂M , let C be the (entire) cone over Γ:

{tq : t ≥ 0, q ∈ Γ}

and let E = {tq : t ≥ 1, q ∈ Γ} be the exterior cone. Let Γ∗ be the result of radially
projecting Γ to ∂B(0, R), where R = dist(p, ∂M). Then by extended monotonicity,

(8) 1 ≤ Θ(M ∪ E) = Θ(C) = Θ(C, 0, R) =
1

ωRm
R

m
|Γ∗| ≤ |Γ|

mωmRm−1
,

which is the asserted inequality. Equality of the first two terms in (8) implies that
M ∪ E is a plane with multiplicity 1, and equality of the last two terms implies
that Γ∗ = Γ, which implies that the function dist(·, 0) is constant on Γ. �

The following corollary implies (for example) that two short curves bounding a
connected minimal surface cannot be too far apart:

Corollary 9. If M ⊂ Rn is a compact, connected m-dimensional minimal sub-
manifold such that Γ is the union of two (not necessarily connected) components
Γ1 and Γ2, then

dist(Γ1,Γ2) ≤ 2

(
|∂M |
mωm

)1/(m−1)

.
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Proof. Since the function dist(·,Γ1) − dist(·,Γ2) is negative on Γ1 and positive on
Γ2, there must be a point p ∈ M at which it vanishes. (Here dist denotes the
straight line distance in Rn.) Let

R = dist(p,Γ1) = dist(p,Γ2) = dist(p,Γ).

By the triangle inequality, dist(Γ1,Γ2) ≤ 2R, which is at most

2

(
|∂M |
mωm

)1/(m−1)

by theorem 8. �

In [EWW02], the extended monotonicity theorem was used to solve a long-open
problem in minimal surface theory: if Γ ⊂ R3 is a smooth, simple closed curve with
total curvature at most 4π, must the unique4 minimal immersed disk bounded by
Γ be embedded? (The total curvature of a smooth curve is the integral of the norm
of the curvature vector with respect to arclength.)

Theorem 10. [EWW02] Let M be an immersed minimal surface (possibly with
branch points 5) in Rn bounded by a smooth embedded curve Γ whose total curvature
is at most 4π. Then M is smoothly embedded (without branch points).

Proof. For simplicity, we give the proof for unbranched surfaces and for curves of
total curvature strictly less than 4π, and we prove only that M \ Γ has no points
of self-intersection. Let p be a point in M \ Γ. Let C and E be the cone and the
exterior cone over Γ with vertex p, as in the extended monotonicity theorem 5. It
is left as an exercise to the reader to show that

Θ(C) ≤ 1

2π
(the total curvature of Γ) .

(This is just a fact about the geometry of curves.) Thus by hypothesis, Θ(C) < 2.

If we let M̃ = M ∪ E as in the Extended Monotonicty Theorem 5, then Θ(M̃) =
Θ(C) < 2, so

Θ(M,p) = Θ(M̃, p) ≤ Θ(M̃) < 2.

Since Θ(M,p) is the number of sheets of M passing through p, we see that only
one sheet passes through p. Since p is an arbitrary point in M \Γ, we are done. �

We have not yet discussed branch points, but exactly the same argument rules
out interior branch points (i.e., branch points not in Γ): one only needs to know
the fact that the density of a minimal surface at a branch point is at least 2. That
fact is easily proved using the Weierstrass Representation (for example), which
will be discussed in Lecture 2. A similar argument rules out branch points and
self-intersections at the boundary.

Corollary 11 (Farey-Milnor Theorem). If Γ is a smooth, simple closed curve in
R3 with total curvature at most 4π, then Γ is unknotted.

4Nitsche [Nit73] had proved that a curve of total curvature less than 4π bounds a unique

minimal disk, and that the disk is smoothly immersed. Whether such a curve can bound a
minimal surface of nonzero genus is an interesting open question. Such curves can bound minimal

Möbius strips [EWW02]. Nitsche’s uniqueness theorem was extended to curves of total curvature

at most 4π by X. Li and Jost [LJ94].
5Branch points will be discussed in lecture 2.



12 BRIAN WHITE

Proof. Let M be a least-area disk bounded by Γ. (The disk exists by the Douglas-
Rado Theorem, which will be discussed in Lecture 4.) By theorem 10, M is a
smooth embedded disk. But for any smoothly embedded curve, bounding a smooth
embedded disk implies (indeed, is equivalent to) being unknotted. (To see the
implication, let F : D → M be a smooth, conformal parametrization of M by the
unit disk in R2. Then

h : (0, 1]× ∂D → R3,

h : (t, p) = F (tp)

provides an isotopy from Γ to small, nearly circular curves, which are clearly un-
knotted.) �

Theorem 10 is sharp: there exist smooth embedded curves, including unknot-
ted ones, that have total curvature slightly larger than 4π and that bound many
immersed minimal surfaces (see theorem 46). The Farey-Milnor Theorem is also
sharp: consider, for example, a trefoil knot that is a slight perturbation of a twice-
traversed circle.

One can also define total curvature for arbitrary continuous curves. Theorem 10
and corollary 11 remain true for continuous simple closed curves with total cur-
vature at most 4π. (The surface M will be embedded, though of course it will in
general be smoothly embedded only away from its boundary.) See [EWW02].

The isoperimetric inequality

The following fundamental theorem was proved by Allard [All72] (with a constant
that was allowed to depend on dimension n of the ambient space) and by Michael
and Simon [MS73]:

Theorem 12 (Isoperimetric inequality). Let M be a smooth, compact m-dimensional
submanifold of Rn. Then

|M | ≤ cm
(
|∂M |+

∫
M

|H| dS
)m/(m−1)

where M is the m-dimensional measure of M and |∂M | is the (m− 1)-dimensional
measure of ∂M .

See [CM11, 3§2], [Sim83, §18], or the original papers for the proof.6

Exercise: Prove the isoperimetric inequality for a two-dimensional
surface with connected boundary. (Use theorem 2.)

The value of the best constant in the isoperimetric inequality, even in the case
H ≡ 0 of minimal surfaces, is an interesting open problem. For minimal surfaces, it
is conjectured that the best constant is attained by a ball in anm-dimensional plane.
Almgren [Alm86] proved the conjecture assuming that M is area-minimizing. For
two-dimensional minimal surfaces, the conjecture has been proved in some cases,
such as when ∂M has at most two connected components [LSY84]. See [CS09] for
some more recent developments.

6In some of the references, the inequality is stated as a Sobolev inequality for a function u
that is compactly supported on M \∂M . The isoperimetric inequality follows by taking a suitable

sequence of such u’s that converge to 1 on M \ ∂M .
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2. Two-Dimensional Minimal Surfaces

The theory of two-dimensional surfaces has many features that do not general-
ize to higher dimensional manifolds. For example, every two-dimensional surface
with a smooth Riemannian metric admits local isothermal coordinates, i.e., can be
parametrized locally by conformal maps from domains in the plane.7

Relation to harmonic maps

Theorem 13. Let F : Ω ⊂ R2 → Rn be a conformal immersion. Then F (Ω) is
minimal if and only if F is harmonic.

Proof. One way to show this is to calculate that the mean curvature H is equal to
the Laplacian ∆gF of F with respect to the pullback by F of the metric on Rn.
(This is also true for immersions of m-dimensional manifolds M into general Rie-
mannian manifolds.) Thus M is minimal if and only if F is harmonic with respect
to the metric g. The theorem follows immediately because, for two-dimensional
surfaces, harmonic functions remain harmonic under conformal change of metric
on the domain. �

Corollary 14. Every two-dimensional C2 minimal surface in Rn is real-analytic.

This is also true for m-dimensional minimal submanifolds of Rn, but by a dif-
ferent proof.

Theorem 15 (Convex hull property). Let M be a two-dimensional minimal surface
in Rn.

(1) If φ : Rn → R is a C2 function, then φ|M cannot have a local maximum
at any point of M \ ∂M where D2φ is positive definite.

(2) If M is compact, then it lies in the convex hull of its boundary.

Proof. Let p ∈ M \ ∂M be a point at which D2φ is positive definite. Let F : D ⊂
R2 →M with F (0) = p be a conformal (and therefore harmonic) parametrization
of a neighborhood of M . Then (using y1, . . . , yn and x1, x2 as coordinates for Rn

and R2 and summing over repeated indices) one readily calculates by the chain rule
that

(9) ∆(φ ◦ F ) =
∂φ

∂yi
·∆Fi +

∂2φ

∂yi ∂yj

∂Fi
∂xk

∂Fj
∂xk

≥ λ|DF |2

since F is harmonic, where λ is the lowest eigenvalue of D2φ. This is strictly
positive at a point where D2φ is positive definite. Consequently (∂/∂xk)2(φ ◦ F )
must be positive for k = 1 and/or k = 2, which proves (1).

To prove (2), it suffices to show that that if ∂M lies in a closed ball, then so
does M , since the convex hull of ∂M is the intersection of all such balls. If this
failed for some ball B(p, r), then the function x ∈ M 7→ |x − p|2 would attain its
maximum at an interior point of M , contradicting (1). �

Theorem 15 is also true for m-dimensional minimal submanifolds of Rn by es-
sentially the same proof. (In particular, (9) is true at a point if ∆ denotes the
Laplacian with respect to the metric on M induced from Rn and if x1, . . . , xm are

7Existence of isothermal coordinates was proved by Gauss for analytic metrics in 1822, and
by Korn and by Lichtenstein for C1,α metrics in 1916. A number of other proofs have been given

subsequently. See, for example, lemma 1 and the paragraph following its proof in [DK81].
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normal coordinates at that point.) Theorem 15 is a special case of much more
general maximum principles for (possibly singular) minimal varieties. See for ex-
ample [Whi10].

Exercises:

(1) Suppose that M is a compact, simply connected, two-dimensional minimal
surface in Rn and that B ⊂ Rn is a ball. Prove that M ∩B is also simply
connected.

(2) In theorem 15, show that φ|M cannot have a local maximum at any point
of M \ ∂M at which the average of the two smallest eigenvalues of D2φ is
strictly positive. (Hint: show that the inequality (9) for harmonic, confor-
mal maps F remains true if we let λ denote the average of the smallest two
eigenvalues of D2φ.)

(3) Show that if M ⊂ R3 is a connected minimal surface contained in a region
N with smooth boundary, then M \ ∂M cannot touch ∂N at any point
where the mean curvature of ∂N is nonzero and points into N . (Hint: Let
φ be the signed distance function to ∂N such that φ < 0 in the interior of
N .)

(4) (For readers familiar with the strong maximum principle in partial differ-
ential equations.) Show in exercise (3) that if the mean curvature vector of
∂N is a nonnegative multiple of the inward unit normal at all points and
that if M \ ∂M touches ∂N , then M is contained in ∂N .

All four exercises generalize to m-dimensional minimal submanifolds. (In exer-
cise (1), replace “simply connected” by “having trivial (m − 1)th homology”. In
exercise (2), replace “smallest two eigenvalues” by “smallest m eigenvalues”.) Also,
theorem 15 and the exercises remain true for branched minimal surfaces (which will
be discussed in lecture 2).

Conformality of the Gauss map

Recall that if M is an oriented surface in R3, then its Gauss map n : M → S2

is the map that maps each point in M to the unit normal to M at that point.

Theorem 16. Let M be a minimal surface in R3. Then M is minimal if and only
if the Gauss map n : M → S2 is almost conformal and orientation-reversing.

Recall that a map F : M → N between Riemannian manifolds is almost confor-
mal provided

DF (p)u ·DF (p)v ≡ λ(p)u · v
for all u,v ∈ TanpM , where λ is a non-negative function. The map is conformal if
λ is everywhere positive.

In theorem 16, the orientation on S2 is the standard orientation, i.e., the orien-
tation given by the outward unit normal.

Proof. Let e1 and e2 be the principal directions of M at p ∈ M . Then {e1, e2}
is an orthonormal basis for TanpM and also for Tann(p) S2. With respect to this
basis, the matrix for Dn(p) is [

κ1 0
0 κ2

]
where κ1 and κ2 are the principal curvatures. �
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Total curvature

For any surface M ⊂ R3, the Gauss curvature K = κ1κ2 is the signed Jacobian
of the Gauss map. The total absolute curvature (which we will call the total
curvature, for short) of M is

TC(M) =

∫
M

|K| dS,

which is equal to the area (counting multiplicity) of the image of M under the
Gauss map:

TC(M) = area(n,M) =

∫
p∈S2

#n−1(p) dp.

If M is minimal, K ≤ 0, so

TC(M) =

∫
M

|K| dS = −
∫
M

K dS.

Theorem 17 (Osserman [Oss63]). Let M ⊂ R3 be a complete, connected, ori-
entable minimal surface of finite total curvature:

TC(M) =

∫
M

|K| dS =

∫
M

(−K) dS <∞.

Then

(1) M is conformally equivalent to a compact Riemann surface minus finitely
many points:

M ∼= Σ \ {p1, . . . , pk}.
(2) The Gauss map extends analytically to the punctures.
(3) There is a nonnegative integer m such that for almost every v ∈ S2, exactly

m points in M have unit normal n = v.
(4) The total curvature of M is a equal to 4πm.
(5) M is proper.

Properness means that if we go off to infinity in M , we also go off to infinity in
Rn. More precisely, we say that a sequence pi ∈M diverges in M if no subsequence
converges with respect to the induced arclength metric on M to a point in M . We
say that a sequence diverges in Rn if no subsequence converges with respect to the
metric on Rn. We say that M is a proper in Rn if every sequence pi ∈ M that
diverges in M also diverges in Rn.

For example, the curve C = {(x, sin(π/x) : x > 0} is not proper in R2: the
sequence (1/n, 0) ∈ C diverges in C but converges in R2. (The disconnected curve
C ∪ Y , where Y is the y-axis, also is not a proper submanifold of R2 for the same
reason.)

The catenoid M with a vertical axis of rotational symmetry (figure 2) provides
a good example of Osserman’s theorem. The Gauss map is a conformal diffeomor-
phism from M to S2 \ {NP,SP}, where NP = (0, 0, 1) and SP = (0, 0,−1) are
the north and south poles on S2. In particular, M is conformally diffeomorphic
(in this case by the map n) to a twice-punctured sphere. The Gauss map extends
continuously to the punctures. The total curvature is the area of the Gaussian
image, namely 4π.
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Figure 2. The catenoid has total curvature 4π.

Proof of Osserman’s Theorem. The first assertion is a special case of an intrinsic
theorem due to Huber [Hub57]: if M is a complete, connected surface such that∫

M

K− dS <∞

then M is conformally a punctured Riemann surface. Here

K− =

{
|K| if K ≤ 0

0 if K > 0.

To prove the second assertion, let us (for the moment) orient S2 by the inward-
pointing unit normal, so that the Gauss map becomes orientation preserving. Let
U ⊂ Σ be a neighborhood of one of the punctures, p. By Picard’s Theorem, either
n : U \ {p} → S2 ∼= C ∪ {∞} is meromorphic at p (and therefore extends to p), or
n : U \ {p} → S2 takes all but two values in S2 infinitely many times. The latter
implies that

∫
U
|K| dS =∞, a contradiction. Thus n extends continuously (indeed

analytically) to U .
We have shown that the Gauss map n : Σ→ S2 is holomorphic (with respect to

orientation on S2 induced by the inward unit normal.) Let m be its mapping degree.
Then assertion (3) holds by standard complex analysis or differential topology.

The fourth assertion (that the total curvature is 4πm) follows immediately, since

TC(M) =

∫
S2

#n−1(·) dS.

The last assertion (properness) can be proved using the Weierstrass Represen-
tation (discussed below). Alternatively, one can show that if S ⊂ R3 is a complete
surface diffeomorphic to a closed disk minus its center and if the slope of Tan(S, p)
is uniformly bounded, then S is proper in R3; see [Whi87a]. One applies this result
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to a small neighborhood in Σ of a puncture, on which one can assume (by rotating)
that the unit normal is very nearly vertical. �

Remarks. (1). Every multiple of 4π does occur as the total curvature of such a
surface. (2). For a proof of generalization of Osserman’s Theorem that does not
use Huber’s Theorem, see [Whi87a].

Osserman’s Theorem has an extension, due to Chern and Osserman [CO67], to
two-dimensional surfaces in Rn. All the conclusions remain true, except that the
total curvature8 is a multiple of 2π rather than of 4π. And every multiple of 2π
does occur as the total curvature of such a surface. For example,

{(z, w) ∈ C2 ∼= R4 : w = zn}.
is a complete, embedded minimal surface with total curvature 2π(n − 1). The
surface is minimal and indeed area minimizing by the Federer-Wirtinger theorem
(theorem 39). To see that it has total curvature 2π(n − 1), let Mr be the portion
of the surface with {|w| ≤ r}. Note that if r is large, then ∂Mr is very nearly a
circle of radius r traversed n times. Thus by the Gauss Bonnet theorem,

2πn ∼=
∫
∂Mr

k ds = 2π −
∫
Mr

K dS.

Letting r →∞ gives 2πn = 2π + TC(M).
Theorem 4 characterized the plane by its density at infinity. Using Osserman’s

Theorem, we can give another characterization of the plane:

Corollary 18. If M ⊂ R3 is a complete, orientable minimal surface of total cur-
vature < 4π, then M is a plane.

Proof. If the total curvature is less than 4π, it must be 0, so K ≡ 0. But for a
minimal surface in R3, K(p) = 0 implies that the principal curvatures at p are 0. �

Similarly, using the Chern-Osserman Theorem, one sees that a complete, ori-
entable minimal surface in Rn with total curvature < 2π must be a plane.

As will be explained in lecture 3, corollary 18 implies a useful curvature estimate
(theorem 23) for minimal surfaces.

The Weierstrass Representation

We have seen that immersed minimal surfaces in R3 are precisely those that
can be parametrized locally by conformal, harmonic maps F : Ω ⊂ R2 → R3.
Following work of Riemann, Weierstrass and Enneper9 independently found a nice
way to generate all such F .

Write z = x+ iy in R2, and

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

8Here we can take the total curvature to be the integral of the absolute value of the scalar
curvature. Since the scalar curvature is everywhere nonpositive, this is equal to minus the integral
of the scalar curvature. Since M is minimal, the scalar curvature is equal to − 1

2
|A|2, where |A|

is the norm of the second fundamental form, so we could also define the total curvature to be the

integral of 1
2
|A|2.

9In the interests of brevity, I use the conventional name “Weierstrass Representation” rather
than the more accurate “Enneper-Weierstrass Representation”.
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Note that if u is a map from Ω ⊂ R2 ∼= C to C (or more generally to Cn), then
uz = 0 if and only if u is holomorphic. (The real and imaginary parts of the
equation uz = 0 are precisely the Cauchy-Riemann equations for u.)

Note also that

∂

∂z

∂

∂z
=

1

4

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)
=

1

4

(
∂

∂x

2

+
∂

∂y

2)
=

1

4
∆.

Thus
F is harmonic ⇐⇒ Fzz = 0 ⇐⇒ Fz is holomorphic.

Concerning conformality, note that if we extend the Euclidean inner product
from Rn to Cn by making it complex linear in both arguments, then

Fz · Fz =
1

4
(Fx − iFy) · (Fx − iFy)

=
1

4

(
|Fx|2 − |Fy|2 − 2iFx · Fy

)
,

so the real and imaginary parts of Fz · Fz are

<(Fz · Fz) = |Fx|2 − |Fy|2 , =(Fz · Fz) = 2Fx · Fy.
Consequently, F is almost conformal if and only if Fz · Fz ≡ 0.

We have proved:

Theorem 19. Let F : Ω ⊂ C → Rn be a C2 map. Then F is harmonic if and
only if Fz is holomorphic, and F is almost conformal if and only if Fz · Fz ≡ 0.

Let φ = 2Fz = (φ1, φ2, φ3) ∈ C3. Our goal is to find holomorphic φ such that
φ · φ ≡ 0. We then recover F by

F = <
(∫

2Fz dz

)
= <

(∫
φdz

)
.

Note that φ(z) = 2Fz = Fx − iFy determines the oriented tangent plane to M
at F (z), and therefore the image n(z) of F (z) under the Gauss map, and thus the
image g(z) ∈ R2 ∼= C of n(z) under stereographic projection. Indeed, one can
check that

g(z) =
φ3

φ1 − iφ2
.

One can solve for φ1 and φ2 in terms of g and φ3:

φ1 =
1

2
(g−1 − g)φ3,

φ2 =
i

2
(g−1 + g)φ3.

Theorem 20 (Weierstrass Representation). Let Ω ⊂ C be simply connected, let
φ3 and g be a holomorphic function and a meromorphic function on Ω, and let η
be the one form φ3(z) dz. Suppose also that wherever g has a pole or zero of order
m, the function φ3 has a zero of order ≥ 2m. Then

(10) F (z) = <
∫ z (1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
η

is a harmonic, almost conformal mapping of Ω into R3.
Furthermore, every harmonic, almost conformal map F : Ω→ R3 arises in this

way, unless the image of F is a horizontal planar region.
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Figure 3. The catenoid has Weierstrass data η(z) = dz/z and
g(z) = z on C \ {0}. The helicoid has Weierstrass data η(z) = dz
and g(z) = eiz on C.

The function g may take the value∞ because the surface may have points where
the unit normal is (0, 0, 1). Thus g may have poles. At the poles and zeroes of g,
F would have poles unless φ3 has zeroes to counteract the poles of g−1 ± g. Hence
the condition about orders of poles and zeroes.

The “unless” proviso is needed because if F (Ω) is a horizontal planar region,
then g ≡ 0 or g ≡ ∞ and thus (10) does not make sense.

More generally, η and g can be any holomorphic differential and any meromor-
phic function on any Riemann surface Ω. But if Ω is not simply connected, the
expression (10) may be well-defined only on the universal cover of Ω. To be pre-
cise, the Weierstrass representation (10) gives a mapping of Ω (rather than of its
universal cover) if and only if the closed one forms

1

2
(g−1 − g)η,

i

2
(g−1 + g)η, and η

have no real periods.
Since g and φ3 (or η) determine the surface, all geometric quantities can be

expressed in terms of them. For example, the conformal factor λ is given by

λ = |Fx| = |Fy|,
so

|φ| = |Fx − iFy| =
√

2λ,

and thus (calculating |φ| from (10)) we have

(11) λ =
1√
2
|φ| = (|g|−1 + |g|)

2
|φ3|.

That is,

ds2 =

[
(|g|−1 + |g|)

2

]2

|φ3|2 |dz|2 =

[
(|g|−1 + |g|)

2

]2

|η|2
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One can also calculate the Gauss curvature:

K = −
[

4|g′|
|φ3g|(|g|−2 + |g|2)2

]2

= −
[

4

(|g|−2 + |g|2)2

∣∣∣∣dggη
∣∣∣∣]2

(Note: dg and gη are both meromorphic 1-forms, so their ratio is a meromorphic
function.) The points where F fails to be conformal are called branch points.
Using the expression (11) for the conformal factor, we can identify the branch
points:

Proposition 21. Suppose in theorem 20 that g has a pole or zero of order m ≥ 0
at p and that φ3 has a zero of order k ≥ 2m at p. Then F is an immersion at p if
and only k = 2m. Thus F has a branch point at p if and only if k > 2m.

The difference k − 2m is called the order of the branching at p. It is not hard
to show that for sufficiently small ε > 0, the density of F (B(p, ε)) at F (p) is 1 plus
the order of branching at p.

The geometric meaning of the Weierstrass data

As explained above, the function g in the Weierstrass representation has a simple
geometric meaning: it is the Gauss map (or, more precisely, the Gauss map followed
by stereographic projection to R2 ∪ {∞} ∼= C ∪ {∞}).

As for φ3, note by theorem 20 and the discussion preceding it that

φ3 = 2
∂F3

∂z
=
∂F3

∂x
− i ∂F3

∂y
,

where F = (F1, F2, F3). In other words, φ3 encodes the derivative of the height
function F3 with respect to the parametrization. More generally, as mentioned
above, if the domain of F is a Riemann surface, we should think of the Weierstrass
data as being g together with a holomorphic one form η (corresponding to φ3(z) dz.)
In this case,

η = 2 ∂F3,

where ∂ is the Dolbeault operator which (in any local holomorphic chart) is given
by ∂(·) = ∂

∂z (·) dz.
It can be difficult to determine for a particular g and φ3 (or g and η) whether the

real periods vanish and (if they do vanish) whether the resulting surface is embed-
ded. For those reasons, great ingenuity is often required to prove the existence of
specific kinds of embedded, genus g surfaces using the Weierstrass representation.

Part of the discussion above carries over without change to two-dimensional min-
imal surfaces in Rn. In particular, F : Ω ⊂ Rn is harmonic and almost conformal
if and only F can be written as

<
(∫

φdz

)
where φ = (φ1, . . . , φn) : Ω → Cn is a holomorphic map such that φ · φ ≡ 0.
Of course we can use the equation φ · φ ≡ 0 to express φ in terms of (n − 1)
holomorphic functions; those (n − 1) functions can then be chosen more-or-less
arbitrarily. See [Oss86, §12] for more details.

As an example of how the Weierstrass representation gives nontrivial informa-
tion about a surface, consider Enneper’s surface M (figure 4), i.e., the surface with
Weierstrass data η(z) = φ3(z) dz = z dz and g(z) = z on the entire plane. As
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Figure 4. Enneper’s surface has Weierstrass data η(z) = z dz and
g(z) = z. The surface is intrinsically rotationally symmetric about
the point z = 0.

suggested by the picture, there is a finite group of congruences of M , i.e., of isome-
tries of R3 that map M to itself. Though it is not evident from the picture, in
fact M has an infinite group of intrinsic isometries: M is intrinsically rotationally
symmetric about z = 0, since the metric depends only on |φ3| and |g|, which in this
case are both equal to |z|.

Rigidity and Flexibility

A surface M ⊂ R3 is flexible if it can be deformed (non-trivially) through a
one-parameter family of smooth isometric immersions. Otherwise it is rigid. (Here
“trivially” means “by rigid motions of R3”.) For example, a flat rectangle (or,
more generally, any planar domain) is flexible, as can be demonstrated by rolling
up a piece of paper. According to a classical theorem, every smooth, closed, convex
surface in R3 is rigid. Whether there exists a flexible smooth, closed, non-convex
surface M is a long-open problem.

Is a round hemisphere rigid? Perhaps there is no intuitive reason why it should
or should not be rigid. However, it (or, more generally, any proper closed subset of
any closed, uniformly convex surface) is flexible, as explained (if the closed surface
is a sphere) in [HCV52, §32.10]. On the other hand, in the surface z = (x2 + y2)3

(for example), arbitrarily small neighborhoods of the origin are rigid [Usm96]. So
whether particular surfaces are rigid or flexible can be rather subtle.

Now we impose an extra condition that makes flexing a surface much more
difficult: is there a non-trivial one-parameter family Ft : M → R3 of smooth
isometric immersions of a surface such that the unit normal at each point remains
constant? In other words, if n(p, t) is the unit normal to Ft(M) at Ft(p), we require
that n(p, t) be independent of t. If M0 = F0(M) is a planar region, for example,
the answer is “no”, since in that case the only allowed deformations are translations
and rotations about axes perpendicular to M0.

Intuitively, non-trivial isometric deformations keeping the normals constant should
be impossible. However, such deformation do exist for every simply connected, non-
planar minimal surface! In the Weierstrass representation, replace η by eiθη and
let θ vary. The metric depends only on |g| and |η|, so it does not change, and the
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Gauss map g also does not change. (The proof that the resulting deformations are
nontrivial for nonplanar M is left as an exercise.)

For example, if we start with the helicoid, this gives an isometric deformation of
the helicoid to the catenoid (covered infinitely many times). One may see anima-
tions of the deformation online, for example at

http://www.foundalis.com/mat/helicoid.htm,

http://www.indiana.edu/~minimal/archive/Classical/Classical/

AssociateCatenenoid/web/qt.mov,

and

http://virtualmathmuseum.org/Surface/helicoid-catenoid/helicoid-catenoid.

mov.

Incidentally, one can show that minimal surfaces are the only surfaces in R3

that can be isometrically deformed keeping the normals fixed, and that the one-
parameter family obtained by replacing η by eiθη is the only such deformation of a
minimal surface.

See [HK97] or [Web05] for more information about the Weierstrass Representa-
tion. (Note: in those works, the authors use dh to denote the holomorphic one-form
η. If one thinks of h as the height function on the surface, then their dh is not the
exterior derivative of h, but rather 2 ∂h. The exterior derivative of the height
function is the real part of their dh.)

http://www.foundalis.com/mat/helicoid.htm
http://www.indiana.edu/~minimal/archive/Classical/Classical/AssociateCatenenoid/web/qt.mov
http://www.indiana.edu/~minimal/archive/Classical/Classical/AssociateCatenenoid/web/qt.mov
http://virtualmathmuseum.org/Surface/helicoid-catenoid/helicoid-catenoid.mov
http://virtualmathmuseum.org/Surface/helicoid-catenoid/helicoid-catenoid.mov
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3. Curvature Estimates and Compactness Theorems

In many situations, one wants to take limits of minimal surfaces. For example,
David Hoffman, Martin Traizet, and I needed to do this in our recent work on genus-
g helicoids. For several centuries, the plane and the helicoid were the only known
complete, properly embedded minimal surfaces in R3 with finite genus and with
exactly one end.10 Jacob Bernstein and Christine Breiner [BB11] proved (using
work of Colding and Minicozzi) that any such surface other than a plane must be
asymptotic to a helicoid at infinity. (Later Meeks and Peréz [MP] gave a different
proof, also based on the work of Colding and Minicozzi.) Hence such a surface of
genus g is called an embedded genus-g helicoid.

But do embedded genus-g helicoids exist for g 6= 0? In 1992, Hoffman, Karcher,
and Wei [HKW93] used the Weierstrass Representation to prove the existence but
not the embeddedness of a genus-one helicoid. In 2004, Hoffman, Weber, and
Wolf [HWW09] proved existence of an embedded genus-1 helicoid as shown in
figure 5. (See [HW08] for a different, somewhat shorter proof.) Although genus-2
examples were found numerically as early as 1993 (see figure 6), existence was not
known rigorously until 2013, when Hoffman, Traizet, and I [HTWa,HTWb] proved
existence of embedded genus-g helicoids for every positive integer g. In our proof,
first we construct analogous surfaces in S2 ×R (which, oddly enough, turns out to
be easier), and then we get examples in R3 by letting the radius of the S2 tend to
infinity. Of course we need to know that the surfaces in S2 ×R converge smoothly
(after passing to subsequences) to limit surfaces in R3.

Figure 5. A genus-1 helicoid.

In general, it is very useful to have compactness theorems: conditions on a
sequence of minimal surfaces that guarantee existence of a smoothly converging
subsequence.

Theorem 22 (basic compactness theorem). Let Mi be a sequence of minimal sub-
manifolds of Rn (or of a Riemannian manifold) such that second fundamental forms
are uniformly bounded.

Then locally there exist smoothly converging subsequences.

In particular, if pi ∈ Mi is a sequence bounded in RN and if dist(pi, ∂Mi) ≥
R > 0, then (after passing to a subsequence),

Mi ∩B(pi, R)

10For a complete minimal surface M properly immersed in Rn, the number of ends is the limit

as r →∞ of the number of connected components of M \B(0, r). It follows from the convex hull
property (theorem 15) that the number of those components cannot decrease as r increases, and

thus that the limit exists.
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Figure 6. A genus-2 helicoid. (Picture by Martin Traizet (1993)).

converges smoothly to a limit minimal surface M∗. Here dist is intrinsic distance
in Mi, and B(pi, r) is the open geodesic ball of radius r in Mi.

The theorem (if interpreted properly) is also true when dist is exterior distance
and B(p, r) is the extrinsic open ball. In this case the conclusion is that there
is an r with 0 < r < R such that the connected component of Mi ∩ B(pi, r)
containing pi converges smoothly (after passing to a subsequence) to a limit surface
M∗. Furthermore, under rather mild hypotheses, the various M∗ will fit together
to form a nice surface. For example, if the Mi are properly immersed in an open
set Ω and if the areas of the Mi in compact subsets of Ω are uniformly bounded,
then a subsequence of the Mi converges smoothly in Ω to a limit surface that
is properly immersed in Ω. Even without area bounds, if the Mi are properly
embedded hypersurfaces in an open set Ω, then the M∗ fit together to form a
lamination11 of Ω in which the leaves are smooth minimal hypersurfaces.

Proof of the Basic Compactness Theorem in Rn. By scaling, we can assume that
the principle curvatures are bounded by 1, and that dist(pi, ∂Mi) ≥ π/2.

We can assume the pi converge to a limit p and that Tan(Mi, pi) converge to a
limit plane. Indeed, in Rn, we can assume by translating and rotating that pi ≡ 0
and that Tan(Mi, pi) is the horizontal plane through 0.

For each i, let Si be the connected component of

Mi ∩ (Bm(0, 1/2)×RN−m)

containing 0. The hypotheses imply that Si is the graph of a function

Fi : Bm(0, 1/2)→ RN−m

where the C2 norm of the Fi is uniformly bounded. Hence by Arzelá-Ascoli, we
may assume (by passing to a subsequence) that the Fi converge in C1,α to a limit
function F .

11A lamination is like a foliation except that gaps are allowed. For example, if S ⊂ R is an
arbitrary closed set, then the set of planes R2 × {z} where z ∈ S forms a lamination of R3 by

planes.
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So far we have not used minimality. Since the surfaces Mi are minimal, the Fi
are solutions to an elliptic partial differential equation (or system of equations if
n > m+ 1), the minimal surface equation (or system). According to the theory of
such equations, convergence in C1,α on Bm(0, 1/2) implies convergence in Ck,α on
Bm(0, 1/2− ε) (for any k and ε).

We have proved convergence in sufficiently small geodesic balls. We leave it to the
reader to piece such balls together to get the convergence of the Mi ∩B(pi, R). �

This theorem indicates the importance of curvature estimates: curvature esti-
mates for a class of minimal surfaces imply smooth subsequential convergence for
sequences of such surfaces.

The 4π curvature estimate

Theorem 23 (4π curvature estimate [Whi87b]). For every λ < 4π, there is a
C < ∞ with the following property. If M ⊂ R3 is an orientable minimal surface
with total curvature ≤ λ, then

|A(p)| distM (p, ∂M) ≤ C.

Here |A(p)| is the norm of the second fundamental form of M at p, i.e, the square
root of the sum of the squares of the principal curvatures at p, and distM denotes
intrinsic distance in M .

The theorem is false for λ = 4π, since the catenoid has total curvature 4π and
is not flat. (Earlier, Choi and Schoen [CS85] proved that there exists a λ > 0 and
a C <∞ for which the conclusion holds.)

Proof. It suffices to prove the theorem when M is a smooth, compact manifold with
boundary, since a general surface can be exhausted by such M .

Suppose the theorem is false. Then there is a sequence pi ∈Mi of examples with
total curvature TC(Mi) ≤ λ and with

(12) |Ai(pi)| dist(pi, ∂Mi)→∞.
(Throughout the proof, all distances are intrinsic, so we write dist rather than
distMi

.) We may assume that each pi has been chosen in Mi to maximize the left
side of (12). By translating and scaling, we may also assume that pi = 0 and that
|Ai(pi)| = 1, and therefore that dist(0, ∂Mi)→∞. We may also replace Mi by the
geodesic ball of radius Ri := dist(0, ∂Mi) about 0.

Thus we have

|Ai(0)| = 1,

Ri = dist(0, ∂Mi)→∞, and

|Ai(x)| dist(x, ∂Mi) ≤ dist(0, ∂Mi).

Now dist(0, x) + dist(x, ∂Mi) = dist(0, ∂Mi) = Ri, so

|Ai(x)| ≤ Ri
dist(x, ∂Mi)

=
Ri

Ri − dist(0, x)
≤ Ri
Ri − r

if dist(x, ∂Mi) ≤ r.
We have shown for each r that

sup
dist(x,0)≤r

|Ai(x)| ≤ Ri
Ri − r

→ 1.
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Hence the Mi converge smoothly by theorem 22 (the basic compactness theorem)
to a complete minimal surface M with |AM (0)| = 1.

Thus by corollary 18 (the corollary to Osserman’s Theorem), TC(M) ≥ 4π.
However, TC(M) ≤ lim infi TC(Mi) ≤ λ < 4π, a contradiction. �

Remark. The theorem is also true (with the same proof) in Rn, but with 4π
replaced by 2π. This is because Osserman’s theorem is also true in Rn, but with
4π replaced by 2π.

Theorem 23 can be generalized to manifolds in various ways. For example:

Theorem 24. Suppose that N is a 3-dimensional submanifold of Euclidean space
Rn with the induced metric. Let

ρ(N) = (sup |AN |+ sup |∇AN |1/2)−1.

For every λ < 4π, there is a C = Cλ,n < ∞ with the following property. If M is
an orientable, immersed minimal surface in N and if the total absolute curvature
of M is at most λ, then

|AM (p)| min{distM (p, ∂M), ρ(N)} ≤ C

for all p ∈M .

The proof is almost exactly the same as the proof of theorem 23. In particular,
we get a sequence pi ∈Mi ⊂ Ni with |AMi

(pi)| = 1 and with

min{distMi
(pi, ∂Mi), ρ(Ni)} → ∞.

The fact that ρNi
(pi)→∞ means that the Ni are converging (in a suitable sense)

to R3, so in the limit we get a complete minimal immersed surface M in R3, exactly
as in the proof of theorem 23.

A general principle about curvature estimates

Recall that we have proved:

(1) A complete, nonflat minimal surface in R3 has total curvature ≥ 4π.
(2) For any minimal M ⊂ R3 with TC(M) ≤ λ < 4π,

|A(p)|distM (p, ∂M) ≤ Cλ.

We deduced (2) from (1). But conversely, (2) implies (1): if theM in (1) is complete,
then dist(p, ∂M) = ∞, so |A(p)| = 0 according to (2). Thus (1) and (2) may be
regarded as global and local versions of the same fact.

The equivalence of statements (1) and (2) is an example of general principle: any
“Bernstein-type” theorem (i.e., a theorem asserting that certain complete minimal
surfaces must be flat) should be equivalent to a local curvature estimate. Indeed, the
Bernstein-type theorem in Euclidean space should imply a local curvature estimate
in arbitrary ambient manifolds (as in theorem 24).

An easy version of Allard’s Regularity Theorem

As an example of the general principle discussed above, consider the following:

(1) Global theorem: If M ⊂ Rn is a proper minimal submanifold without
boundary and if Θ(M) ≤ 1, then M is a plane.
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(2) Local estimate: there exist λ > 1, ε > 0, and C < ∞ with the following
property. If M ⊂ RN is minimal, dist(p, ∂M) ≥ R, and Θ(M,p,R) ≤ λ,
then

sup
x∈B(p,εR)

|A(q)|dist(q, ∂B(p, εR)) ≤ C,

where dist denotes Euclidean distance in Rn. (Hence |A(q)| ≤ 2C/(Rε) for
q ∈ B(p, εR/2).)

We have already proved statement (1) (see theorem 4). Statement (2) is a special
case of Allard’s Regularity Theorem.

Clearly (2) implies (1), and proof that (1) implies (2) is very similar to the
proof of the 4π curvature estimate (theorem 23). Furthermore, as suggested in
the discussion of the general principle above, statement (1) implies a version of
statement (2) in Riemannian manifolds.

Allard’s theorem (see [All72, §8] or [Sim83, §23–§24]) is much more powerful than
statement (2) because Allard does not assume that M is smooth: it can be any
minimal variety (“stationary integral varifold”). He concludes that M ∩B(p, εR) is
smooth (with estimates).12

Exercise: Provide the details of the proof that (1) implies (2).

Bounded total curvatures

For total curvatures that are bounded, but not bounded by some number λ < 4π,
we have the following theorem, which says that for a sequence of minimal surfaces
with uniformly bounded total curvatures, we get smooth subsequential convergence
except at a finite set of points where curvature concentrates:

Theorem 25 (Concentration Theorem [Whi87b]). Suppose that Mi ∈ Ω ⊂ Rn are
two-dimensional, orientable, minimal surfaces, that ∂Mi ⊂ ∂Ω, and that TC(Mi) ≤
Λ <∞.

Then (after passing to a subsequence) there is a set S ⊂ Ω of at most Λ
2π points

such that Mi converges smoothly in Ω\S to a limit minimal surface M . The surface
M ∪ S is a smooth, possibly branched minimal surface.

Now suppose that Ω ⊂ R3. Then S contains at most Λ
4π points. Also, if the

Mi are embedded, then M ∪ S is a smooth embedded surface (with multiplicity, but
without branch points.)

The theorem remains true (with essentially the same proof) in Riemannian man-
ifolds.

To illustrate the concentration theorem, let Mk be obtained by dilating the
catenoid by 1/k. Then Mk converges to a plane with multiplicity 2, and the con-
vergence is smooth except at the origin.

Of course, the concentration theorem is only useful if the hypothesis (uniformly
bounded total curvatures of the Mi) holds in situations of interest. Fortunately,
there are many situations in which the hypothesis does hold. For example, suppose

12I am describing Allard’s theorem specialized to minimal varieties. His theorem is stated
more generally for varieties with mean curvature in Lp where p can be any number larger than
the dimension of the variety. In this generality, the conclusion is not that M ∩B(p, ε) is smooth,

but rather that it is C1,α for suitable α. If the variety is minimal, smoothness then follows
by standard PDE arguments. The easy version of Allard’s Regularity Theorem first appeared
in [Whi05].
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the Mi ⊂ Rn all have the same finite topological type. Suppose also that the
boundary curves ∂Mi are reasonably well-behaved:

sup
i

∫
∂Mi

|κ∂Mi | ds <∞,

where κ∂Mi
denotes the curvature vector of the curve ∂Mi. (In other words, suppose

that the boundary curves have uniformly bounded total curvatures.) Then the
hypothesis supi TC(Mi) <∞ holds by the Gauss-Bonnet Theorem.

Proof of part of the concentration theorem in R3. Define measures µi on Ω by

µi(U) = TC(Mi ∩ U).

By passing to a subsequence, we can assume that the µi converge weakly to a limit
measure µ with µ(Ω) ≤ Λ.

Let S be the set of points p such that µ{p} ≥ 4π. Then |S| ≤ Λ
4π , where |S| is

the number of points in S.
Suppose x ∈ Ω \S. Then µ{x} < λ < 4π for some λ. Thus there is a closed ball

B = B(x, r) ⊂ Ω with µ(B) < λ. Hence

TC(Mi ∩B) = µi(B) < λ

for all sufficiently large i. Consequently, |Ai(·)| is uniformly bounded on B(x, r/2)
by the 4π curvature estimate (theorem 23).

Since |Ai(·)| is locally uniformly bounded in Ω \S, we get subsequential smooth
convergence on Ω \ S by the basic compactness theorem 22.

Let p ∈ S. By translation, we may assume that p is the origin. Note that we
can find B(0, ε) for which µ(B(0, ε) \ {0}) is arbitrarily small. It follows (by the
4π curvature estimate 23 and the basic compactness theorem 22) that if we dilate
M about 0 by a sequence of numbers tending to infinity, a subsequence of the
dilated surfaces converges smoothly on R3 \ {0} to a limit minimal surface with
total curvature 0, i.e., to a union of planes. By monotonicity, the number of those
planes is finite. It follows that (for small r), the surface M ∩ (B(0, r) \ {0}) is
topologically a finite union of punctured disks. In fact, it is not hard to show that
the smooth subsequential convergence of the dilated surfaces to planes implies that
the components of M ∩ (B(0, r) \ {0}) are not just topologically punctured disks,
but actually conformally punctured disks.

Let F : D \ {0} → R3 be a conformal (and therefore harmonic) parametrization
of one of those punctured disks. Since isolated singularities of bounded harmonic
functions are removable, in fact F extends smoothly to D. This proves that M ∪S
is a smooth (possibly branched) minimal surface.

Finally, one can show that if M ⊂ R3 is not an embedded surface (possibly
with multiplicity) then portions of it intersect each other transversely. (This is
true for any minimal surface in a 3-manifold.) But then the smooth convergence
Mi → M away from S implies that the Mi would also have self-intersections. In
other words, if the Mi are embedded, then M ∪ S is also embedded (possibly with
multiplicity). �

If the surfaces Mi in theorem 25 are simply connected, one can say more:

Theorem 26. Suppose in the concentration theorem that Mi ⊂ Ω ⊂ R3 and that
the Mi are embedded and simply connected. Then S = ∅.
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Proof. Suppose to the contrary that S contains a point p. Near p, the surface
M ∪ {p} is a smooth embedded surface with some multiplicity Q. Thus we can
choose a small closed ball B around p such that M ∩ ∂B is very nearly circular
and so that B ∩ S = {p}. The smooth convergence Mi → M away from S implies
that (for large i) Mi ∩ ∂B is the union of Q very nearly circular curves. (This is
where we use embeddedness of the Mi: if the Mi were not embedded, Mi ∩ ∂B
might contain a component that is perturbation of a circle transversed multiple
times.) By the convex hull property (see exercise (1) after theorem 15), Mi∩B is a
union of simply connected components. Since (for large i) each such component has
very nearly circular boundary, its total curvature is close to 0 by the Gauss-Bonnet
Theorem. But then the curvatures of the Mi are uniformly bounded on compact
subsets of the interior of B by the 4π curvature estimate (theorem 23). �

Theorem 26 and its proof generalize to Riemannian 3-manifolds, but one has to
be careful because in some 3-manifolds, simple connectivity of a minimal surface
M does not imply that the components of its intersection with a small ball (say
a geodesic ball) are simply connected. Thus one needs to make some additional
hypothesis. For example, one could assume that the ambient space is simply con-
nected and has non-positive sectional curvatures or, more generally, that for each
p ∈ Ω and r > 0, the set {x ∈ Ω : dist(x, p) ≤ r} has smooth boundary and that
the mean curvature vector of that boundary points into the set. (See exercise 3
after theorem 15).

To apply the concentration theorem, we need uniform local bounds on total
curvature. Such bounds are implied by uniform local bounds on genus and area:

Theorem 27. [Ilm95, Theorem 3] Let Ω be an open subset of a smooth Riemannian
manifold. Suppose that Mi are minimal surfaces in Ω with ∂Mi ⊂ ∂Ω. Suppose
also that

sup
i

genus(Mi) <∞

and that
sup
i

area(Mi ∩ U) <∞ for U ⊂⊂ Ω.

Then
sup
i
TC(Mi ∩ U) <∞ for U ⊂⊂ Ω.

Thus under the hypotheses of this theorem, we get the conclusion of the concen-
tration theorem: smooth convergence (after passing to a subsequence) away from
a discrete set S.

Note: Ilmanen’s Theorem 3 is about surfaces, not necessarily minimal, in Eu-
clidean space; it gives local bounds on total curvature (integral of the norm of
the second fundamental form squared) in terms of genus, area, and integral of the
square of the mean curvature. To deduce Theorem 27 from that result, isometrically
embed Ω into a Euclidean space.

Stability

Let M be a compact minimal submanifold of a Riemannian manifold. We say
that M is stable provided (

d

dt

)2

t=0

area(φtM) ≥ 0
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for all deformations φt with φ0(x) ≡ x and φt(y) ≡ y for y ∈ ∂M . For noncompact
M , we say that M is stable provided each compact portion of M is stable.

If M ⊂ Rn is an oriented minimal hypersurface and if X(x) =
(
d
dt

)
t=0

φt(x) is
a normal vectorfield, we can write X = uν where u : M → R and ν is the unit
normal vectorfield. Note that φt(x) = x for x ∈ ∂M implies that u ≡ 0 on ∂M .

Theorem 28 (The second variation formula). Under the hypotheses above,(
d

dt

)2

t=0

area(φtM) =
1

2

∫
M

(|∇u|2 − |A|2u2) dS

=
1

2

∫
M

(−∆u− |A|2)u dS.

To prove the theorem, one observes that(
d

dt

)2

area(φtM) =

∫ (
d

dt

)2

Jm(Dφt) dS,

and calculates
(
d
dt

)2
Jm(Dφt) as in the proof of the first variation formula. (In-

tegrate by parts to get the second expression from the first.) The formula re-
mains true in an oriented ambient manifold N , except that one replaces |A|2 by
|A|2 + RicciN (ν, ν) where ν is the unit normal vectorfield to M . See [Sim83, §9]
or [CM11, 1.§8], for example, for details.

The following theorem is one of the most important and useful facts about stable
surfaces. It was discovered independently by Do Carmo and Peng [dCP79] and by
Fischer-Colbrie and Schoen [FCS80]. A few years later Pogorelov gave another
proof [Pog81].

Theorem 29. (1) A complete, stable, orientable minimal surface in R3 must
be a plane.

(2) If M is a stable, orientable minimal surface in R3, then

|A(p)| dist(p, ∂M) ≤ C
for some C <∞.

As usual, (1) and (2) are equivalent. Also, a version of (2) holds in Riemannian
3-manifolds. In some ways, Fischer-Colbrie and Schoen get the best results, because
they get results in 3-manifolds of nonnegative scalar curvature that include (1) as
a special case. However, the proof below is a slight modification13 of Pogorelov’s.
First we prove some preliminary results.

Theorem 30 (Fischer-Colbrie/Schoen). Suppose M is an oriented minimal hyper-
surface in Rn. Then M is stable if and only if there is a positive solution of

∆u+ |A|2u = 0

on M \ ∂M .

This is actually a very general fact about the lowest eigenvalue of self-adjoint,
second-order elliptic operators (first proved by Barta for the Laplace operator).
In particular, theorem 30 is true in Riemannian manifolds with |A|2 replaced by
|A|2 + Ricci(ν, ν). See [FCS80] or [CM11, 1.§8, proposition 1.39] for the proof.

13Here corollary 33 is used in place of one of the lemmas that Pogorelov proves.
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Corollary 31. Let M be as in theorem 30. If M is stable, then so is its universal
cover.

Proof. Lift the function u from M to its universal cover. �

Proposition 32. Let M be a complete, simply connected surface with K ≤ 0. Let
A(r) = Ap(r) be the area of the geodesic ball Br of radius r about some point p.
Let

θ(M) = lim
r→∞

A(r)

πr2
.

Then

θ(M) = 1− 1

2π

∫
M

K dS = 1 +
TC(M)

2π
.

Note that θ(M) is an intrinsic analog of Θ(M), the density at infinity of a prop-
erly immersed minimal surface (without boundary) in Euclidean space discussed in
lecture 1.

Proof. Let L(r) be the length of ∂Br. Then A′ = L, so

A′′ = L′ =

∫
∂Br

k ds = 2π −
∫
Br

K dS.

(The formula for L′ is a special case of the first variation formula.) Thus

lim
r→∞

A′′(r) = 2π −
∫
M

K dS = 2π + TC(M).

The result follows easily. �

Corollary 33. If M (as above) is a minimal surface in R3 and if θ(M) < 3, then
M is a plane.

Proof. If θ(M) < 3, then TC(M) < 4π (by the proposition), and therefore M is a
plane (by corollary 18). �

Lemma 34 (Pogorelov). Let M ⊂ R3 be a simply connected, minimal immersed
surface. Suppose BR is a geodesic ball in M of radius R about some point p ∈ M
such that the interior of BR contains no points of ∂M , i.e., such that dist(p, ∂M) ≥
R.

If A(R) := area(BR) > 4
3πR

2, then BR is unstable.

Proof. We may assume that M = BR. To prove instability, it suffices (by the
second variation formula) to find a function u in BR with u|∂BR = 0 such that
Q(u) < 0, where

(13) Q(u) =

∫
M

(|∇u|2 − |A|2u2) dS =

∫
M

|∇u|2 dS + 2

∫
M

Ku2 dS

(The second equality holds because |H|2 = |A|2 + 2K for any surface.) Let r and
θ be geodesic polar coordinates in M centered at the point p. Thus the metric has
the form

ds2 = dr2 + g2 dθ2

for some nonnegative function g(r, θ) such that g(0, 0) = 0 and gr(0, 0) = 1. Recall
that the Gauss curvature is given by

K = −grr
g
.
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Thus the second integral in (13) becomes

Q2(u) =: 2

∫
M

u2K dS

= 2

∫ 2π

0

∫ R

0

u2Kg dr dθ

= −2

∫ 2π

0

∫ R

0

u2grr dr dθ.

Integrating by parts twice gives

(14)

Q2(u) = 4πu(0)2 − 2

∫ 2π

0

∫ R

0

(u2)rrg dr dθ

= 4πu(0)2 − 4

∫ 2π

0

∫ R

0

(ur)
2g dr dθ − 4

∫ 2π

0

∫ R

0

uurrg dr dθ

= 4πu(0)2 − 4

∫
M

(ur)
2 dS − 4

∫ 2π

0

∫ R

0

uurrg dr dθ.

Now let u(r, θ) = u(r) = (R − r)/R, so that u(r) decreases linearly from u(0) = 1
to u(R) = 0. Then the last integral in (14) vanishes, and (ur)

2 = |∇u|2 = 1/R2, so
combining (13) and (14) gives

Q(u) = 4π − 3

R2
A(R),

which is negative if A(R) > 4
3πR

2. �

Now we can give the proof of theorem 29:

Proof. By corollary 31, we may assume that M is simply connected. Suppose that
M is not a plane. Then by corollary 33,

θ(M) ≥ 3 >
4

3
,

so A(r)
πr2 > 4

3 for large r. But then M is unstable by lemma 34. �
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4. Existence and Regularity of Least-Area Surfaces

Our goal today is existence and regularity of a surface of least area bounded by a
smooth, simple closed curve Γ in RN . As mentioned in lecture 1, the nature of such
surfaces depends (in an interesting way!) on what we mean by “surface”, “area”,
and “bounded by”. There are different possible definitions of these terms, and
they lead to different versions of the Plateau problem.

In the most classical version of the Plateau problem: “surface” means “con-
tinuous mapping F : D → Rn of a disk”, “bounded by Γ” means “such that
F : ∂D → Γ is a monotonic parametrization”, and “area” means “mapping area”
(as in multivariable calculus):

A(F ) :=

∫
J(DF ) dS

where

J(DF ) =
√
|Fx|2|Fy|2 − (Fx · Fy)2.

(Fx = ∂F/∂y and Fy = ∂F/∂y.)

Theorem 35 (The Douglas-Rado Theorem). Let Γ be a smooth, simple closed
curve in RN . Let C be the class of continuous maps F : D → RN such that F |D is
locally Lipschitz and such that F : ∂D → Γ is a monotonic parametrization. Then
there exists a map F ∈ C that minimizes the mapping area A(F ). Indeed, there
exists such a map that is harmonic and almost conformal, and that is a smooth
immersion on D except (possibly) at isolated points (“branch points”).

Remark. The theorem remains true even if Γ is just a continuous simple closed
curve, provided one assumes that the class C contains a map of finite area. (If Γ is
smooth, or, more generally, if it has finite arclength, then C does contain a finite-
area map.) With fairly minor modifications, the proof presented below establishes
the more general result. See [Law80], for example, for details. Even more generally,
Douglas proved that C contains a harmonic, almost conformal map without the
assumption that C contains a finite-area map. Morrey [Mor48] generalized the
Douglas-Rado theorem by replacing Rn by a general Riemannian n-manifold N
under a rather mild hypothesis (“homogeneous regularity”) on the behavior of N
at infinity.

We say that a continuous map φ : ∂D → Γ is a monotonic parametrization
provided it is continuous, surjective, and has the following property: the inverse
image of each point in Γ is a connected subset of ∂D. Roughly speaking, this
means that if a point p goes once around ∂D, always moving in one direction (e.g.,
counterclockwise), then φ(p) goes once around Γ, always in one direction. (Note
that φ is allowed to map arcs of ∂D to a single points in Γ.)

Note that we need some condition on F to guarantee that A(F ) makes sense.
Requiring that F be locally Lipschitz on D is such a condition, since such an F
is differentiable almost everywhere by Rademacher’s Theorem. (Alternatively, one
could work in the Sobolev space of mappings whose first derivatives are in L2.)

The most natural approach for proving existence for this (or any other mini-
mization problem) is the “direct method”, which we describe now. Let α be the
infimum of A(F ) among all F ∈ C. Then there exists a minimizing sequence Fi,
i.e., a sequence Fi ∈ C such that A(Fi) → α. Now one hopes that there exists a
subsequence Fi(j) that converges to a limit F ∈ C with A(F ) = α.
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For the direct method to work, one needs two ingredients: a compactness theorem
(to guarantee existence of a subsequential limit F ∈ C), and lowersemicontinuity of
the functional A(·) (to guarantee that A(F ) = α.)

For the Plateau problem, a minimizing sequence need not have a convergent
subsequence14. For example, there exists a minimizing sequence Fi such that the
images Fi(D) converge as sets to all of RN :

(15) dist(p, Fi(D))→ 0 for every p ∈ RN .

(Think of Fi(D) as a flat disk with a long, thin tentacle attached near the center.
Even if the tentacle is very long, its area can be made arbitrarily small by making
it sufficiently thin. By making the tentacle meander more and more as i→∞, we
can arrange for (15) to hold, even though A(Fi) converges to the area of the flat
disk.)

One can also find a minimizing sequence Fi such that Fi |D converges pointwise
to a constant map. For example, suppose that Γ is the unit circle x2 + y2 = 1 in
the plane z = 0, and let

Fk : D ⊂ R2 → R3

Fk(x, y) = (x2 + y2)k(x, y, 0).

To avoid such pathologies, instead of using an arbitrary minimizing sequence, we
choose a well-behaved minimizing sequence. For that, we make use of the energy
functional. The energy of a map F : Ω ⊂ R2 → RN is

E(F ) =
1

2

∫
M

|DF |2 dS

where |DF |2 = |Fx|2 + |Fy|2.
We need several facts about energy:

Lemma 36 (Area-Energy Inequality). For F ∈ C,

A(F ) ≤ E(F ),

with equality if and only if F is almost conformal.

Proof. For any two vectors u and v in Rn,√
|u|2|v|2 − (u · v)2 ≤

√
|u|2|v|2 = |u| |v| ≤ 1

2
(|u|2 + |v|2),

with equality if and only if u are v orthogonal and have the same length. Apply
that fact to Fx and Fy and integrate. �

Lemma 37. Suppose F : D → RN is smooth and harmonic. Then

E(F ) ≤ E(G)

for all smooth G : D → RN with G|∂D = F |∂D, with equality if and only if G = F .

14In the geometric measure theory approach to Plateau’s problem, one works with a class of

surfaces and a suitable notion of convergence for which minimizing sequences do have convergent
subsequences. One disadvantage (compared to the classical approach described here) is that a

limit of simply connected surfaces need not not be simply connected.
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Proof. Let V = G− F . Then

E(G) = E(F + V )

= E(F ) + E(V ) +

∫
DF ·DV dS

= E(F ) + E(V )−
∫

∆F · V dS

= E(F ) + E(V ).

�

(The proof actually shows that the lemma holds for domains in arbitrary Rie-
mannian manifolds, and in the Sobolev space of mappings whose first derivatives
are in L2.)

Proof of the Douglas-Rado Theorem. Let α = inf{A(F ) : F ∈ C}. We begin with
four claims, each of which implies that we can find a minimizing sequence consisting
of functions in C with some additional desirable properties.

Claim 1. For every β > α, there is a smooth map F ∈ C with A(F ) < β.

Proof of claim 1. We will show that there is an F ∈ C such that F is Lipschitz on
D, such that F is smooth near ∂D, and such that A(F ) < β. The assertion of
claim 1 then readily follows by standard approximation theorems.

By definition of α, there is an G ∈ C with A(G) < β. Let R > 0 be the
reach of the curve Γ, i.e., the supremum of numbers ρ such that every point p with
dist(p,Γ) < ρ has a unique nearest point Π(p) in Γ. For δ < R/2, let Φδ : Rn → Rn

be the map

Φδ(p) =


p if dist(p,Γ) ≥ 2δ,

Π(p) if dist(p,Γ) ≤ δ, and

Π(p) +
(

dist(p,Γ)
δ − 1

)
(p−Π(p)) if δ ≤ dist(p,Γ) ≤ 2δ.

Then for every δ ∈ (0, R), the map Φδ◦G is in the class C. Furthermore, A(Φδ◦G)→
A(G) as δ → 0. Now let F = Φδ ◦G for a δ > 0 small enough that A(F ) < β.

Note that there is an r with 0 < r < 1 such that F maps the annular region
A := {z : r ≤ |z| ≤ 1} to Γ: F (A) = Γ. Now it is straightforward to modify
the definition of F on A so that F (A) remains Γ, so that F is Lipschitz, and so
that F is smooth near ∂D and maps ∂D diffeomorphically to ∂D. (Note that this
modification does not change A(F ).) �

Claim 2. If β > α, then there exists a smooth map G ∈ C with E(G) ≤ β.

Since A(G) ≤ E(G) for every map G, claim 2 is stronger than claim 1.

Proof of claim 2. By claim 1, there is a smooth map F ∈ C with A(F ) < β. Al-
though F is smooth, its image need not be a smooth surface. That is, F need not
be an immersion. To get around this, for δ > 0, we define a new map

Fδ : D → Rn ×R2 ∼= Rn+2,

Fδ(z) = (F (z), δz).

By choosing δ small, we can assume that A(Fδ) < β.
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Now Fδ(D) is a smooth, embedded disk. Hence (by existence of conformal
coordinates and the Riemann mapping theorem), we can parametrize Fδ(D) by a
smooth conformal map Φ : D → RN . Let G = Π ◦ Φ, where Π : Rn ×R2 → Rn

is the projection map. Then

E(G) ≤ E(Φ) = A(Φ) = A(Fδ) < β,

where E(Φ) = A(Φ) by conformality of Φ and where A(Φ) = A(Fδ) because Φ and
Fδ parametrize the same surface. �

Claim 3. For every β > α, there is a smooth harmonic map F ∈ C such that
E(F ) ≤ β.

Proof of claim 3. By claim 2, there is a smooth map G ∈ C with E(G) < β. Now
let F : D → Rn be the harmonic map with the same boundary values as G. By
lemma 37, E(F ) ≤ E(G) < β. �

Claim 4. Let a, b, and c be three distinct points in ∂D, and let â, b̂, and ĉ be three
distinct points in Γ. For every β > α, there is a smooth harmonic map F ∈ C such

that E(F ) < β and such that F maps a, b, and c to â, b̂, and ĉ.

Proof. By claim 3, there is a smooth harmonic map F ∈ C such that E(F ) < β. Let

a′, b′, and c′ be points in ∂D that are mapped by F to â, b̂, and ĉ. Let u : D → D be
the unique conformal diffeomorphism that maps a, b, and c to a′, b′, and c′. Then
F ◦ u has the desired properties. (For any map F with a two-dimensional domain
and for any conformal diffeomorphism u of the domain, note that E(F ) = E(F ◦u),
and that if F is harmonic, then so is F ◦ u.) �

By claim 4, we can find a sequence of smooth, harmonic maps Fi ∈ C such that

E(Fi)→ α = inf
F∈C

A(F ).

Furthermore, we can choose the Fi so that they map a, b, and c in ∂D to â, b̂, and
ĉ in Γ.

By the maximum principle for harmonic functions (applied to L ◦ Fi, for each
linear function L : Rn → R), the Fi are uniformly bounded:

(16) max
D
|Fi(·)| = max

∂D
|Fi(·)| = max

p∈Γ
|p|.

Thus by passing to a subsequence, we can assume that the Fi converge smoothly
on the interior of the disk15 to a harmonic map F . However, we need uniform
convergence on the closed disk.

Claim (Equicontinuity). The maps Fi are equicontinuous.

Proof of equicontinuity. Suppose not. Then (by the smooth convergence on the
interior) there exist point pi ∈ ∂D and qi ∈ D such that

δi := |pi − qi| → 0

15For readers not familiar with this fact about harmonic maps (which holds more generally for

solutions of second-order linear elliptic partial differential equations under mild conditions on the

coefficients), note that each coordinate of Fi is the real part of a holomorphic function. By (16),
those holomorphic functions take values in a strip in the complex plane, and hence form a normal

family.
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and such that |Fi(pi)−Fi(qi)| 6→ 0. By passing to a subsquence (and by relabeling,
if necessary) we may assume that the pi converge to a point p ∈ ∂D that does not
lie on the closed arc joining b to c (and disjoint from a.) Let E = supiE(Fi). By
the Courant-Lebesgue Lemma (lemma 38 below), there exist arcs

Ci = D ∩ ∂B(pi, ri)

with ri ∈ [δi,
√
δi] such that the arclength Li of F |Ci satisfies

Li ≤

√
8πE

| ln(δi)|

which tends to 0 as i→∞.
Let Di = D ∩B(pi, ri). The boundary of Di consists of two arcs, Ci and an arc

C ′i in ∂D, namely B(pi, ri)∩∂D. The two arcs have the same endpoints. Since the
length of F (Ci) tends to 0, the distance between the endpoints tends to 0.

Thus F (C ′i) is an arc in Γ, and the distance between the endpoints tends to 0.
Thus, for large i, F (Ci) is either a (i) very short arc in Γ or (ii) all of Γ except for
a very short arc. Since F (C ′i) contains F (p) and (for large i) is disjoint from the

arc in Γ joining b̂ to ĉ, in fact F (Ci) must be very short arc in Γ: its length tends
to 0 as i→∞.

We have shown that the arclength and therefore the diameter16 of F (∂Di) tends
to 0. By the maximum principle for harmonic functions, Fi(Di) is contains in the
convex hull of Fi(∂Di), so the diameter of Fi(Di) tends to 0. Therefore |F (pi) −
F (qi)| → 0. This completes the proof of equicontinuity. �

By equicontinuity, we can (by passing to a subsequence) assume that the Fi
converge uniformly on D to a limit map F . As already mentioned, F is harmonic
on the interior. The uniform convergence implies that F ∈ C, so

α ≤ A(F ) ≤ E(F ) ≤ lim inf E(Fi) ≤ α.

Since A(F ) = E(F ), the map is almost conformal. �

Lemma 38 (Courant-Lebesgue Lemma). Let Ω ⊂ R2 and F : Ω → Rn be a map
with energy E. Let p be a point in R2 and let L(r) be the arclength of F |∂B(p, r).
Then ∫ ∞

0

L(r)2

r
dr ≤ 4πE.

Consequently,

min
a≤r≤b

L(r)2 ≤ 4πE

ln(b/a)
.

Proof. It suffices to consider the case p = 0. Using polar coordinates,

|DF |2 = |Fr|2 +
1

r2
|Fθ|2 ≥

1

r2
|Fθ|2.

16The diameter of a subset of a metric space is the supremum of the distance between pairs
of points in the subset.



38 BRIAN WHITE

Thus

L(r)2 =

(∫ 2π

0

Fθ dθ

)2

≤ 2π

∫ 2π

0

|Fθ|2 dθ.

≤ 2πr2

∫ 2π

0

|DF |2 dθ.

Therefore ∫
L(r)2

r
dr ≤ 2π

∫ ∞
r=0

∫ 2π

θ=0

|DF |2 r dθ dr = 4πE.

�

Boundary regularity

The Douglas-Rado Theorem produces an almost conformal, harmonic map F
that is continuous on the closed disk and is such that F |∂D gives a monotonic
parametrization of the curve Γ. It is not hard to show that any such map (whether
or not it minimizes area) cannot be constant on any arc of ∂D. (See for example
[Oss86, lemma 7.4] or [Law80, proposition 11].) It follows from the monotonicity of
F |∂D that F : ∂D → Γ is a homeomorphism. Later, every such map was proved to
be smooth on the closed disk provided Γ is smooth. Roughly speaking, such a map
F : D → Rn turns out to be as regular as Γ. For example, if Γ is Ck,α for some k ≥ 1
and α ∈ (0, 1), then so is F , and if Γ is analytic, then so is F . (Lewy first proved
that minimal surfaces in Rn with analytic boundary curves are analytic up to the
boundary. The fundamental breakthrough was due to Hildebrandt [Hil69], who, in
the case of area-minimizing surfaces, extended Lewy’s result to arbitrary ambient
manifolds and who also proved the corresponding result for C4 boundaries. Later
Heinz and Hildebrandt [HH70] proved such results for surfaces that are minimal
but not necessarily area minimizing. See also [Kin69].)

Branch points

Let F : D → RN be a non-constant, harmonic, almost conformal map (such as
given by the Douglas-Rado theorem).

Recall that harmonicity of F means that the map Fz = 1
2 (Fx − iFy) from D

to Cn is holomorphic. Thus Fz can vanish only at isolated points. Those points
are called “branch points”. Away from the branch points, the map is a smooth,
conformal immersion.

Using the Weierstrass representation, it is easy to give examples of minimal
surfaces with branch points. (The branch points are the points where g has a pole
of order m (possibly 0) and where ν has a zero of order strictly greater than 2m.)
But are there area-minimizing examples? The following theorem implies that there
are such examples in Rn for n ≥ 4:

Theorem 39 (Federer, following Wirtinger). Let M be a complex variety in Cn.
Then (as a real variety in R2n) M is absolutely area minimizing in the following
sense: if S is a compact portion of M , and if S′ is an oriented variety with the
same oriented boundary as S, then area(S) ≤ area(S′).
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Here “with the same oriented boundary” means that ∂S′ = ∂S and that S′

and S induce the same orientation on the boundary. For the proof, see [Fed65] or
[Law80, pp. 37–40].

Using the Federer-Wirtinger Theorem, we can give many examples of branched,
area-minimizing surfaces. For example, the map

F : D ⊂ R2 ∼= C2 → R4 ∼= C2

F (z) = (z2, z3)

has a branch point at the origin and is area-minimizing by the Federer-Wirtinger
Theorem.

Whether there exist any examples other than the ones provided by the Federer-
Wirtinger Theorem is a very interesting open question. In other words, must a
connected least-area surface with a true17 branch point in R2n ∼= Cn be holomor-
phic after a suitable rotation of R2n? The paper [MW95] is suggestive in this
regard.

The theorems of Gulliver and Osserman

Osserman and Gulliver proved in R3 (or more generally in any Riemannian 3-
manifold) that the Douglas-Rado solution cannot have any interior branch points.18

Thus (away from the boundary), the map F is a smooth immersion.
Whether the map F in the Douglas-Rado Theorem can have boundary branch

points (for a 3-dimensional manifold) is one of longest open questions in minimal
surface theory. Using the Federer-Wirtinger Theorem, one can give examples in
Rn for n ≥ 4, such as

F : {x+ iy : x ≥ 0} → C2 ∼= R4

F (z) = (z3, e−1/
√
z).

There are some situations in which boundary branch points are known not to
occur:

(1) If Γ lies on the boundary of a compact, strictly convex region in Rn. In
this case, one need not assume area minimizing: minimality suffices. (The
proof is a slight modification of the proof of theorem 15, together with the
Hopf boundary point theorem.)

(2) If Γ is a real analytic curve in Rn or more generally in an analytic Rie-
mannian manifold [Whi97].

Higher genus surfaces

Let Γ be a simple closed curve in Rn. Does Γ bound a least-area surface of genus
one? Not necessarily. Consider a planar circle Γ in R3. By the convex hull principle
(theorem 15), Γ bounds only one minimal surface: the flat disk M bounded by Γ.
We can take a minimizing sequence of genus one surfaces, but (for this example) in
the limit, the handle shrinks to point, and we end up with the disk.

17A branch point p ∈ D of F is called false if there is a neighborhood U of p such that the

image F (U) is a smooth, embedded surface. Otherwise the branch point is true. For example, if
F : D ⊂ C→ Rn is a smooth immersion, the z 7→ F (z2) has a false branch point at z = 0.

18Osserman ruled out true branch points in R3, and Gulliver extended Osserman’s result to
3-manifolds and also ruled out false branch points. Alt [Alt72] independently proved some of

Gulliver’s results. See [CM11], [Law80], [DHS10], or the original papers for details.
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Technically speaking, the planar circle does bound a least area genus 1 suface
in the sense of mappings. Let Σ be a smooth genus 1 surface consisting a a disk
with a handle attached. There is a smooth map F : Σ → M that collapses the
handle to the center p of the disk M bounded by Γ, and that maps the rest of Σ
diffeomorphically to M \ {p}. However, there is no “nice” area-minimizing map
F : Σ → R3 with boundary Γ. For example, there is no such map that is an
immersion except at isolated points.

Definition. Let Γ be a smooth, simple closed curve in Rn. Let α(g) be the infimum
of the area of genus g surfaces bounded by Γ.

Proposition 40. α(g) ≤ α(g − 1).

Proof. Take a surface of genus g−1 whose area is close to α(g−1), and then attach
a very small handle. �

Theorem 41 (Douglas19). If α(g) < α(g − 1), then there exists a domain Σ con-
sisting of a genus g Riemanan surface with an open disk removed, and a continuous
map

F : Σ→ Rn

that is harmonic and almost conformal in the interior of F , that maps ∂Σ mono-
tonically onto Γ, and that has area A(F ) equal to α(g).

The proof is similar to the proof of the Douglas-Rado Theorem, but more com-
plicated because not all genus g domains are conformally equivalent. For example,
up to conformal equivalence, there is a 3-parameter family of genus-one domains
with one boundary component. As a result, we have to vary the domain as well as
the map.

The Douglas theorem can be restated slightly informally as follows:

Theorem 42. Let g be a nonnegative integer. The least area among all surfaces
of genus ≤ g bounded by Γ is attained by a harmonic, almost conformal map.

Proof (using the Douglas Theorem). Let k be the smallest integer such that α(k) =
α(g). Then 0 ≤ k ≤ g. If k = 0, then the Douglas-Rado solution is a disk that
attains the desired infimum α(g) = α(0). If k > 0, then α(k) < α(k − 1), so
the genus k surface given by the Douglas Theorem attains the desired infimum
α(g) = α(k). �

The theorems of Gulliver and Osserman also hold for these higher genus surfaces:
in R3 (and in 3-manifolds) they must be smooth immersions except possibly at the
boundary.

Summary: For a fixed genus g and curve Γ, we cannot in general minimize area
among surfaces of genus equal to g and get a nice surface: minimizing sequences
may converge to surfaces of lower genus. However, we can always minimize area
among surfaces of genus ≤ g: the minimum will be attained by a harmonic, almost
conformal map. Intuitively, the Douglas theorem is true because when we take the
limit of a minimizing sequence of genus g surfaces, we can loose handles but we
cannot gain them.

19It seems that Douglas never gave a complete proof of “Douglas’s Theorem”. A result very

similar to Douglas’s Theorem, but for minimal surfaces without boundary in Riemannian mani-
folds, was proved by Schoen and Yau [SY79]. Later, Jost [Jos85] gave a complete proof of Douglas’s

original theorem.
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What happens as the genus increases?

Fix a smooth, simple closed curve Γ in R3. As above, we let α(g) denote the
least area among genus g surfaces bounded by Γ. According to proposition 40, α(g)
is a decreasing function of g. The following provides a sufficient condition for α(g)
to be strictly less than α(g − 1). (Recall that by the Douglas Theorem, the strict
inequality implies existence of a least-area genus g surface bounded by Γ.)

Theorem 43. Suppose M ⊂ R3 is a minimal surface of genus (g − 1) bounded
by Γ. Suppose also that M \ Γ is not embedded. Then Γ bounds a genus g surface
whose area is strictly less than the area of M . In particular, if area(M) = α(g−1),
then α(g) < α(g − 1).

Proof. One can show that if M \ Γ is not embedded, then there is a curve C along
which two portions of M cross transversely. (There may be many such curves.)
We will use that fact without proof here. Note that we can cut and paste M along
an arc of C to get a new surface M∗. There are two ways to do the surgery:
one produces an orientable surface and the other a non-orientable surface. We
do the surgery that makes M∗ orientable. The new surface is piecewise smooth
but not smooth. It has the same area as M and has genus g. By rounding the
corners of M∗, we can make a new genus g surface whose area is strictly less than
area(M∗) = area(M). �

Theorem 44. For each g, there exists a smooth, simple closed curve Γ in R3 such
that α(0) > α(1) > · · · > α(g), and such that for every k < g, each genus-k least
area surface is non-embedded.

Proof. The genus of a simple closed curve in R3 is defined to be the smallest genus
of any embedded minimal surface bounded by the curve. Using elementary knot
theory, one can show that there are smooth curves of every genus. Let Γ be such
a curve of genus g. For k = 0, 2, . . . , g − 1, let Mk be a least-area surface of genus
≤ k bounded by Γ, so that area(Mk) = α(k). Since Γ has genus g > k, the surface
Mk cannot be embedded. Therefore α(k + 1) < α(k) by theorem 43. �

Actually, the relevant notion is not the genus of Γ, but rather the “convex hull
genus” of Γ: the smallest possible genus of an embedded surface bounded by Γ and
lying in the convex hull of Γ.

Theorem 45 (Almgren-Thurston [AT77]). For every ε > 0 and for every positive
integer g, there exists a smooth, unknotted, simple closed curve Γ in R3 whose
convex hull genus is g and whose total curvature is less than 4π + ε.

(Recall that the total curvature of a smooth curve is the integral with respect to
arclength of the norm of the curvature vector.)

Later Hubbard [Hub80] gave a beautiful, very simple proof of this theorem and
gave an explicit formula for calculating the convex hull genus of a large, interesting
family of curves.

Theorem 46. For every ε > 0 and for every positive integer g, there exists a
smooth, unknotted simple closed curve Γ in R3 with total curvature ≤ 4π + ε such
that α(0) > α(1) > · · · > α(g), and such that for every k < g, each genus-k least
area surface is non-embedded.



42 BRIAN WHITE

Proof. Let Γ be a curve satisfying the conclusion of theorem 45. By the convex hull
property (theorem 15), any embedded minimal surface bounded by Γ has genus
≥ g. The rest of the proof is exactly the same as the proof of theorem 44. �

However, for a smooth curve, eventually the function α(·) must stabilize accord-
ing to the following theorem of Hardt and Simon [HS79]:

Theorem 47. Let Γ be a smooth simple closed curve in R3. Let α = inf α(·) be
the infimum of the areas of all orientable surfaces bounded by Γ. Then

(1) The infimum is attained, and any surface that attains the infimum is smoothly
embedded (including at the boundary).

(2) The set of surfaces that attain the infimum is finite.

In particular, if g is the genus of a surface that attains the infimum, then the
α(g) ≡ α(k) for all k ≥ g.

On the other hand, one can construct a simple closed curve Γ that is smooth
except at one point such that α(g) > α(g + 1) for all g. For example, take such a
curve of infinite genus or or even just of infinite convex hull genus, or see [Alm69]
for an example (due to Fleming [Fle56]) for which α(·) is strictly decreasing and
for which the Douglas solutions are all embedded. Indeed, all kinds of pathologies
can happen once one allows a point at which the curve is not smooth:

Theorem 48. [Whi94, 1.3] There exists a simple closed curve Γ in ∂B(0, 1) ⊂ R3

and a number A <∞ such that Γ is smooth except at one point p and such that the
following holds: for every area a ∈ [A,∞], for every genus g with 0 ≤ g ≤ ∞, and
for every index I with 0 ≤ I ≤ ∞, the curve Γ bounds uncountably many embedded
minimal surfaces that are smooth except at p and that have area a, genus g, and
index 20 of instability I.

This is in sharp contrast to the case of an everywhere smooth, simple closed
curve Γ in the boundary of a convex set in R3. For such a curve, one can show that
for each genus g <∞, the set of embedded genus-g minimal surfaces bounded by Γ
is compact with respect to smooth convergence [Whi87b]. It follows that (for each
g) the set of possibly indices of instability is finite. With a little more work, one
can show that the set of areas of such surfaces (for each g) is a finite set. Of course,
if Γ is smooth, then the areas of all the minimal surfaces (regardless of genus) are
bounded above according to theorem 2.

Embeddedness: The Meeks-Yau Theorem

Theorem 49 (Meeks-Yau [MY82]). Let N be a Riemannian 3-manifold and let
F : D → N be a least-area disk (parametrized almost conformally) with a smooth
boundary curve Γ. Suppose F (D) is disjoint from Γ. Then F is a smooth embedding.

The disjointness hypothesis holds in many situations of interest. In particular,
it holds if Γ lies on the boundary of a compact, convex subset of R3. (This follows
from the strong maximum principle.) More generally, it holds if N is a a compact,
mean convex 3-manifold and if Γ lies in ∂N . (Mean convexity of N means that the
mean curvature vector at each point of the boundary is a nonnegative multiple of
the inward unit normal.)

20See, for example, [CM11, 1.8] for the definition and the basic properties of the index.
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Idea of the proof. Suppose M is immersed but not embedded. One can show that
it contains an arc along which it intersects itself transversely. One can cut and
paste M along such arcs to get a new piecewise smooth (but not smooth) surface

M̃ . Such surgery is likely to produce a surface of higher genus (as in the proof of
theorem 43). However, Meeks and Yau show that it is possible to do the surgery

(simultaneously on many arcs) in such a way that M̃ is still a disk. Thus

area(M̃) = area(M),

so M̃ is also area minimizing. However, where M̃ has corners, one can round the
corners to get a disk with less area than M̃ , a contradiction. �
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