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APPLICATION TO MEAN CURVATURE FLOW

BRIAN WHITE

Abstract

We prove under suitable hypotheses that convergence of integral varifolds implies con-
vergence of associated mod 2 flat chains and subsequential convergence of associated
integer-multiplicity rectifiable currents. The convergence results imply restrictions on
the kinds of singularities that can occur in mean curvature flow.

1. Introduction

Let U be an open subset of RN . Let Lm-rec(U, Z+) denote the space of functions
on U that take values in nonnegative integers, that are locally L1 with respect to
Hausdorff m-dimensional measure on U , and that vanish except on a countable disjoint
union of m-dimensional C1-submanifolds of U . We identify functions that agree
except on a set of Hausdorff m-dimensional measure zero. Let Lm-rec(U, Z2) be the
corresponding space with the nonnegative integers Z+ replaced by Z2, the integers
mod 2.

The space of m-dimensional integral varifolds in U is naturally isomorphic to
Lm-rec(U, Z+): given any such varifold V , the corresponding function is the density
function �(V, ·) given by

�(V, x) = lim
r→0

μV (B(x, r))

ωmrm
,

where μV is the radon measure on U determined by V and ωn is the volume of the unit
ball in Rm. In particular, this limit exists and is a nonnegative integer for Hm-almost
every x ∈ U .

Similarly, the space of m-dimensional rectifiable mod 2 flat chains in U is naturally
isomorphic to Lm-rec(U, Z2): given any such flat chain A, the corresponding function

DUKE MATHEMATICAL JOURNAL
Vol. 148, No. 1, c© 2009 DOI 10.1215/00127094-2009-019
Received 15 May 2008. Revision received 8 November 2008.
2000 Mathematics Subject Classification. Primary 49Q15; Secondary 53C44.
Author’s research supported by National Science Foundation grants DMS-0406209 and DMS-0707126.

41



42 BRIAN WHITE

is the density function �(A, ·) given by

�(A, x) = lim
r→0

μA(B(x, r))

ωmrm
= lim

r→0

M(A ∩ B(x, r))

ωmrm
,

where μA is the radon measure on U determined by A. In particular, this limit exists
and is 0 or 1 for Hm-almost every x ∈ U .

The surjective homomorphism

[·] : Z+ → Z2,

k �→ [k]

determines a homomorphism from Lm-rec(U, Z+) to Lm-rec(U, Z2) and thus also a
homomorphism from the additive semigroup of integral varifolds in U to the additive
group of rectifiable mod 2 flat chains in U . If V is such a varifold, we let [V ] denote
the corresponding rectifiable mod 2 flat chain. Thus [V ] is the unique rectifiable mod
2 flat chain in U such that

�([V ], x) = [�(V, x)]

for Hm-almost every x ∈ U .
Although in some ways integral varifolds and rectifiable mod 2 flat chains are

similar, the notions of convergence are quite different. Typically (and throughout this
article), convergence of varifolds means weak convergence as radon measures on
U × Gm(RN ) (where Gm(RN ) is the set of m-dimensional linear subspaces of RN ),
and convergence of flat chains means convergence with respect to the flat topology
(see Section 4). A sequence V (i) of integral varifolds may converge even though the
associated flat chains [V (i)] do not converge. Similarly, the flat chains [V (i)] may
converge even though the varifolds V (i) do not. Furthermore, the V (i) and [V (i)]
may converge to limits V and A, respectively, with A �= [V ] (see Section 2.4 for
examples).

This article identifies an important situation in which convergence of integral
varifolds implies convergence of the corresponding mod 2 flat chains to the expected
limit. In practice, one often proves existence of convergent sequences of integral
varifolds by appealing to Allard’s compactness theorem (described in Section 3). Here
we prove that if a sequence of integral varifolds with limit V satisfies the hypotheses of
Allard’s compactness theorem plus one additional hypothesis, then the corresponding
mod 2 flat chains converge to [V ].

THEOREM 1.1
Let V (i) be a sequence of m-dimensional integral varifolds in an open set U of RN

that converges to a limit V . Suppose that
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(1) the V (i) satisfy the hypotheses of Allard’s compactness theorem for integral
varifolds, and

(2) the boundaries ∂[V (i)] of the mod 2 flat chains [V (i)] converge in the flat
topology.

Then the chains [V (i)] converge in the flat topology to [V ].

I do not know whether hypothesis (2) is really necessary.
There is an analogous theorem with rectifiable currents in place of mod 2 flat

chains. Suppose that A is an m-dimensional integer-multiplicity rectifiable current in
U and that V is an m-dimensional integral varifold in U . Recall that A determines an
integral varifold v(A) by forgetting orientations (see [Si, Section 27]). We say that A

and V are compatible provided that

V = v(A) + 2W

for some integral varifold W in U . Thus A and V are compatible if and only if they
determine the same mod 2 rectifiable chain. Equivalently, A and V are compatible
provided that

�(V, x) − �(A, x)

is a nonnegative, even integer for Hm-almost every x ∈ U .
The analog of Theorem 1.1 for integer-multiplicity currents is the following

theorem.

THEOREM 1.2
Let V (i) and A(i) be sequences of m-dimensional integral varifolds and integer-
multiplicity currents, respectively, in U , such that V (i) and A(i) are compatible for
each i. Suppose that the V (i) satisfy the hypotheses of Allard’s compactness theorem
for integral varifolds. Suppose also that the boundaries ∂A(i) converge (in the integral
flat topology) to a limit current. Then there is a subsequence i(k) such that the V (i(k))
converge to an integral varifold V , the A(i(k)) converge to a limit integer-multiplicity
current A, and A and V are compatible.

The existence of a subsequence for which the limits V and A exist follows im-
mediately from Allard’s compactness theorem for integral varifolds and from the
Federer-Fleming compactness theorem for integer-multiplicity currents. What is new
here is the compatibility of the limits A and V .



44 BRIAN WHITE

2. Preliminaries

2.1. Terminology
For mod 2 flat chains, see Fleming’s original paper [Fl] or, for a different approach,
Federer’s book [Fe, Section 4.2.26]. Unfortunately (for the purposes of this article), a
multiplicity [1] plane does not qualify as a mod 2 flat chain under either definition.∗

By contrast, a multiplicity 1 plane does qualify as an integral varifold. Thus, in order
for the map V �→ [V ] (as described in Section 1) to be a homomorphism from integral
varifolds to mod 2 flat chains, one must either restrict the class of varifolds or enlarge
the class of flat chains.

If one prefers to restrict, then one should (throughout this particle) replace “vari-
fold” with “compactly supported varifold” and “flat chain” with “compactly supported
flat chain.” (Federer’s flat chains are automatically compactly supported, but Fleming’s
need not be.) Likewise, Lm-rec(U, Z+) and Lm-rec(U, Z2) should be replaced by the
subsets consisting of compactly supported functions. In particular, the main theorem,
Theorem 3.3, remains true with those replacements.

However, in this article we have chosen instead to enlarge the class of flat chains.
Fortunately, only a slight modification in Fleming’s definition (or Federer’s) is required
to produce the enlarged class of flat chains. (Flat chains so defined would, in the
terminology of [Fe], be called “locally flat chains” However, although locally flat
chains over the integers are briefly mentioned in [Fe, Section 4.1.24], the mod 2
versions are not.)

See Section 4 for the required modification.
When the coefficient group is the integers (with the standard metric), the “correct”

class of flat chains is defined in [Si], and the rectifiability and compactness theorems
are proved there.

2.2. Notation
Suppose that M is a Borel subset of a properly embedded m-dimensional C1-
submanifold of U , or of a countable union of such manifolds. If M has locally
finite Hm measure, we let [M] denote the mod 2 flat chain associated to M , and we let
v(M) denote the integral varifold associated to M . More generally, if f : M → Z+

is a function such that the extension

F : U → Z+,

F (x) =
{

f (x) if x ∈ M,

0 if x ∈ U \ M

∗Federer’s definition requires that a flat chain have compact support, and Fleming’s definition requires that a flat
chain have finite flat norm.



CURRENTS, FLAT CHAINS, AND VARIFOLDS 45

is in Lm-rec(U, Z+), then we let v(M, f ) be the integral varifold in U corresponding
to F .

2.3. Pushforwards
Suppose that V is an integral varifold in U and that φ : U → W is a C1-map that is
proper on U ∩ spt(μV ). Then the pushforward φ#V is also an integral varifold in W ,
and it satisfies

�(φ#V, y) =
∑

φ(x)=y

�(V, x) (1)

for Hm-almost every y ∈ W .
Similarly, if A is a rectifiable mod 2 flat chain in U , and if φ : U → W is locally

Lipschitz and proper on U ∩ spt μA, then the image chain φ#A satisfies

[�(φ#A, y)] =
∑

φ(x)=y

[�(A, x)] (2)

for Hm-almost every y ∈ W .
Note that (2) determines �(φ#A, y) for Hm-almost every y since its value is 0 or

1 almost everywhere. In other words, for Hm-almost every y ∈ W ,

�(φ#A, y) =
{

1 if
∑

φ(x)=y �(A, y) is odd,

0 if the sum is even.
(3)

Together (1) and (3) imply that

φ#[V ] = [φ#V ].

We need pushforwards only in the special cases where φ is a dilation or an affine
projection.

2.4. Examples
Although they are not needed in this article, some examples illustating the differences
between flat chain convergence and varifold convergence may be instructive.

First, consider a sequence of smooth, simple closed curves Ci lying in a compact
region of R2 such that the lengths tend to infinity but the enclosed areas tend to zero.
Let Vi = v(Ci) be the corresponding one-dimensional integral varifolds. Then the
varifolds Vi do not converge, but the corresponding mod 2 flat chains [Vi] converge
to zero.

Next, let

Jn =
⋃ {[ k

2n
,
k + 1

2n

]
: k odd, 0 < k < 2n

}
, (4)
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and let

Sn = Jn ×
{ 0, 1

(2n)

}
⊂ R2.

Thus Sn consists of 2n horizontal intervals, each of length 1/(2n). Let Vn = v(Sn) be
the corresponding integral varifold. Then the Vn converge to v(I ), where

I = {(x, 0) : 0 ≤ x ≤ 1}. (5)

However, the corresponding mod 2 flat chains [Vn] do not converge. To see this,
suppose to the contrary that the [Vn] converge to a limit chain T . Let f, g : R2 → R

be the projections given by f (x, y) = x and g(x, y) = x − y. Then f#[Vn] = 0, and
g#[Vn] = [[0, 1]]. Passing to the limit, we get

f#T = 0, g#T = [[0, 1]]. (6)

However, T is clearly supported in I , and f |I = g|I , so f#T = g#T (by (2)),
contradicting (6). This proves that the [Vn] do not converge.

For a final example, let

Qn = Jn ×
[
0,

( 1

n2

)]
,

where Jn is given by (4). Thus Qn is the union of n closed rectangles, each with
base 1/(2n) and height 1/n2. Let Vn be the one-dimensional varifold associated to
the set-theoretic boundary of Qn: Vn = v(∂Qn). Then the Vn converge to V = v(I ),
where I is given by (5), but the flat chains [Vn] converge to zero since the area of Qn

tends to zero. Thus the varifolds Vn converge to V and the chains [Vn] converge to
zero, but [V ] �= 0.

3. Proofs of the main results

Let V (i) be a sequence of m-dimensional varifolds in an open subset U of RN . If the
V (i) converge to a varifold V , then of course

lim sup μV (i)W < ∞ for all W ⊂⊂ U . (7)

Conversely, if (7) holds, then the V (i) have a convergent subsequence (by the com-
pactness theorem for radon measures).

Definition 3.1
Suppose that V (i), i = 1, 2, 3, . . . , and V are m-dimensional varifolds in an open
subset U of RN . In this article, we say that V (i) converges with locally bounded first
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variation to V provided that V (i) → V as varifolds and

lim sup
i→∞

‖δV (i)‖(W ) < ∞ (8)

for every W ⊂⊂ U .

To understand the definition, the reader may find it helpful to recall that if V is the
mutiplicity 1 varifold associated to a smooth, embedded manifold with boundary M ,
then

‖δV ‖(W ) = Hm−1(W ∩ ∂M) +
∫

M∩W

|H (x)| dHmx,

where H (x) is the mean curvature vector of M at x. Thus, for a sequence V (i) of
such integral varifolds, condition (8) means that the areas of the boundaries and the
L1-norms of the mean curvature are uniformly bounded on compact subsets of U (see
[A] or [Si, Section 39] for the general definition of ‖δV ‖).

The following closure theorem of Allard is one of the key results in the theory of
varifolds (see [A, Theorem 6.4] or [Si, Section 42.8]).

THEOREM 3.2
If V (i) is a sequence of integral varifolds that converges with locally bounded first
variation to V , then V is also an integral varifold.

Here we prove the following theorem.

THEOREM 3.3
Suppose that V (i) is a sequence of integral varifolds that converges with locally
bounded first variation to an integral varifold V . If the boundaries ∂[V (i)] converge
(as mod 2 flat chains) to a limit chain �, then

[V (i)] → [V ],

and therefore ∂[V ] = �.

The last assertion (∂[V ] = �) follows because the boundary operator is continuous
with respect to flat convergence.

The result is already interesting in the case where ∂[V (i)] = 0 for all i.
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Proof
Since V is rectifiable, there is a countable union

⋃
M of m-dimensional C1 embedded

manifolds such that

μV

(
U\

⋃
M

)
= 0

Without loss of generality, we may assume that the manifolds in M are disjoint.
By the compactness theorem for flat chains of locally finite mass (see

Theorem 4), a subsequence of the [V (i)] converges to such a flat chain A. (Here and
throughout the proof, “flat chain” means “mod 2 flat chain.”) Using the rectifiability
theorem (see Theorem 4), we can conclude that A is rectifiable.

We remark that one may prove rectifiability of A directly (without invoking
Theorem 4). One sees this as follows. By the lower-semicontinuity of mass with
respect to flat convergence, the inequality

μ[V (i)] ≤ μV (i)

implies that

μA ≤ μV (9)

and therefore that

μA

(
RN\

⋃
M

)
≤ μV

(
RN\

⋃
M

)
= 0. (10)

Hence A is rectifiable.
To show that A = [V ], it suffices by (9) to show that

�(μV , x) − �(μA, x) is an even integer (11)

for μV -almost every x ∈ U . By (10), it suffices to show that (11) holds for μV -almost
every x ∈ ∪M.

For Hm-almost x ∈ ⋃
M (and therefore in particular for μV -almost every

x ∈ ⋃
M), we have

ηx,λ#V → �(V, x)v(P ),

ηx,λ#A → �(A, x)[P ]
(12)

as λ → 0, where P is the tangent plane at x to the unique M ∈ M that contains x.
Here ηx,λ : RN → RN is translation by −x followed by dilation by 1/λ:

ηx,λ(y) = 1

λ
(y − x).
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The proof of [Si, Lemma 42.9] shows that μV -almost every x has an additional
property, namely,

lim inf
i

‖δV (i)‖B(x, r) ≤ crm for all r ∈ (0, 1), (13)

where c = c(x) < ∞.
We complete the proof by showing that if x has properties (12) and (13), then

�(V, x) and �(A, x) differ by an even integer.
For each fixed λ,

ηx,λ#V (i) → ηx,λ#V,

ηx,λ#A(i) → ηx,λ#A.
(14)

Thus a standard diagonal argument (applied to (12) and (14)) shows that there is
a sequence N(i) → ∞ such that if n(i) ≥ N (i) for all i and if

Ṽ (i) = ηx,1/iV
(
n(i)

)
,

then

Ṽ (i) → �(V, x)v(P ),

[Ṽ (i)] → �(A, x)[P ].
(15)

Choose ri → 0 so that

Ri = iri → ∞.

im−1rm
i → 0

(e.g., one can let ri = i−α where (m − 1)/m < α < 1.) By (13), we can choose
n(i) ≥ N(i) so that ∥∥δV (n(i))

∥∥B(0, ri) < crm
i .

Thus ∥∥δṼ (i)
∥∥B(0, Ri) = im−1

∥∥δV (n(i))
∥∥B(0, ri)

< cim−1rm
i

which tends to 0 as i → ∞ by choice of ri . Consequently,

‖δṼ (i)‖ → 0 (16)

as radon measure.
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Thus we are done if we can show that (15) and (16) imply that �(V, x)−�(A, x)
is an even integer. That is, we have reduced the theorem to the special case described
in the following lemma.

LEMMA 3.4
Suppose that
(i) a sequence V (i) of integral varifolds converges to the varifold V = nv(P ),

where n is a nonnegative integer and P is an m-dimensional linear subspace
of RN ;

(ii) the radon measures ‖δV (i)‖ converge to zero;
(iii) the associated mod 2 flat chains [V (i)] converge to A = a[P ], where a ∈ Z2.

Then a = [n].

Proof
We may assume that P = Rm × (0)N−m ⊂ RN . Let

π : RN ∼= Rm × RN−m → Rm (17)

be the orthogonal projection map.
Hypothesis (iii) implies that for almost every R > 0,

[V (i)]�BN (0, R) → a[P ] ∩ BN (0, R) = a[P ∩ BN (0, R)]. (18)

We can assume that this is the case for R = 1. (Otherwise, dilate by 1/R.) We write
B for BN (0, R) = BN (0, 1).

Let W (i) = V (i)�B. By (18),

[π #W (i)] = π#[W (i)] → a[Bm], (19)

where Bm = Bm(0, 1). Also,

W (i) → V �B = nv(P ∩ B),

and therefore

π #W (i) → nv(Bm). (20)

Note that

π#W (i) = v(Bm, θ i), (21)

where

θ i(x) =
∑

y∈B∩π−1x

�
(
W (i), y

)
.
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From hypotheses (i) and (ii), it follows that

LmQi → 0, (22)

where

Qi = {
x ∈ Bm : θ i(x) �= n

}
. (23)

(This is a very nontrivial fact. Indeed, it is a key part of the proof given in [Si] of the
closure theorem for integral varifolds. See Remark 3.5 for a more detailed discussion.)

Now

[π#W (i)] = [{x ∈ Bm : θ i(x) is odd}].
Thus

[π #W (i)] − [nv(Bm)] = [{x ∈ Bm : θ i(x) − n is odd}],
and so (by (22) and (23))

M
(
[π#W (i)] − [nv(Bm)]

) ≤ Lm(Qi) → 0.

Consequently,

[π#W (i)] → [nv(Bm)].

This together with (19) implies that a[Bm] = [nv(Bm)] and thus that a = [n]. �

This completes the proof of Theorem 3.3. �

Remark 3.5
Here we elaborate on statement (22) of the proof above, because it may not be
immediately apparent to one who reads [Si] that the lemma we cite, [Si, Lemma 42.9],
does actually justify that step. Note that∫

Bm

θ i → nLm(Bm) (24)

by (20) and (21). Let ε > 0. Write

θ i(x) = Fi,ε(x) + Gi,ε(x), (25)

where

Fi,ε(x) =
∑{

�(W (i), y) : y ∈ B ∩ π−1(x), |y| < ε
}
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and

Gi,ε(x) =
∑ {

�(W (i), y) : y ∈ B ∩ π−1(x), |y| ≥ ε
}
.

Now ∫
Gi,ε → 0 (26)

since W (i) → nv(P ). This together with (24) implies that∫
Fi,ε → nLm(Bm). (27)

According to [Si, Lemma 42.9],

lim sup
i→∞

∫
Bm

(Fi,ε − n)+ dLm ≤ ω(ε) (28)

for some function ω(·) such that ω(ε) → 0 as ε → 0.
(Note that there is a mistake in the statement of [Si, Lemma 42.9]; instead of (28),

it asserts the weaker inequality

lim sup
i→∞

Lm
{
x ∈ Bm : Fi,ε(x) > n

} ≤ ω(ε).

However, the proof of [Si, Lemma 42.9] establishes the stronger statement (28).
Indeed, the stronger statement is essential in the proof of Allard’s integrality theorem
(see [Si, Section 42.8]). In particular, the stronger statement is used in line (8) of that
proof.)

From (27) and (28), we see that

lim sup
i→∞

∫
Bm

|Fi,ε − n| dLm ≤ 2 ω(ε).

This together with (26) and (25) implies that

lim sup
i→∞

∫
Bm

|θ i − n| dLm ≤ 2 ω(ε). (29)

Letting ε → 0 gives

lim sup
i→∞

∫
Bm

|θ i − n| dLm = 0,

and thus (since θ i is integer valued)

lim
i→∞

Lm{x ∈ Bm : θ i(x) �= n} = 0.
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THEOREM 3.6
Suppose that V (i) is a sequence of integral varifolds that converge with locally
bounded first variation to an integral varifold V . Suppose that A(i) is a sequence
of integer-multiplicity rectifiable currents such that V (i) and A(i) are compatible. If
the boundaries ∂A(i) converge (in the integral flat topology) to a limit integral flat
chain �, then there is a subsequence i(k) such that the A(i(k)) converge to an integer-
multiplicity rectifiable current A. Furthermore, V and A must then be compatible,
and ∂A must equal �.

The proof is exactly analogous to the proof of Theorem 3.3. Alternatively, one can
argue as follows. The existence of a subsequence A(i(k)) that converges to an integer-
multiplicity rectifiable current A follows from the compactness theorem for such
currents (see Theorems 4 and 4). The “furthermore” statement then follows immedi-
ately from Theorem 3.3, together with the observation that an integral varifold and an
integer-multiplicity rectifiable current are compatible if and only if they determine the
same mod 2 rectifiable flat chain.

4. Application to mean curvature flow

Here we show how the results of this article rule out certain kinds of singularities
in mean curvature flows. In another article, we will use similar arguments to prove,
under mild hypotheses, boundary regularity at all times for hypersurfaces moving by
mean curvature.

On both theoretical and experimental grounds, grain boundaries in certain an-
nealing metals are believed to move by mean curvature flow (see [B, Appendix A]).
In such metals, one typically sees triple junctions where three smooth surfaces come
together at equal angles along a smooth curve. Of course one also sees such triple
junctions in soap films, which are equilibrium solutions to mean curvature flow.

Consider the following question. Can an initially smooth surface evolve under
mean curvature flow so as later to develop triple junction type singularities? More
generally, can such a surface have as a blow-up flow (i.e., a limit of parabolic blow-
ups) a static configuration of k half-planes (counting multiplicity) meeting along
a common edge? Using Theorem 3.3, we can (for a suitable formulation of mean
curvature flow) prove that the answer is “no” if k is odd.

Suppose thatM is a Brakke flow, Xi is a sequence of spacetime points converging
to X = (x, t) with t > 0, and λi is a sequence of numbers tending to infinity. Translate
M in spacetime by −Xi and then dilate parabolically by λi to get a flow Mi . A blow-
up flow of M is any Brakke flow that can be obtained as a subsequential limit of such
a sequence.



54 BRIAN WHITE

Let I ⊂ R be an interval, typically either [0, ∞) or all of R. Recall that a Brakke
flow t ∈ I �→ V (t) of varifolds is called an integral Brakke flow provided that V (t)
is an integral varifold for almost all t ∈ I (see [B, Section 3] or [I, Section 6] for the
definition of Brakke flow).

Definition 4.1
Let t �→ V (t), t ∈ I , be an integral Brakke flow in U ⊂ RN . We say that V (·) is
cyclic mod 2 (or cyclic for short) provided that ∂[V (t)] = 0 for almost every t ∈ I .

More generally, suppose W is an open subset of U and J is a subinterval of I .
We say that the Brakke flow V (·) is cyclic mod 2 in W × J if for almost all t ∈ J ,
[V (t)] has no boundary in W .

We have the following.

THEOREM 4.2
Suppose t �→ Vi(t) is a sequence of integral Brakke flows that converge as Brakke
flows to an integral Brakke flow t �→ V (t). If the flows Vi(·) are cyclic mod 2, then so
is the flow V (·). If the flows Vi(·) are cyclic mod 2 in W × J , then so is the flow V (·).

Here convergence as Brakke flows means that for almost all t ,

μVi (t) → μV (t), (30)

and

there is a subsequence i(k) (depending on t) such that Vi(k)(t) → V (t). (31)

(This definition may seem peculiar, but this is precisely the convergence that occurs
in Ilmanen’s compactness theorem for integral Brakke flows [I, Section 7].)

Theorem 4.2 follows immediately from Theorem 3.3 and the following lemma
(which is implicit in [I] but is not actually stated there).

LEMMA 4.3
Suppose that t ∈ I �→ Vi(t) is a sequence of Brakke flows in U ⊂ RN that converges
to a Brakke flow t �→ V (t). Then, for almost every t ∈ I , there is a subsequence
i(k) such that Vi(k)(t) converges with locally bounded first variation to V (t). Indeed,
we can choose the subsequence so that δVi(k) is absolutely continuous with respect to
μVi(k)

and so that

sup
i(k)

∫
x∈W

∣∣H (Vi(k)(t), x)
∣∣2

dμVi(k)(t)x < ∞

for every W ⊂⊂ U , where H (Vi(k)(t), ·) is the generalized mean curvature of Vi(k)(t).
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Proof
For simplicity, let us assume that I = [0, ∞).

Recall that for almost all t , the varifold Vi(t) has bounded first variation, and the
singular part of the first variation measure is zero. Thus (for such t)

‖δVi(t)‖(W ) =
∫

W

|Hi,t | dμi,t ≤
( ∫

W

|Hi,t |2 dμi,t

)1/2(
μi,t (W )

)1/2
, (32)

where Hi,t is the generalized mean curvature of Vi(t) and μi,t = μVi (t).
Consider first the case where the varifolds Vi(t) are all supported in some compact

set. Then the initial total masses M(Vi(0)) = μVi (0)(R
N ) are bounded above by some

C < ∞. Since mass decreases under mean curvature flow, the same bound holds for
all t > 0. By definition of Brakke flow,

Dt M
(
Vi(t)

) ≤ −
∫ ∣∣H (Vi(t), ·)

∣∣2
dμVi (t),

so ∫
t∈I

∫ ∣∣H (Vi(t), ·)
∣∣2

dμVi (t) dt ≤ C. (33)

Thus by Fatou’s theorem,∫
t∈I

(
lim inf

i

∫ ∣∣H (Vi(t), ·)
∣∣2

dμVi (t)

)
dt ≤ C.

In particular,

lim inf
i

∫ ∣∣H (Vi(t), ·)
∣∣2

dμVi (t) < ∞

for almost every t . For each such t , there is a subsequence i(k) such that

sup
k

∫ ∣∣H (Vi(k)(t), ·)
∣∣2

dμVi(k)(t) < ∞.

This together with (32) implies that the Vi(k)(t) converge with locally bounded first
variation to V (t) (in the sense of Definition 3.1).

The general case (noncompactly supported varifolds) is essentially the same,
except that instead of (33) one uses the local bound

sup
i

∫
t∈J

∫
x∈W

∣∣H (Vi(t), x)
∣∣2

dμVi (t) dt < ∞
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together with the mass bound

sup
i

sup
t∈J

μVi (t)(W ) < ∞,

both of which hold for all intervals J ⊂⊂ I and open subsets W ⊂⊂ U (see [E,
Proposition 4.9]). �

Remark 4.4
The lemma and Allard’s closure theorem (Theorem 3.2) imply that a limit of integral
Brakke flows is also integral.

COROLLARY 4.5
Suppose that k is an odd integer. A static configuration of k half-planes (counting
multiplicity) meeting along a common edge cannot occur as a blow-up flow to an
integral Brakke flow that is cyclic mod 2.

Proof
Let V be the varifold corresponding to k half-planes (counting multiplicity) meeting
along an edge E. If the static flow t �→ V is a limit flow to an integral Brakke flow
that is cyclic mod 2, then this static flow is also cyclic mod 2, and thus ∂[V ] = 0. But
∂[V ] is the common edge E with multiplicity [k], so k must then be even. �

The following theorem shows that for rather arbitrary initial surfaces, there exist
nontrivial integral Brakke flows that are cyclic mod 2.

THEOREM 4.6
Let A0 be any compactly supported rectifiable mod 2 cycle in RN (e.g., A0 could be the
mod 2 rectifiable flat chain associated to a C1 compact, embedded submanifold). Then
there are an integral Brakke flow t ∈ [0, ∞) �→ V (t) and a one-parameter family
t ∈ [0, ∞) �→ A(t) of rectifiable mod 2 flat chains with the following properties:
(1) A(0) = A0 and μV (0) = μA(0);
(2) ∂A(t) = 0 for all t;
(3) t �→ A(t) is continuous with respect to the flat topology;
(4) μA(t) ≤ μV (t) for all t;
(5) A(t) = [V (t)] for almost every t .

In particular, the flow is cyclic mod 2, and thus triple (or, more generally, odd-
multiplicity) junctions cannot occur in V (·) by Corollary 4.5.
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In assertion (5), note that since V (·) is an integral Brakke flow, V (t) is an integral
varifold for almost all t , and thus [V (t)] is well defined for almost all t .

Proof
Except for assertion (5), this theorem was proved by Ilmanen [I, Sections 8.1, 8.3].
He used integer-multiplicity currents rather than mod 2 flat chains, but his proof
works equally well in either context. (The A(t) here is the slice Tt in Ilmanen’s
notation.) The flat continuity (3) is not stated there, but it follows immediately from
[I, Section 8.3].

Roughly speaking, Ilmanen constructs V (·) and A(·) as limits of nice examples
Vi(·) and Ai(·) for which

μi(t) = μA(i)(t)

for all t .
Now his Ai(t) are not quite cycles. However, ∂Ai(t) moves by translation, and it

moves very fast if i is large. In particular, if U ⊂⊂ RN and I ⊂⊂ (0, ∞), then for
sufficiently large i and for all t ∈ I , ∂Ai(t) lies outside U .

Thus (exactly as in the proof of Theorem 4.2, or by Remark 4.4 and Theorem 3.3),
we deduce (for almost every t ∈ I ) that A(t)�U = [V (t)]�U and that ∂[V (t)] lies
outside U .

Since U is arbitrary, this gives (5). �

Remark 4.7
The description just given is a slightly simplified account of Ilmanen’s proof. Actually
he does not quite get the pair (V (·), A(·)) as limits of nice examples. Rather, he gets
a pair of flows (μ∗(·), A∗(·)) of one higher dimension as such a limit. The argument
given above shows that (μ∗(·), A∗(·)) has the property corresponding to property (5) in
Theorem 4.6 (and Ilmanen in his proof shows that it has properties (1) – (4)). Now the
pair (μ∗(·), A∗(·)) is translation invariant in one spatial direction. By slicing, Ilmanen
gets the desired pair (μ(·), A(·)). Translational invariance implies (in a straightforward
way) that properties (1) – (5) for (μ(·), A(·)) are equivalent to the corresponding
properties for (μ∗(·), A∗(·)).

Theorem 4.6 has an analog for integer-multiplicity currents in place of mod 2 flat
chains.

THEOREM 4.8
Let A0 be any compactly supported integer-multiplicity cycle (i.e., integer-multiplicity
current with ∂A0 = 0.) Then there are an integral Brakke flow t ∈ [0, ∞) �→ V (t)
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and a one-parameter family t ∈ [0, ∞) �→ A(t) of integer-multiplicity currents with
the following properties:
(1) A(0) = A0 and μV (0) = μA(0);
(2) ∂A(t) = 0 for all t;
(3) t �→ A(t) is continuous with respect to the flat topology;
(4) μA(t) ≤ μV (t) for all t;
(5) A(t) and V (t) are compatible for almost every t .

We omit the proof since it is almost identical to the proof of the mod 2 case, Theo-
rem 4.6.

Note that if an integer-multiplicity current A is compatible with an integral varifold
V , then [V ] is the flat chain mod 2 corresponding to A. It follows that the Brakke
flow V (·) in Theorem 4.8 is cyclic mod 2. In particular, triple (or more generally
odd-multiplicity) junctions cannot occur in V (·) by Corollary 4.5.

Ruling out even-multiplicity junctions is more subtle. In particular, limits of
smooth Brakke flows can have quadruple junctions. For example, recall that Sherk
constructed a complete, embedded, singly periodic minimal surface in R3, that is,
away from the z-axis, asymptotic to the union of the planes x = 0 and y = 0. We
may regard that surface as an equilibrium solution to mean curvature flow. Now dilate
by 1/n, and let n → ∞. The limit surface is a pair of orthogonal planes and thus has
a quadruple junction.

Appendix. Flat chains

Let G be a metric abelian coefficient group, that is, an abelian group with a translation-
invariant metric d(·, ·). The norm |g| of a group element g is defined to be its distance
from zero. The groups relevant for this article are Z2 and Z, both with the standard
metrics. If U is an open subset of RN , let Fc(U ; G) be the space of flat chains with
coefficients in G and with compact support in U , as defined in [Fl]. We let Fm,c(U ; G)
denote the space of m-dimensional chains in Fc(U ; G).

If W is an open subset of RN and A ∈ Fc(RN ; G), we let MW (A) be the minimum
of

lim inf μA(i)(W ) (34)

among all sequences of compactly supported, finite-mass flat chains A(i) such that
A(i) converges in the flat topology to A. By lower semicontinuity of mass, MW (A) =
μA(W ) for any chain A of finite mass.

We define the flat seminorm FW by

FW (A) = inf
{
MW (A − ∂Q) + MW (Q)

}
,

where the infimum is over all Q ∈ Fc(RN ; G).
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Let U be an open subset of RN . Choose a countable collection W of nested open
sets whose union is U and each of whose closures is a compact subset of U . We define
the space Fm(U ; G) of flat m-chains in U with coefficients in G to be the completion
of Fm,c(U ; G) with respect to the seminorms FW for W ∈ W . (It is straightforward
to show that the resulting space is independent of the choice of W .)

By continuity, the seminorms FW extend to all of Fm(U ; G). We also define the
mass seminorms MW on all of Fm(U ; G) exactly as above (34).

Convergence of flat chains means flat convergence, that is, convergence with
respect to the seminorms FW for all open W ⊂⊂ U or, equivalently, for all W ∈ W
for a collection W of nested open sets as above.

We define the support of a flat chain A ∈ Fm(U ; G) as follows: x /∈ spt A if and
only if there are a sequence Ai ∈ Fm,c(U ; G) and a ball B(x, r) such that Ai → A

and such that spt Ai is disjoint from B(x, r) for every i.
In the proof of the main results, Theorems 3.3 and 3.6, we used the following

version of the compactness theorem for flat chains. It is valid for any coefficient group
G in which all sets of the form {g ∈ G : |g| ≤ r}) are compact. In particular, it is
valid for the integers with the usual norm and for the integers mod 2.

THEOREM A.1 (Compactness theorem)
Let Ai be a sequence of flat m-chains in U such that the boundaries ∂Ai converge to
a limit chain � and such that

lim sup
i

MW (Ai) < ∞ (35)

for every open W ⊂⊂ U . Then Ai has a convergent subsequence.

We first prove the version for compact supports.

LEMMA A.2
If Ai, � ∈ Fc(RN ; G) are supported in a fixed compact subset X of RN , if
supi M(Ai) < ∞, and if F(∂Ai − �) → 0, then there are a subsequence Ai(k)

and a chain A such that F(Ai(k) − A) → 0.

Proof
We may assume that X is convex. (Otherwise, replace it by its convex hull.) Since
∂Ai → �, we have ∂� = 0. It follows that � = ∂R for some chain R of finite mass.

By hypothesis,

F(∂Ai − ∂R) → 0.
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Thus there are chains Qi such that

M(Qi) + M(∂Qi + ∂Ai − ∂R) → 0. (36)

We may assume that R and the Qi are supported in X. (Otherwise, map them into X

by the nearest point retraction of RN to X.)
Now, let

A∗
i = Qi + Ai − R.

Note that

lim sup
i

M(A∗
i ) ≤ sup

i

M(Ai) + M(R) < ∞

since M(Qi) → 0 by (36). From (36) we also see that M(∂A∗
i ) → 0, so in particular,

supi M(∂A∗
i ) < ∞.

Thus by the standard compactness theorem (see, e.g., [Fl, Corollary 7.5]), we
may, by passing to a subsequence, assume that the A∗

i converge to a limit A∗. Hence

F
(
Ai − (A∗ + R)

) = F(A∗
i − A∗ − Qi)

≤ F(A∗
i − A∗) + F(Qi)

≤ F(A∗
i − A∗) + M(Qi)

→ 0

since A∗
i → A∗ and M(Qi) → 0. Thus the Ai converge to A∗ + R. �

Proof of Theorem A.1
Let W be an open set whose closure is a compact subset of U . Choose an open set V

whose interior contains the closure of W and whose closure is a compact subset of V .
The idea of the proof is to work in a one-point compactification of V so that we can
apply Lemma 5.2.

Let u : RN → [0, 1] be a smooth function that is 1 on W , that is strictly positive
on V , and that vanishes on RN \ V .

Define f : RN → RN+1 by

F (x) = u(x)(x, 1).

Note that f is Lipschitz and that f maps the complement of V to a point. (Indeed,
f (RN ) may be regarded as a one-point compactification of V .) It follows that M(f#S)
and F(f#S) can be bounded by a constant times MV (S) and FV (S), respectively.
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Let A∗
i = f#Ai . Then the hypotheses of Lemma 5.2 are satisfied for the A∗

i . Thus
by passing to a subsequence we may assume that the A∗

i converge in the F metric.
By passing to a further subsequence, we may assume that∑

i

F(A∗
i − A∗

i+1) < ∞. (37)

Let H = Hζ be a half-space of the form RN × [ζ , ∞). From (37) it follows that∑
i

F(A∗
i �H − A∗

i+1�H ) < ∞ (38)

for almost every ζ (see [Fl, Lemma 2.1]). Fix such a ζ ∈ (0, 1) and the corresponding
H .

The radial projection map

π : H → RN,

π(x, y) = x

y

is Lipschitz, so by (38), the chains A
†
i := π #(A∗

i �H ) are F -convergent.
It follows that the A

†
i are also FW -convergent (since FW ≤ F ).

But π ◦ f is the identity on W . Hence A
†
i and Ai coincide in W . (In other words,

Ai − A
†
i is supported in Wc.)

Thus the Ai are also FW -convergent.
We have shown that for every open W ⊂⊂ U , there is an FW -convergent subse-

quence of the Ai . Now apply the diagonal argument to a nested sequence of such W ’s
which exhaust U . �

COROLLARY A.3
Suppose that Ai are flat chains in U such that

lim sup
i

(
MW (Ai) + MW (∂Ai)

)
< ∞

for every W ⊂⊂ U . Then Ai has a subsequence that converges in the flat topology.

Proof
By Theorem A.1 applied to the ∂Ai , there is a subsequence i(k) for which
the boundaries ∂Ai(k) converge. Consequently, the Ai(k) satisfy the hypotheses of
Theorem A.1. �
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THEOREM A.4 (Rectifiablity theorem)
Suppose that A is a flat m-chain in U with locally finite mass. Then A is rectifiable.

Of course, “A has locally finite mass” means “MW (A) < ∞ for every open W ⊂⊂ U .”
The theorem was proved in the case G = Z by Federer and Fleming [FF]. The

proof is also presented in [Fe] and in [Si]. Rather different proofs are given in [So]
and [W1]. Fleming proved the rectifiabilty theorem for all finite coefficient groups [Fl].
For the most general result, see [W2], which gives a simple necessary and sufficient
condition on the coefficient group in order for the rectifiablity theorem to hold.
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