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On the compactness theorem for

embedded minimal surfaces in 3-manifolds

with locally bounded area and genus

Brian White

Given a sequence of properly embedded minimal surfaces in a 3-
manifold with local bounds on area and genus, we prove subse-
quential convergence, smooth away from a discrete set, to a smooth
embedded limit surface, possibly with multiplicity, and we analyze
what happens when one blows up the surfaces near a point where
the convergence is not smooth.

1. Introduction

In this paper, we prove several results, most of which can be summarized as
follows:

Theorem 1.1. Let Ω be an open subset of a Riemannian 3-manifold. Let
gi be a sequence of smooth Riemannian metrics on Ω converging smoothly
to a Riemannian metric g. Let Mi ⊂ Ω be a sequence of properly embedded
surfaces such that Mi is minimal with respect to gi. Suppose also that the
area and the genus of Mi are uniformly bounded on compact subsets of Ω.
Then (after passing to a subsequence) the Mi converge to a smooth, properly
embedded g-minimal surface M . For each connected component Σ of M ,
either

1) the convergence to Σ is smooth with multiplicity one, or

2) the convergence is smooth (with some multiplicity > 1) away from a
discrete set S.

In the second case, if Σ is two-sided, then it must be stable.
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Now suppose that Ω is an open subset of R3. (The metric g need not
be flat.) If pi ∈Mi converges to p ∈M , then (after passing to a further
subsequence) either

Tan(Mi, pi)→ Tan(M,p),

or there exists constants λi > 0 tending to ∞ such that the surfaces

λi(Mi − pi)

converge smoothly and with multiplicity 1 to a non-flat, complete, properly
embedded minimal surface M ′ ⊂ R3 of finite total curvature with ends par-
allel to Tan(M,p).

A compactness theorem very similar to Theorem 1.1 was proved by
Ros [Ros95], building on earlier compactness theorems in [CS85] and
[Whi87b]. (See also [And85] for some related results.)

Indeed, Ros essentially proves the above conclusions provided one also
assumes

1) local bounds on total curvature, and

2) that the ambient space is R3 with the Euclidean metric.

Ros points out in his paper that most of the proofs would work for general
Riemannian 3-manifolds. However, his proof of the last statement (that the
ends of M ′ are parallel to Tan(M,p)) is based on the conformality of the
Gauss map of a minimal surface in R3, and thus does not apply to non-flat
metrics.

Thus what is new in this paper is:

1) we point out that, by a result of Ilmanen, it suffices to assume local
bounds on genus and area instead of local bounds on total curvature
and area, and

2) we prove that the ends of the blown-up surface M ′ are parallel to
Tan(M,p) for general Riemannian metrics gi and g.

These new features are used in an essential way in the recent proof [HTW16]
of existence of helicoidal surfaces of arbitrary genus in R3, and also in recent
work of Ferrer, Martin, Mazzeo, and Rodriguez on minimal annuli in H2 ×
R [FMMR17].

The bulk of this paper (Sections 3 and 4) is devoted to proving that the
ends of M ′ are parallel to Tan(M,p).
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Embedded minimal surfaces 661

If one drops the assumption that the Mi have locally bounded areas,
the behavior becomes considerably more complicated. For example, even for
simply connected Mi in an open subset of R3, the curvatures of the Mi

can blow up on arbitrary C1,1 curves [MW07] or on arbitrary closed sub-
sets (such as Cantor sets) of a line [HW11], [Kle12]. In [CM04a], [CM04b],
[CM04c], and[CM04d], Colding and Minicozzi prove powerful theorems an-
alyzing the behavior of such sequences. Some extensions of their work are
proved in [Mee04] and [Whi15]. (See also [BT16].) Based on those works,
[Whi15, Corollary 3 and Theorem 4] formulates a compactness theorem
somewhat analogous to the Compactness Theorem 1.1 in this paper.

It would be very interesting to analyze what happens if one assumes local
bounds on area but not on genus. By passing to a subsequence, one can get
weak convergence to a stationary integral varifold V . The limit varifold has
associated to it a flat chain mod 2, and that flat chain has no boundary in the
open set [Whi09]. Thus, for example, the varifold cannot have soapfilm-like
triple junctions. In fact, [Whi09] also proves the slightly stronger statement
that if the original surfaces are orientable, then there is an integral current
T with no boundary in the open set such that T and V determine the same
flat chain mod 2. (The results in [Whi09] hold for arbitrary dimension and
codimension.) Nothing else seems to be known about the class of stationary
integral varifolds V that arise as such a limit.

2. The Main Theorems

If M is a surface in a Riemannian 3-manifold, we let TC(M) denote the
total curvature of M :

TC(M) =
1

2

∫
M

(κ21 + κ22) dA,

where κ1 and κ2 are the principal curvatures of M .

Theorem 2.1 (Compactness Theorem). Let Ω be an open subset of
smooth 3-manifold. Let gi be a sequence of smooth Riemannian metrics on
Ω converging smoothly to a Riemannian metric g. Let Mi ⊂ Ω be a sequence
of properly embedded surfaces such that Mi is minimal with respect to gi.
Suppose also that the area and the genus of Mi are bounded independently
of i on compact subsets of Ω.

Then the total curvatures of the Mi are also uniformly bounded on com-
pact subsets of Ω. After passing to a subsequence, the Mi converge to a
smooth, properly embedded, g-minimal surface M , and the convergence is
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smooth away from a discrete set S. For each connected component Σ of M ,
either

1) the convergence to Σ is smooth everywhere with multiplicity 1, or

2) the convergence to Σ is smooth with some multiplicity > 1 away from
Σ ∩ S. In this case, if Σ is two-sided, then it must be stable.

If the total curvatures of the Mi are bounded by β, then S has at most β/(4π)
points.

Proof. See [Ilm95, Theorem 3] for a proof that the total curvatures of the
Mi are uniformly bounded on compact subsets of Ω.

If the supremum of the total curvatures of the Mi is less than 4π, then
we get smooth, subsequential convergence (possibly with multiplicity) ev-
erywhere. (This follows from the curvature estimate [Whi16, Theorem 24]
or [Whi87b, pp. 247–248].)

It follows (after passing to a subsequence) that there is a discrete set
S such that the Mi converge smoothly to M on compact subsets of Ω \
S, where M \ S is a smooth minimal surface properly immersed in Ω \ S.
Furthermore, if W is an open subset of Ω, then the number of points in
S ∩W is at most

1

4π
lim sup

i
TC(Mi ∩W ).

The points of S are precisely those points where 4π or more of total curvature
concentrates. See [Whi87b] or [Whi16, Theorem 25] for details.

Since the Mi are embedded, M \ S has no transverse self-intersections.
Hence M \ S is smooth and embedded, possibly with multiplicity. It also
follows that the points in S are removable singularities of M . (This removal
of singularities theorem can be proved in a variety of ways. See the appendix
for one proof.) In other words, M is a smooth, embedded surface, possibly
with multiplicity > 1.

For simplicity, let us assume M has just one connected component.
If M has multiplicity 1, then the convergence of Mi to M is smooth

everywhere by Allard’s Regularity Theorem [All72, §8] or [Sim83, §23–§24],
or by the easy version of the Allard Regularity Theorem in [Whi05, Theo-
rem 1.1] or [Whi16]. (The proof in [Whi05] is for compact surfaces, but that
proof can easily be modified to handle proper, non-compact surfaces.)

Thus suppose that the Mi converge to M with multiplicity k > 1, and
suppose that M is two-sided. Since the convergence is smooth on compact
subsets of Ω \ S, we can (away from S ∪ ∂Ω) express Mi as the union of k
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Embedded minimal surfaces 663

disjoint, normal graphs over Σ. Since Mi is embedded, the functions can be
ordered. Let φi be the difference of the largest and the smallest functions.
Let p be a point in Σ \ S. By standard PDE, φi satisfies a second-order lin-
ear elliptic equation. By the Harnack inequality and the Schauder estimates,
the functions φn/|φn(p)| converge smoothly (after passing to a subsequence)
to a positive Jacobi field φ on Σ \ S. (The construction described in the pre-
ceding two sentences is fairly standard. For more details, see the paragraph
containing equation (7) on page 333 of [Sim87].) By [FCS80, Theorem 1],
existence of such a φ implies that Σ \ S is stable. A standard cut-off argu-
ment (cf. Corollary 5.5 in the appendix) shows that Σ and Σ \ S have the
same Jacobi eigenvalues. Thus Σ is stable.

This completes the proof of Theorem 2.1. �

The remaining results are local, so we can assume that Ω is an open
subset of R3. (Of course the metrics gi and g need not be flat.) We let
λ(M − p) denote the result of translating M by −p and then dilating by λ.

Theorem 2.2 (Blow-up Theorem). Suppose in the Compactness Theo-
rem 2.1 that Ω is an open subset of R3. Suppose also that pi ∈Mi converges
to p ∈M , and that λi →∞.

Then, after passing to a subsequence, the surfaces

M ′i := λi(Mi − pi)

converge smoothly away from a finite set Q to a complete, properly embedded,
g(p)-minimal surface M ′. Furthermore, M ′ must be one of the following:

1) a multiplicity 1 plane,

2) a complete, non-flat, properly embedded, multiplicity 1 surface of finite
total curvature, or

3) the union of two or more (counting multiplicity) parallel planes.

In cases (1) and (2), the convergence of M ′n to M ′ is smooth everywhere.

The Blow-up Theorem 2.2 describes what can happen at various scales
near a point where the curvature blows up. For example, let Mi be the
catenoid that is centered at the origin, that has horizontal ends, and that
has neck radius ri, where ri → 0. The Mi converge to the horizontal plane
z = 0 with multiplicity 2, and the convergence is smooth except at the origin,
where the curvature blows up. Let pi = (ri, 0, 0). Then λi(Mi − pi) converges
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to a vertical, multiplicity 1 plane if λiri →∞, to a catenoid if λiri tends to
a finite, nonzero limit, and to a horizontal, multiplicity 2 plane if λiri → 0.

Proof of Theorem 2.2. The monotonicity formula implies that the areas of
the M ′i are uniformly bounded on compact sets. Thus the subsequential
convergence to a complete, smooth, properly embedded g(p)-minimal surface
M ′ of finite total curvature and the finiteness of the set Q follow immediately
from the Compactness Theorem 2.1.

Suppose that M ′ is not the union of one or more parallel planes. By
the Strong Halfspace Theorem [HM90, Theorem 2], M ′ is connected. Since
M ′ is not a plane, it is unstable (by [FCS80] or [dCP79]). Thus by the
Compactness Theorem 2.1, M ′ has multiplicity 1.

The smooth convergence everywhere in cases (1) and (2) follows from
the Compactness Theorem 2.1. �

Theorem 2.3 (No -Tilt Theorem). In cases (2) and (3) of the Blow-up
Theorem 2.2, the ends of M ′ are parallel to Tan(M,p).

The proof will be given in Sections 3 and 4.

Theorem 2.4. Suppose, in the Compactness Theorem 2.1, that Ω is an
open subset of R3. (The metrics need not be flat.) Suppose that pi ∈Mi

converges to p ∈M and that Tan(Mi, pi) does not converge to Tan(M,p).
Then there exist λi →∞ such that, after a passing to a subsequence, the
surfaces

M ′i := λi(Mi − pi)
converge smoothly and with multiplicity 1 to a complete, smooth, properly
embedded, non-flat, g(p)-minimal surface M ′ of finite total curvature. Fur-
thermore, the ends of M ′ must be parallel to Tan(M,p).

Proof. By passing to a subsequence, we can assume that Tan(Mi, pi) con-
verges to a plane P not equal to Tan(M,p):

(1) Tan(Mi, pi)→ P 6= Tan(M,p).

Let ri be the infimum of the numbers r > 0 such that

Mi ∩B(pi, r)

contains a point at which the principal curvatures are ≥ 1/r. By (1),

lim ri = 0.
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Now let λi = 1/ri.
The Blow-up Theorem 2.2 implies that, after passing to a further sub-

sequence, the surfaces

M ′i := λi(Mi − pi)
converge to a limit surface M ′.

By the choice of λi, the surface M ′i converges to M ′ smoothly in the
open ball of radius 1 about 0. Hence

Tan(M ′, 0) = lim
i

Tan(M ′i , 0) = lim
i

Tan(Mi, pi) = P 6= Tan(M,p),

so

(2) Tan(M ′, 0) 6= Tan(M,p).

It follow that M ′ cannot consist of planes, since by the No-Tilt Theorem 2.3,
those planes would have to be parallel to Tan(M,p).

Thus we are in case (2) of the Blow-up Theorem 2.2: M ′ is a smooth,
nonflat, properly embedded, multiplicity 1 surface of finite total curvature.
By the No-Tilt Theorem 2.3, the ends of M ′ are parallel to Tan(M,p). �

3. The Annulus Lemma

The proof of the No -Tilt Theorem relies heavily on the following lemma,
which describes the behavior of nearly flat minimal annuli as the inner radius
tends to 0:

Lemma 3.1 (Annulus Lemma). Let gi be a sequence of Riemannian
metrics on the cylinder

C(R, a) := {(x, y, z) ∈ R3 : x2 + y2 ≤ R2, |z| ≤ a}

that converge smoothly to a Riemannian metric g. For i = 1, 2, . . . , suppose
that Mi ⊂ C(R, a) is a gi-minimal surface that is the graph of a function

ui : A(ri, R)→ (−a, a),

where

A(ri, R) = {p ∈ R2 : ri ≤ |p| ≤ R}
and where the radii ri are positive numbers that converge to 0. Suppose also
that

L := sup
i

sup |Dui| <∞,
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and that

ui → 0 smoothly on A(η,R) for every η > 0.

Let λi be a sequence of numbers tending to infinity such that

(3) r′ = limλiri <∞.

Let vi = (0, 0, vi) be a point on the z-axis such that

(4) c := sup
i

dist(vi,Mi)

ri
<∞.

Let M ′i = λi(Mi − vi), so that M ′i is the graph of the function

u′i : A(λiri, λiR)→ R,

u′i(q) = λi(ui(q/λi)− vi).

Then, after passing to a subsequence, the u′i converge uniformly on compact
subsets of R2 to a function

u′ : A(r′,∞)→ R.

The convergence is smooth on compact subsets of
√
x2 + y2 > r′, and

(5) lim
|q|→∞

|Du′(q)| = 0.

Proof. Except for the last assertion (5), the lemma is straightforward, as we
now explain. Note that the graphs of the u′i have slopes bounded by L. Also,

lim sup
i

dist(0,M ′i) ≤ cr′ <∞

by (3) and (4). By the Arzela-Ascoli Theorem, after passing to a subse-
quence, the u′i converge uniformly on compact subsets of R2 to a limit
function

u′ : A(r′,∞)→ R.

By standard PDE or by minimal surface regularity theory, the convergence
is smooth on compact subsets of

√
x2 + y2 > r′.

It remains to prove the last assertion (5). We remark that if (5) holds
for one choice of vi, then it also holds for any other choice v∗i (subject to
the condition (4)). This is because if λi(Mi − vi) converges to M ′, then,
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after passing to a further subsequence, the surfaces λi(Mi − v∗i ) converge to
a limit M∗, and clearly M∗ is a vertical translate of M ′.

Let D be the horizontal disk of radius R centered at the origin. The
smooth convergence Mi → D away from the origin implies that the mean
curvature with respect to g of D vanishes everywhere except possibly at
the origin. By continuity, it must also vanish at the origin. That is, D is a
g-minimal surface.

By replacing R by a sufficiently small R̂ > 0 and Mi by Mi ∩ C(R̂, a),
we can assume that the disk D is strictly stable.

Claim 1. It suffices to prove the lemma under the assumptions that the
outer boundary of Mi lies in the plane z = 0, (i.e., that ui(p) ≡ 0 when
|p| = R), that horizontal disks (i.e., disks of the form z = constant) are gi-
minimal for every i, and that the metric g(0) coincides with the Euclidean
metric at the origin:

(6) g(0)(ei, ej) = δij .

Proof of Claim 1. By the implicit function theorem1 and the strict stability
of D, there exist ε > 0 and δ > 0 with the following property: for all |t| ≤ δ,
there is a unique smooth function

f t : {
√
x2 + y2 ≤ R} → R

such that ‖f t‖2,α < ε, such that

f t = t on the circle
√
x2 + y2 = R,

and such that the graph of f t is a strictly stable, g-minimal disk. Note that
f t depends smoothly on t. Note also that ∂

∂tf
t, which may be regarded as a

Jacobi field on the graph of f t, is equal to 1 on the boundary and therefore
is everywhere positive by stability. Thus the map

F : (x, y, z) 7→ (x, y, f t(x, y))

is a smooth diffeomorphism from the cylinder C(R, δ) onto its image.

1See the appendix of [Whi87b] for details of this application of the implicit func-
tion theorem.
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Similarly (and also by the implicit function theorem), for all sufficiently
large i and for all |t| ≤ δ, there is a smooth function

f ti : {
√
x2 + y2 ≤ R} → R

such that ‖f ti ‖2,α < ε, such that

f ti = ui + t on the circle
√
x2 + y2 = R,

and such that the graph of f ti is a strictly stable, gi-minimal surface. Fur-
thermore,

F ti : (x, y, z) 7→ (x, y, f ti (x, y))

defines a smooth diffeomorphism from C(R, a) to its image, and Fi converges
smoothly to F as i→∞. (All these statements are consequences of the
implicit function theorem.)

Now let M ′i and g′i be the pull-back of Mi and gi under the diffeomor-
phism Fi. Then M ′i and g′i satisfy all the hypotheses of the lemma, and,
in addition, horizontal disks are g′i minimal and the outer boundary of the
annulus M ′i is a horizontal circle centered at the origin. This completes the
proof of Claim 1, except for (6), which can be achieved by making a further
diffeomorphic change of coordinates of the form

(x, y, z) 7→ (x̃(x, y, z), ỹ(x, y, z), z̃(z)).

�

We now prove (5), under the additional assumptions indicated by Claim 1.
If the ui are identically zero, there is nothing to prove. Thus by passing

to a subsequence, we may assume, without loss of generality, that

zi := maxui > 0.

(The case minui < 0 is proved in exactly the same way.) By the maximum
principle (and by the assumptions described in Claim 1), the maximum is
attained on the inner boundary circle of A(ri, R). (Recall that ui ≡ 0 on the
outer boundary circle.) Thus

(7) ui ≤ zi = max
|p|=ri

ui(p).

As explained earlier, the validity of the lemma does not depend on the
choice of vi = (0, 0, vi), so we may choose vi = (0, 0, zi). It follows that M ′i
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lies in the halfspace z ≤ 0 for all i, and thus so does M ′:

u′ ≤ 0.

By (6), the surface M ′ is minimal with respect to the standard Euclidean
metric.

There are now many ways to see that M ′ is horizontal at infinity. For
example, the tangent cone at infinity to M ′ is a multiplicity-one Lipschitz
graph and therefore is a plane (because its intersection with the unit 2-
sphere must be a geodesic). Since it lies in the halfspace {z ≤ 0}, the plane
must be horizontal. �

4. Proof of the No -Tilt Theorem

We now prove the No -Tilt Theorem 2.3. We may assume that pi = p = 0.
(Otherwise replace Mi and M by Mi − pi and M − p, and similarly for the
metrics gi and g.) By rotation, we may assume that Tan(M, 0) is horizontal.
Thus it suffices to prove the following special case of the No -Tilt Theorem:

Theorem 4.1. Let Ω be an open subset of R3 and let gi be a sequence of
smooth Riemannian metrics on Ω that converge smoothly to a Riemannian
metric g. Suppose that Mi and M are smooth, properly embedded surfaces in
Ω such that Mi is gi-minimal, M is g-minimal, and such that Mi converges
smoothly, with some finite multiplicity, to M away from a discrete set of
points. Suppose also that

sup
i

TC(Mi) <∞.

Suppose that the origin is contained in each of the Mi, and suppose that
Tan(M, 0) is horizontal. Let λi be a sequence of numbers tending to ∞, and
suppose that the dilated surfaces λiMi converge smoothly away from a finite
set of points to a limit surface M∗.

Then either M∗ is a multiplicity one plane, or the ends of M∗ are all
horizontal:

lim
|q|→∞

slope(Tan(M∗, q)) = 0.

Proof. Let m be the multiplicity of the convergence Mi →M . If M is not
connected, the multiplicity could be different on different components of M .
In that case, we let m be the multiplicity on the connected component of
M containing the origin.
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Let N be an integer such that supi TC(Mi ∩ U) < N for some open set
U containing the origin.

We will prove Theorem 4.1 by double induction on the multiplicitym and
on N . Thus we may assume that the theorem is true for surfaces M ′i →M ′

(satisfying the hypotheses of the theorem) provided

1) m′ < m, or

2) m′ = m and supi TC(M ′i ∩ U ′) < N − 1 for some neighborhood U ′ of
0,

where m′ is the multiplicity of convergence of M ′i to M ′ on the connected
component M ′ containing the origin.

Since the result is local, we can assume that M is topologically a disk.
By composing with a diffeomorphism, we can assume that M is a horizontal
disk centered at the origin. As in the proof of the Annulus Lemma 3.1 (see
Claim 1 there), we may assume that the level sets of the height function
(x, y, z) 7→ z on Ω are gi-minimal for each i, and that the metric g agrees
with the Euclidean metric at the origin. By replacing Ω by a small open set
of the form

{(x, y, z) ∈ R3 : x2 + y2 < R2, |z| < a},

we can assume that the Mi are smooth manifolds-with-boundary that con-
verge smoothly to M away from the origin.

If the convergence of Mi to M is smooth everywhere, then the result
is trivially true: in that case, every subsequence of λiMi has a further sub-
sequence that converges smoothly to the union of one or more horizontal
planes.

Thus we may assume that the convergence is not smooth. It follows
that there is a sequence of points pi ∈Mi converging to the origin such
that Tan(Mi, pi) does not converge to a horizontal plane. By passing to a
subsequence, we may assume that

(8) slope(Tan(Mi, pi)) > L ≥ 0

for some finite L > 0 and for all i.
Consider the set Si of points q = (x, y, z) in Mi such that

slope(Tan(Mi, q)) ≥ L, or

|z| ≥ L
√
x2 + y2.
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Let

ri = max{
√
x2 + y2 : (x, y, z) ∈ Si}.

Note that ri > 0 by (8) and that ri → 0 since Mi →M smoothly away from
the origin. Note also that the surface

Mi ∩ {
√
x2 + y2 ≥ ri}

is the union of m graphs of functions defined on

A(ri, R) = {p ∈ R2 : ri ≤ |p| ≤ R},

and that the tangent planes to those graphs all have slopes ≤ L. Further-
more, Mi ∩ {

√
x2 + y2 ≥ ri} is contained in

{|z| ≤ L
√
x2 + y2},

so

(9) Mi ⊂ {|z| ≤ L
√
x2 + y2} ∪ {|z| ≤ Lri}

by the maximum principle. (Recall that level sets of the height function are
gi-minimal.)

By passing to a subsequence, we may assume that λiri converges to a
limit r′ in [0,∞].

If r′ <∞, the result follows immediately from the Annulus Lemma 3.1.
(Apply the lemma to each of the annular components of Mi ∩ {

√
x2 + y2 ≥

ri}.)
Thus we may assume that r′ =∞:

(10) λiri →∞.

Let M ′i be the result of dilating Mi by 1/ri about the origin. By the
Compactness Theorem 2.1, the M ′i converge smoothly (after passing to a
subsequence, and away from a discrete set) to a limit surface

M ′ ⊂ {|z| ≤ L
√
x2 + y2} ∪ {|z| ≤ L}.

Since the slopes of the M ′i are bounded by L in the region x2 + y2 ≥ 1, the
convergence M ′i →M ′ is smooth in the region x2 + y2 > 1.
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Applying the Annulus Lemma to each of the m-components of

Mi ∩ {
√
x2 + y2 ≥ ri},

we see that

(11) slope(Tan(M ′, p))→ 0 as |p| → ∞.

That is, the ends of M ′ are horizontal. Note that the number of ends of M ′,
counting multiplicities, is m.

The Blow-up Theorem 2.2 asserts that one of the following must hold:

1) M ′ is non-flat, complete, with finite total curvature, and the conver-
gence M ′i →M ′ is smooth and multiplicity 1 everywhere.

2) M ′ is the union of one or more parallel planes, possibly with multi-
plicity. The convergence is smooth except at isolated points.

In case (1), the surface λ′iM
′
i converges smoothly to Tan(M ′, 0) with

multiplicity 1 for every sequence λ′i →∞; in particular, this holds for the
sequence λ′i := λiri (which tends to ∞ by (10)). But

λ′iM
′
i = (λiri)(1/ri)Mi = λiMi,

so the λiMi converge with multiplicity 1 to a plane (namely, Tan(M ′, 0))),
as desired. This completes the proof in case (1).

Thus we may assume (2): that M ′ is a union of parallel planes. In this
case, we know that the planes are horizontal since the ends are horizontal
(by (11)), and that the number of planes (counting multiplicity) is m.

Case 2(a): M ′ contains a plane not passing through the origin. Then
the plane that does pass through the origin has multiplicity < m.

Let λ′i = λiri, which tends to infinity by (10). Then

λ′iM
′
i = λiri(1/ri)Mi = λiMi →M∗.

By the inductive hypothesis (applied toM ′i →M ′ and λ′i), eitherM∗ consists
of a single multiplicity 1 plane or its ends are all horizontal. Thus we are
done in this case.

Case 2(b): M ′ is the horizontal plane through 0 with multiplicity m.
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By the choice of ri, there is a point qi = (xi, yi, zi) in M ′i such that
x2i + y2i = 1 and such that

(12) slope(Tan(M ′i , qi)) ≥ L.

In particular, the convergence M ′i →M ′ fails to be smooth at one or more
points the circle {x2 + y2 = 1, z = 0}.

Let U be the open ball of radius 1/2 center at the origin. Since (as we
have just shown) the convergence of M ′i \ U to M ′ \ U is not smooth near
the circle {x2 + y2 = 1, z = 0}, it follows that

lim sup
i

TC(M ′i \ U) ≥ 4π.

In particular, we can assume (by passing to a subsequence) that

TC(M ′i \ U) > 12

for all i. It follows that

TC(M ′i ∩ U) = TC(M ′i)− TC(M ′i \ U)

< TC(M ′i)− 12

< N − 12.

Thus the proposition holds for the surfaces M ′i and M ′ by the inductive
hypothesis. Letting λ′i = λiri (which tends to ∞ by (10)), we have

λ′iM
′
i = (λiri)((1/ri)Mi) = λiMi →M∗.

By the inductive hypothesis, M∗ satisfies the conclusions of the theorem. �

5. Appendix

Theorem 5.1. Let B(p, r) be the open ball of radius r centered at p ∈ R3.
Suppose that g is a smooth Riemannian metric on B(p, r), and that M
is a properly embedded, g-minimal surface in B(p, r) \ {p} with finite total
curvature and finite area, and that p ∈M . Then M ∪ {p} is a smoothly
embedded, g-minimal surface.

Proof. We may assume that p = 0. It follows from the first variation for-
mula that M ∩B(0, ρ) has finite area for every ρ < r. (This is true for any
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bounded mean curvature variety in B(0, r) \ {p} by the first variation for-
mula. See, for example, [Gul76, Lemma 1].) Thus by replacing B(0, r) by a
smaller ball, we can assume that the the area of M is finite and that the
total curvature of M is less than 4π.

Let λi →∞. By the Compactness Theorem 2.1, after passing to a sub-
sequence, λiMi converges smoothly on compact subsets of R3 \ {0} to a
g(0)-minimal surface M ′. Note that M ′ is a g(0)-minimal cone (it is a tan-
gent cone to M at 0) and is smooth without transverse self-intersections, so
it is a plane.

It follows that there is an ε > 0 such that the function

x ∈M ∩B(0, ε) 7→ |x|

has no critical points, which implies that M ∩B(0, ε) is a union of surfaces
D1, . . . , Dk, each of which is topologically a punctured disk.

By a theorem of Gulliver [Gul76], each Di ∩ {0} is a (possibly branched)
minimal disk. However, since Di has no transverse self-intersections, Di ∩
{0} is smoothly embedded. By the strong maximum principle, there is only
one such disk. �

Remark 5.2. A different proof (not using Gulliver’s Theorem) is given in
[Whi87b, Theorem 2].

Remark 5.3. Whether the finite total curvature assumption is necessary
is a very interesting open problem in minimal surface theory. The theorem
remains true if that assumption is replaced by the assumption that M is
stable [GL86], or by the assumption that M has finite Euler characteristic
[CS85, Proposition 1]. It also remains true if that assumption is replaced
by the assumption that M has finite genus. (Using monotonicity and lower
bounds on density, one can show that for sufficiently small ε > 0, the surface
M ∩B(p, ε) is a union of finitely many surfaces homeomorphic to punctured
disks, to which one can then apply Gulliver’s Theorem [Gul76].)

Theorem 5.4. Let M be a smooth, two-dimensional Riemannian manifold
without boundary, f be a smooth function on M , and p be a point in the
interior of M . Then C∞c (M \ {p}) is dense with respect to the H1 norm in
Cc(M).

Equivalently, H1
0 (M) = H1

0 (M \ {p}).
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Corollary 5.5. If there is a u ∈ C∞c (M) such that∫
(|Du|2 + f |u|2) dA < 0,

then there is a u ∈ C∞c (M \ {p}) satisfying the same inequality.

Proof of Theorem 5.4. The theorem is essentially local, and independent of
the choice of metric. Thus we can assume that M is the open unit disk
D in R2 with the Euclidean metric and that p = 0. Given u ∈ C∞c (D) and
0 < ε < 1, define uε : D → R by

uε(z) =


u(z) if |z| ≥ ε,
ln |z|−ln(ε2)
ln(ε)−ln(ε2)u(z) if ε2 ≤ |z| ≤ ε,
0 if |z| ≤ ε2.

One readily checks that uε converges to u in H1 as ε→ 0. Of course uε is
not smooth, but it is Lipschitz and compactly supported in C∞c (D \ {0}),
so we can mollify to approximate it arbitrary well in H1 by a function in
C∞c (D \ {0}.) �
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