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Locally univalent functions, VMOA and the Dirichlet space

Eva A. Gallardo-Gutiérrez, Maŕıa J. González, Fernando Pérez-González,
Christian Pommerenke and Jouni Rättyä

Abstract

We study geometric properties of the image of the unit circle under a bounded locally univalent
function g such that log g′ belongs either to the Dirichlet space D, VMOA or the little Bloch space
B0. Concerning VMOA and B0, our findings generalize the corresponding results for conformal
maps shown by Pommerenke in the late 1970s. In the case of D, we give a strictly geometric
necessary condition for g to satisfy log g′ ∈ D, and also offer two different ‘semi-geometric’
characterizations of when log g′ ∈ D.

1. Introduction and results

Let C be a (closed) Jordan curve in the complex plane C and let C(w1, w2) denote the smaller
arc of C between the points w1 and w2 on C. Recall that C is called asymptotically conformal if

max
w∈C(w1,w2)

|w2 − w| + |w − w1|
|w2 − w1| −→ 1 as |w2 − w1| −→ 0,

and quasi-conformal if this maximum is uniformly bounded for all w1, w2 ∈ C. The latter
case occurs if and only if C is the image of a circle under a quasi-conformal mapping of
C (see [18, Theorem 9.14]), and therefore quasi-conformal curves are usually called quasi-
circles. The concept of asymptotically conformal curves was introduced by Becker [2] in the
early seventies, and it fits nicely between the theories of quasi-conformal and smooth curves.

In addition, recall that if C is a rectifiable Jordan curve and l(w1, w2) denotes the length
of the shorter arc on C joining w1 and w2, then C is said to be asymptotically smooth if

l(w1, w2)
|w2 − w1| −→ 1 as |w2 − w1| −→ 0,

and quasi smooth if this quotient is uniformly bounded for all w1, w2 ∈ C. Inner domains of
quasi-smooth curves are also known as chord-arc or Lavrentiev domains [21].

Denoting by g a conformal map taking D onto the inner domain of a Jordan curve C, a
fundamental question in the theory of conformal maps is the relationship between the geometric
properties of C and the analytic properties of g. In this spirit, in 1978, Pommerenke [20]
characterized both asymptotically conformal and asymptotically smooth curves in terms of
analytic properties of log g′. More precisely, he showed that C is asymptotically conformal
(resp. asymptotically smooth) if and only if log g′ belongs to the little Bloch space B0 (resp.
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VMOA). Further, concerning asymptotically conformal curves, Pommerenke and Warschaws-
ki [22] showed in 1982 that the geometric quantity

η(δ) = sup
|w1−w2|<δ

sup
w∈C(w1,w2)

( |w2 − w| + |w − w1|
|w2 − w1| − 1

)1/2

,

and the analytic quantity

β(δ) = sup
1−δ�|ζ|<1

(1 − |ζ|)
∣∣∣∣g′′(ζ)g′(ζ)

∣∣∣∣
are of (almost) the same order of magnitude as δ → 0+; see also the related results by Rodin
and Warschawski [24].

More recently, in 1991, Astala and Zinsmeister [1] studied the set of conformal maps g
such that log g′ belongs to BMOA. In particular, they showed that log g′ ∈ BMOA if and only
if the measure |Sg(z)|2(1 − |z|2)3dA(z), induced by the Schwarzian derivative Sg of g, is a
Carleson measure on D. In 1994, Bishop and Jones [5] obtained a complete (analytic and
geometric) description of those simply connected domains Ω such that any Riemann map g of
D onto Ω satisfies log g′ ∈ BMOA; see also [13, Chapters VII and X]. One of the geometric
characterizations of these BMOA-domains immediately gives their bi-Lipschitz invariance,
a property which a priori is far from being obvious. For characterizations in terms of the
Schwarzian derivative of when log g′ belongs either to D, VMOA or B0, we refer to [3, 17].

The aim of this paper is two-fold. On one hand, we are interested in the relationship
between the geometric properties of C = g(T) and the analytic properties of g when g is
a locally univalent function on D, continuous on D̄, such that C is closed but might have
self-intersections. The results shown for locally univalent functions generalize those already
mentioned for conformal maps and related to VMOA and the little Bloch space B0. Roughly
speaking, ‘the same sort’ of results hold even when the assumption on g of being a Riemann map
is omitted. The techniques we will exploit make an extensive use of an argument of localization
for locally univalent maps. This allows us to consider the curve C as a finite union of Jordan
arcs instead of a closed curve with possible self-intersections.

On the other hand, our goal is to provide a geometric characterization of g(T) such that the
locally univalent function g, continuous on D̄, satisfies log g′ ∈ D. Let us point out that in the
case of the Dirichlet space D no geometric characterizations are known even in the case when
g is conformal.

The rest of this introductory section (and the paper) is organized as follows. We will first
recall the definitions of the spaces which our results concern. Then we will state our main
results along with examples which will shed some light on the results proved. Each of the
results will be proved in the subsequent sections along with the tools needed in the proofs.

1.1. Preliminaries on function spaces

Let D denote the unit disc of the complex plane C and H(D) the algebra of all analytic functions
in D. For 0 < p <∞, the Hardy space Hp consists of those f ∈ H(D) for which

‖f‖p
Hp := lim

r→1−
Mp

p (r, f) := lim
r→1−

1
2π

∫2π

0

|f(reit)|p dt <∞.

The space of bounded analytic functions on D is denoted by H∞. A classical result due to
Fatou states that every Hardy function has a radial limit almost everywhere on the unit circle
T := {z : |z| = 1}; see, for instance, [11]. Throughout this work, f(ζ) denotes the radial limit
of f at ζ ∈ T.
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The space BMOA of analytic functions with bounded mean oscillation on T consists of those
f ∈ H2 for which

‖f‖2
BMOA := sup

ζ∈D

‖fζ‖2
H2 := sup

ζ∈D

1
2π

∫
T

|f(z) − f(ζ)|2 1 − |ζ|2
|z − ζ|2 |dz| <∞, (1.1)

where

fζ(z) := (f ◦ ϕζ)(z) − f(ζ) and ϕζ(z) :=
ζ − z

1 − ζ̄z
.

Alternative characterizations of BMOA, as well as a systematic treatment of the subject, can
be found in [12, Chapter VI].

The space VMOA consists of those f ∈ H2 for which the integral in (1.1) tends to zero as ζ
approaches to the boundary T. BMOA is a subspace of the Bloch space

B :=
{
f ∈ H(D) : ‖f‖B := sup

z∈D

|f ′(z)|(1 − |z|2) <∞
}

and VMOA is a subspace of both BMOA and the little Bloch space

B0 :=
{
f ∈ H(D) : lim

|z|→1−
|f ′(z)|(1 − |z|2) = 0

}
.

Finally, let us recall that f ∈ H(D) belongs to the classical Dirichlet space D if

‖f‖2
D :=

1
π

∫
D

|f ′(z)|2 dA(z) + |f(0)|2 <∞,

where dA(z) denotes the element of the Lebesgue area measure on D. It is obvious that D is
contained in VMOA, and hence the spaces of interest in this study satisfy D ⊂ VMOA ⊂ B0.
Note also that the integral above corresponds to the area of image of D under f counting
multiplicities. If f(z) =

∑∞
n=0 anz

n, then Parseval’s formula shows that

‖f‖2
D =

∞∑
n=1

n|an|2 + |a0|2. (1.2)

A classical result due to Beurling [4] states that if f is a Dirichlet function, then its radial limits
exist in T outside of a possible exceptional set of zero logarithmic capacity; see also [7, p. 55].
Recall that if E is a Borel set in T and ΛE denotes the class of distributions of mass 1 on E,
that is, non-negative set functions μ with total mass 1 and support Sμ contained in E, the
logarithmic capacity† of E is defined as

exp
(
− inf

ΛE

{I(μ)}
)
,

where

I(μ) =
∫

T

∫
T

log
1

|ξ − η| dμ(ξ) dμ(η)

is the logarithmic energy integral of μ. The logarithmic capacity of E will be denoted by
cap(E).

1.2. Main results and examples

We proceed to state our main results. The first theorem establishes the possible growth,
measured in terms of area integrals or Hardy spaces, of the derivative of a locally univalent

†Some authors define the logarithmic capacity of E by (infΛE
{I(µ)})−1. In our case, both definitions are

consistent because we will deal with sets of logarithmic capacity zero. For more about capacities, see [7, 14].
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function g on D when log g′ belongs either to B0, VMOA or D. It is clear that this result could
have been stated in terms of functions f and their exponentials exp(f) instead of log g′ and g′.
In fact, this is the notation used while proving these implications in Section 2.

Theorem 1. Let g ∈ H(D) be locally univalent. Then the following assertions hold.

(1) If log g′ ∈ B0, then ∫
D

|g′(z)|p(1 − |z|2)α dA(z) <∞ (1.3)

for all p > 0, α > −1.
(2) If log g′ ∈ VMOA, then g′ ∈ Hp for all p > 0.
(3) If log g′ ∈ D, then ∫

D

|g′(z)|p−2|g′′(z)|2
(

log
1
|z|
)α

dA(z) <∞ (1.4)

for all p, α > 0.

If g is locally univalent on D such that log g′ ∈ B0, then part (1) in Theorem 1 implies that
M∞(r, g′) := max|z|=r |g′(z)| cannot exceed the growth of (1 − r)−(α+2)/p, as r → 1−, for any
p > 0 and α > −1. Choosing α = 0 and p > 2, it follows that g must be continuous on D̄. The
same conclusion holds under the assumption that ‖ log g′‖B is sufficiently small. More precisely,
a reasoning similar to that in Subsection 2.1 shows that for any given p > 0 and α > −1 there
exists ε > 0 such that ‖ log g′‖B < ε implies (1.3).

Part (2) in Theorem 1 is known, see, for instance, [19, (3.5)], and also [9] for related
results. Nevertheless, an alternative proof is included for the sake of completeness. Moreover,
a reasoning similar to that in Subsection 2.2 shows that for a given p > 0 there exists ε > 0
such that ‖ log g′‖BMOA < ε implies g′ ∈ Hp.

It is also worth noticing that an application of the Chang–Marshall Theorem [8] shows that
if log g′ ∈ D, then g′ ∈ Hp for all p > 0. Needless to say that part (3) in Theorem 1 does not
follow by such an implication. Indeed, the well-known Hardy–Stein–Spencer identity says that
(1.4) with α = 1 is satisfied if and only if g′ ∈ Hp; see (2.1) in Subsection 2.2.

Example 1 shows that there exists a locally univalent function g such that log g′ ∈ B0 but
whose derivative does not belong to

⋃
p>0H

p. This illustrates the sharpness of parts (1) and
(2) in Theorem 1.

Example 1. Let g be a locally univalent function defined by

log g′(z) :=
∞∑

k=1

akz
kk

=
∞∑

k=1

k−1/2zkk

.

Now log g′ is a lacunary series, and hence log g′ ∈ B0 since lim supk→∞ |ak| = 0. Therefore,
g satisfies (1.3) for all p > 0 and α > −1 by part (1) in Theorem 1. On the other hand,∑∞

k=1 |ak|2 =
∑∞

k=1(1/k) = ∞, and hence log g′ has angular limits almost nowhere on T by
Zygmund’s theorem [26, p. 203]. Therefore, g′ is not of bounded characteristic and thus g′

does not belong to
⋃

p>0H
p.

By Example 1, there exists a locally univalent function g such that log g′ ∈ B0, but g′ has
angular limits almost nowhere on T. If log g′ ∈ VMOA, then g′ ∈ Hp by part (2) in Theorem 1
and hence g′ has radial limits almost everywhere on T by the Fatou Theorem. The following
example shows that g′ might not have a limit in a dense subset of T when log g′ ∈ D.
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Example 2. A direct calculation shows that log g′ζ(z) := log log(3/(1 − ζ̄z)) ∈ D for all
ζ ∈ T. Since D is linear, it follows that

log g′(z) := log
∏
k

(
log

3
1 − ζ̄kz

)λk

=
∑

k

λk log log
3

1 − ζ̄kz
=
∑

k

λk log g′ζk
(z)

belongs to D if
∑

k |λk| <∞. If {ζk} is dense in T, then g′ does not have limit in a dense
subset of T.

We now turn to consider the points in g(T) where tangents exist. In order to state the results,
we recall the definition of an arc length parametrization of a curve.

Definition 1. Let g be a conformal map of D onto the inner domain of a rectifiable
Jordan curve C. Let l = l(C) denote the length of C and let ψ : [0, l] → T stand for the inverse
function of

z �→
∫arg z

0

|g′(eit)| dt, z ∈ T. (1.5)

Then ω(s) = g(ψ(s)), 0 � s � l, is an arc length parametrization of C such that ω(0) = g(1).

Note that the integral in (1.5) is well defined since C is assumed to be rectifiable and therefore
g′ ∈ H1; see, for instance, [21, Theorem 6.8]. Hence, by the Fatou Theorem, its radial limits
exist almost everywhere on T.

Throughout the paper, the notation ω(s) is also used for the arc length parametrization of
C = g(T) when g is a locally univalent function on D such that C is a closed rectifiable curve
with self-intersections.

Theorem 2. Let g ∈ H(D) be locally univalent. Then the following assertions hold.

(1) If log g′ ∈ B0 and g′(ζ) = limr→1− g′(rζ) 	= 0,∞ exists for some ζ ∈ T, then

g(z) − g(ζ)
z − ζ

−→ g′(ζ), z −→ ζ, z ∈ D̄.

(2) If log g′ ∈ VMOA, g′(ζ) = limr→1− g′(rζ) 	= 0,∞ exists and ζ = ψ(σ), then the arc
length parametrization ω(s) = g(ψ(s)), 0 � s � l, of C satisfies

ω′(σ) = lim
s→σ

ω(s) − ω(σ)
s− σ

= iζ
g′(ζ)
|g′(ζ)| = eiθ(σ), (1.6)

where θ(σ) := π/2 + arg(ζg′(ζ)). In particular, C has a tangent at ω(σ) with the angle θ(σ).
(3) If log g′ ∈ D, then the arc length parametrization ω(s)= g(ψ(s)), 0 � s � l, of C satisfies

(1.6) for all σ ∈ [0, l] \ E with cap(E) = 0. In particular, C has a tangent outside of a possible
exceptional set of zero logarithmic capacity.

If g is conformal, then part (1) in Theorem 2 follows by Pommerenke [20, Corollary 2]. The
same conclusion for locally univalent functions is obtained by using the localizing technique to
be introduced in Subsection 3.1. Part (1) along with the other two statements will be proved
in Section 4.

In order to state our next result, which is one of the cores of this work, we need to generalize
the definitions of asymptotically conformal and asymptotically smooth Jordan curves to self-
intersecting ones.
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Definition 2. Let w : [0, 2π] → C be a parametrization of a closed curve C. Let
C(w(t1), w(t2)) denote the smaller arc on C connecting w(t1) and w(t2), that is, the one with
|t1 − t2| < π. The curve C is called asymptotically conformal if

max
w∈C(w(t1),w(t2))

|w(t2) − w| + |w − w(t1)|
|w(t2) − w(t1)| −→ 1 as |t2 − t1| −→ 0.

Moreover, if C is a rectifiable, then C is called asymptotically smooth if

l(w(t1), w(t2))
|w(t2) − w(t1)| −→ 1 as|t2 − t1| −→ 0.

If C is a Jordan curve, then |w(t2) − w(t1)| → 0 if and only if |t2 − t1| → 0, and therefore the
definitions above are equivalent to the classical ones for Jordan curves, stated at the beginning
of the introduction.

With this definition in hand, we are in position to generalize Pommerenke’s characterizations
of asymptotically conformal and asymptotically smooth Jordan curves (see [20, 19] or the
monograph [21]) for closed curves with self-intersections.

Theorem 3. Let g ∈ H(D) be locally univalent. Then the following assertions hold:

(1) log g′ ∈ B0 if and only if g is continuous on D̄ and C = g(T) is asymptotically conformal;
(2) log g′ ∈ VMOA if and only if g′ ∈ H1 and C is asymptotically smooth.

The proof of Theorem 3, which is carried over in Section 3, is based on a localizing technique
which allows to consider a closed curve with self-intersections as a finite union of Jordan arcs.

The next example shows that Theorem 3 is in a sense a strong generalization of the classical
results mentioned in the introduction.

Example 3. Consider g(z) = eλz, where λ ∈ (π, 2π). Then g is locally univalent and g(T)
is rectifiable and closed, but g(D) is not simply connected nor g(T) is Jordan. Moreover,
log g′(z) = log λ+ λz, and thus log g′ ∈ D ⊂ VMOA with ‖ log g′‖D = λ. Therefore, part (2) in
Theorem 3 ensures that g(T) is asymptotically smooth.

In general, log g′ ∈ D whenever, log g′ is a polynomial. For example, let g be defined by

log g′(z) = λ
200∑
k=1

1 + i√
k
zk, λ ∈ C.

Then g is locally univalent, and Becker’s univalence criterion [21, Theorem 1.11] shows that g
is univalent when |λ| is small enough. As mentioned, log g′ ∈ D and thus g(T) is a rectifiable
closed curve by Theorem 1, so g(T) is asymptotically smooth for all λ ∈ C by part (2) in
Theorem 3 (Figure 1).

We next give an example of a bounded conformal map such that the boundary of the image
domain is a non-rectifiable asymptotically conformal curve.

Example 4. Let g be a conformal map of D onto the inner domain Ω of the Jordan
curve given in Figure 2. The lower curve joining the points −1 and 1 to the origin is �z =
(�z)2 cos(π/(�z)2), and the upper curve is a part of a circle centred on i/2π. It is easy to
see that g(T) is not rectifiable and thus log g′ 	∈ VMOA by part (2) in Theorem 1. However, a
geometric reasoning shows that log g′ ∈ B0 by Pommerenke [20, Theorem 1].



LOCALLY UNIVALENT FUNCTIONS 571

–15

–10

–5

0

5

10

15

–5 5 10 15 20 25 0–2 –1.5 –1 –0.5

Figure 1. The left-hand picture corresponds to the curve g(T) for λ = 3.2. The right-hand
picture shows the two loops near the origin which are too flat to be seen in the left-hand one.
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Figure 2. The domain Ω = g(D) of Example 4.

Next, we exhibit one more example of a locally univalent map g such that g(T) is
asymptotically smooth.

Example 5. Let μ(z) = log(3/(1 − z)), and let λ ∈ C such that μ(z) 	= λ for all z ∈ D.
Consider g(z) := (z − 1)(μ(z))λ. Then g is locally univalent as g′(z) = (μ(z))λ−1(μ(z) − λ),
and also log g′ ∈ D since

g′′(z)
g′(z)

=
1

1 − z

(
λ− 1

log(3/(1 − z))
+

1
log(3/(1 − z)) − λ

)

=
λ

1 − z

(
log(3/(1 − z)) − λ+ 1

log(3/(1 − z))(log(3/(1 − z)) − λ)

)
.

Moreover, Becker’s univalence criterion [21, Theorem 1.11] shows that g is univalent if |λ| is
sufficiently small. We deduce that g(T) is asymptotically smooth by part (2) in Theorem 3.

The rest of our results concern the question of when log g′ belongs to the Dirichlet space D.
In this case, in contrary to VMOA and B0, there are no known geometric characterizations
for g(T) even in the case when g is conformal. Next theorem is an attempt to establish such
a characterization. Indeed, Peter Jones (personal communication) suggested the statement
involving (1.8) to the authors and conjectured that the converse implication also holds.
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Theorem 4. Let g ∈ H(D) be locally univalent. If log g′ ∈ D, then C = g(T) is asymptoti-
cally smooth and satisfies∫

T

∫
T

l(g(z1), g(z2)) − |g(z1) − g(z2)|
|g(z1) − g(z2)|3 |g′(z1)||g′(z2)||dz1| |dz2| <∞. (1.7)

In particular, if g is conformal and log g′ ∈ D, then∫
C

∫
C

l(w1, w2) − |w1 − w2|
|w1 − w2|3 |dw1| |dw2| <∞. (1.8)

If g is conformal and log g′ ∈ D, then C = g(T) is asymptotically smooth by Pommerenke
[20, Theorem 2], and therefore

ε(w1, w2) :=
l(w1, w2)
|w1 − w2| − 1 −→ 0 as |w1 − w2| −→ 0.

Hence, the integral condition in equation (1.8) says that the errors ε(w1, w2) somehow add up
to a finite quantity.

The locally univalent functions g defined in Examples 2, 3 and 5 satisfy log g′ ∈ D, and
therefore Theorem 4 implies that the double integral condition (1.7) must be satisfied for each
of these functions.

The next theorem contains two different characterizations of when a locally univalent
function g satisfies log g′ ∈ D.

Theorem 5. Let g ∈ H(D) be locally univalent such that C = g(T) is rectifiable and let
ω(s) = g(ψ(s)), 0 � s � l, be the arc length parametrization of C. Then the following assertions
are equivalent:

(1) log g′ ∈ D;
(2) log g′ ∈ H2 and ∫

T

∫
T

(arg g′(z) − arg g′(ζ))2

|z − ζ|2 |dz||dζ| <∞; (1.9)

(3) log g′ ∈ H2 and ∫
T

∫
T

(argω′(s) − argω′(σ))2

|z − ζ|2 |dz||dζ| <∞, (1.10)

where z = ψ(s) and ζ = ψ(σ).

If log g′ ∈ D, then part (3) in Theorem 2 implies that the tangent at g(z) ∈ C, with the angle
arg(zg′(z)), exists for all z ∈ T outside of a possible exceptional set of zero logarithmic capacity.
Moreover, the term (argω′(s) − argω′(σ))2 in (1.10) is a strictly geometric quantity because
it refers only to the geometrically defined arc length and tangent angle. However, z = ψ(s)
and ζ = ψ(σ) refer to the conformal map which is not a geometrically defined quantity, and
therefore none of the characterizations in Theorem 5 is purely geometric.

In the next corollary, the integral in (1.12) contains only geometric quantities, but this is no
longer the case of the additional assumption (1.11).

Corollary 6. Let g ∈ H(D) be locally univalent such that C = g(T) is rectifiable, and let
ω(s) = g(ψ(s)), 0 � s � l, be the arc length parametrization of C. If log g′ ∈ VMOA and there
exists c > 0 such that

c � |g′(z)| � 1
c

(1.11)
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for almost all z ∈ T, then log g′ ∈ D if and only if∫ l

0

∫ l

0

(
argω′(s) − argω′(σ)

s− σ

)2

ds dσ <∞. (1.12)

We give one more example related to Dirichlet functions.

Example 6. The function log g′zk
(z) := log(1/(1 − z̄kz)) satisfies∥∥log g′zk

∥∥2

D =
1
π

∫
D

|zk|
|1 − z̄kz|2 dA(z) = log

1
1 − |zk|2

for all zk ∈ D. Since D is linear, it follows that

log g′(z) := log

(∏
k

1
(1 − z̄kz)λk

)
=
∑

k

λk log
1

1 − z̄kz
=
∑

k

λk log g′zk
(z)

belongs to D, if ∑
k

|λk|
√

log
1

1 − |zk| <∞.

In this case, the locally univalent function g must satisfy (1.7), (1.9) and (1.10) by Theorems 4
and 5.

Finally, we conclude our study concerning the Dirichlet space by considering Jordan curves
whose smoothness is measured by a Hölder condition. More precisely, a Jordan curve C is said
to belong to the class Λ1,α, 0 < α < 1, if it has a continuously differentiable parametrization
ω(t), 0 � t � 2π, such that ω′ satisfies the Hölder condition

|ω′(t) − ω′(τ)| � C1|t− τ |α, t, τ ∈ (0, 2π), (1.13)

for some positive constant C1, and ω′(t) 	= 0 for all t ∈ [0, 2π]. By the Kellogg–Warschawski
theorem [21, Theorem 3.6], we may use the conformal parametrization ω(t) = g(eit), and
therefore (1.13) is equivalent to

| arg g′(eit) − arg g′(eiτ )| � C2|eit − eiτ |α, t, τ ∈ (0, 2π). (1.14)

With this notation, the following theorem holds.

Theorem 7. Let g be a conformal map of D onto the inner domain of a Jordan curve C.

(1) If C ∈ Λ1,α for α ∈ ( 1
2 , 1), then log g′ ∈ D.

(2) There exists g ∈ H(D) conformal such that g(T) = C ∈ Λ1,1/2 but log g′ 	∈ D.

The remaining part of this paper is devoted to proofs of the results presented in this section.

2. Proof of Theorem 1

2.1. Proof of (1)

Let 0 < p <∞ and −1 < α <∞ be arbitrary but fixed, and denote f := log g′. We may assume
that f is continuous on D̄; if this is not the case, consider the dilatations ft(z) = f(tz), 0 <
t < 1, and let t→ 1− at the end of the proof.
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Since f ∈ B0, for a given ε > 0 there exists r ∈ (0, 1) such that |f ′(z)|(1 − |z|2) � ε whenever
|z| ∈ [r, 1). Denote D(0, r) := {z : |z| < r}. It is well known that there exists a constant C > 0,
depending only on p and α, such that

I1(ef ) : =
∫

D\D(0,r)

|ef(z)|p(1 − |z|2)α dA(z)

� C

(∫
D

|ef(z)|p|f ′(z)|p(1 − |z|2)p+α dA(z) + |ef(0)|p
)

� CεpI1(ef ) + C

(∫
D(0,r)

|ef(z)|p|f ′(z)|p(1 − |z|2)p+α dA(z) + |ef(0)|p
)
.

Choosing ε such that Cεp = 1
2 , and fixing r accordingly, we obtain I1(ef ) <∞ from which the

assertion follows since ef = g′.

2.2. Proof of (2)

As mentioned in the introduction, we give an alternative proof for this known implication [19,
(3.5)] for convenience of the reader. Let 0 < p <∞ be arbitrary but fixed, and assume f =
log g′ ∈ VMOA. The Hardy–Stein–Spencer identity states that

‖h‖p
Hp =

p2

2π

∫
D

|h(z)|p−2|h′(z)|2 log
1
|z| dA(z) + |h(0)|p (2.1)

for all 0 < p <∞ and h ∈ H(D); see, for example, [18, p. 126]. Therefore, it suffices to show
that there exists r ∈ (0, 1) such that

I2(ef ) :=
∫

D\D(0,r)

|ef(z)|p|f ′(z)|2 log
1
|z| dA(z) <∞.

As in Part (1), we may assume that f is continuous on D̄. By Carleson’s theorem [6] (see
also [11, p. 157]), there exists C1 > 0, depending only on p, such that

I2(ef ) � C1 sup
I

1
|I|

∫
S(I)\D(0,r)

|f ′(z)|2 log
1
|z| dA(z)‖ef‖p

Hp

� 2C1 sup
|I|<1−r

1
|I|

∫
S(I)

|f ′(z)|2 log
1
|z| dA(z)‖ef‖p

Hp . (2.2)

It is well known that

C−1
2 ‖h‖2

BMOA � sup
I

1
|I|

∫
S(I)

|h′(z)|2 log
1
|z| dA(z) � C2‖h‖2

BMOA, h ∈ H(D)

for some constant C2 > 0; see, for instance, [12, Lemma 3.3, p. 231]). This combined with the
Hardy–Spencer–Stein identity (2.1) and (2.2) yields

I2(ef ) � C1p
2 sup
|I|<1−r

1
|I|

∫
S(I)

|f ′(z)|2 log
1
|z| dA(z)I2(ef )

+ 2C1C2‖f‖2
BMOAI3(e

f ),

where

I3(ef ) =
p2

2

∫
D(0,r)

|ef(z)|p|f ′(z)|2 log
1
|z| dA(z) + |ef(0)|p.

Since f ∈ VMOA, we may fix r ∈ (0, 1) sufficiently large such that

sup
|I|<1−r

1
|I|

∫
S(I)

|f ′(z)|2 log
1
|z| dA(z) � 1

2C1p2
,
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and it follows that
I2(ef ) � 4C1C2‖f‖2

BMOAI3(e
f ) <∞.

2.3. Proof of (3)

We will show that for f ∈ D the function h := ef satisfies∫
D

|h(z)|p−2|h′(z)|2
(

log
1
|z|
)α

dA(z) <∞ (2.3)

for all 0 < p <∞ and 0 < α <∞. Part (3) in Theorem 1 then follows by choosing f = log g′.
To prove (2.3), note first that, as − log r � (1 − r)/r for all r ∈ (0, 1), it suffices to show

I4(h) :=
∫

D\D(0,r0)

|h(z)|p−2|h′(z)|2 (1 − |z|)α
dA(z) <∞

for r0 := 1 − e−p/α ∈ (0, 1). Write f(z) =
∑∞

n=0 anz
n, z = reit. Since f ∈ D, equality (1.2)

implies that there exists Nα,p ∈ N such that
∑∞

n=Nα,p
n|an|2 < α/p. By the Cauchy–Schwarz

inequality, this yields⎛
⎝ ∞∑

n=Nα,p

|an|rn

⎞
⎠

2

�

⎛
⎝ ∞∑

n=Nα,p

n|an|2
⎞
⎠
⎛
⎝ ∞∑

n=Nα,p

r2n

n

⎞
⎠ � α

p
log

1
1 − r

, 0 < r < 1,

and hence
∞∑

n=Nα,p

|an|rn �
(

log
1

(1 − r)α/p

)1/2

� log
1

(1 − r)α/p
, r � r0. (2.4)

But now

|f(z)| �
Nα,p−1∑

n=0

|an| +
∞∑

n=Nα,p

|an|rn =: C +
∞∑

n=Nα,p

|an|rn,

and therefore

M∞(r, ef ) = max
|z|=r

|ef(z)| � eC

(1 − r)α/p
, r � r0.

It follows that

I4(h) �
∫

D\D(0,r0)

Mp
∞(|z|, ef ) |f ′(z)|2 (1 − |z|)α

dA(z)

� epC

∫
D\D(0,r0)

|f ′(z)|2 (1 − |z|)α−α
dA(z) � epCπ‖f‖2

D <∞.

Remark. An application of the first inequality in (2.4) shows that the term (log 1/|z|)α in
(1.4) can be replaced by exp(−α(log(1/|z|))1/2).

3. Proof of Theorem 3

Let g be locally univalent such that g(T) is a closed curve. We will prove the following assertions
which are equivalent to the statements of Theorem 3:

(1) log g′ ∈ B0 if and only if g is continuous on D̄ and there exists δ0 > 0 such that g(I) is
an asymptotically conformal Jordan arc for any interval I on T with |I| < δ0.

(2) log g′ ∈ VMOA if and only if g′ ∈ H1 and there exists δ0 > 0 such that g(I) is an
asymptotically smooth Jordan arc for any interval I on T with |I| < δ0.



576 E. A. GALLARDO-GUTIÉRREZ ET AL.
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3.1. Sufficiency

Let δ, ρ ∈ (0, 1) such that 2δ + ρ < 1. Consider the circles T, ∂D(1 + ρ, 1) and ∂D(c±, r), where
c± = (1 + ρ)/2 (1 ± i tan δ) and r = |eiδ − c+|. The discs D(c±, r) are contained in both D and
D(1 + ρ, 1). Moreover, the circles ∂D(c±, r) intersect T on the points e±iδ, and the common
points of ∂D(c±, r) and ∂D(1 + ρ, 1) are the reflections of e±iδ with respect to the line �z =
(1 + ρ)/2. Let us call them γ± according to the sign of their imaginary parts. Let Ωδ,ρ be
the Jordan domain formed by the shortest four circular arcs connecting e±iδ and γ± on these
four circles. Let φδ,ρ be the conformal map of D onto Ωδ,ρ such that φδ,ρ(0) = (1 + ρ)/2 and
φ′δ,ρ(0) > 0 (Figure 3).

Lemma 8. Let 0 < p <∞ and let δ, ρ ∈ (0, 1) such that 2δ + ρ < 1. Then φδ,ρ satisfies
(log φ′δ,ρ)

′ ∈ Hp, φ′′δ,ρ ∈ Hp and

∫
D

∣∣∣∣∣φ
′′
δ,ρ(z)
φ′δ,ρ(z)

∣∣∣∣∣
p

dA(z) −→ 0, δ −→ 0+. (3.1)

Proof. It suffices to consider the values 1 < p <∞. Note first that φδ,ρ → (1 + ρ)/2 +
(1 − ρ)/2 z, as δ → 0+, and therefore φ′′δ,ρ/φ

′
δ,ρ → 0, as δ → 0+, locally uniformly in D by

Pommerenke [18, Theorem 1.8]. Applying [25] to φ∗δ,ρ := φδ,ρ − (1 + ρ)/2, we obtain
∫

T

∣∣∣∣φ′δ,ρ(z) − 1 − ρ

2

∣∣∣∣
p

|dz| −→ 0, δ −→ 0+.

Therefore, there exists C1 > 0, depending only on ρ and p, such that∫
T

∣∣φ′δ,ρ(z)∣∣p |dz| � C1 (3.2)

for all δ ∈ (0, (1 − ρ)/2), and thus φ′δ,ρ ∈ Hp. By Pommerenke [21, p. 43], the curvature of
φδ,ρ(T) at φδ,ρ(z) satisfies

κ(φδ,ρ(z)) =
1

|φ′δ,ρ(z)|

(
1 + �

(
z
φ′′δ,ρ(z)
φ′δ,ρ(z)

))
, (3.3)

when z is none of the preimages of the four exceptional boundary points where either of the
circles T and ∂D(1 + ρ, 1) intersects ∂D(c±, r). By the construction, 0 � κ(φδ,ρ(z)) � 3/(1 −
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ρ) =: C2 for all δ ∈ (0, (1 − ρ)/2). It follows that
∫

T

∣∣∣∣∣�
(
z
φ′′δ,ρ(z)
φ′δ,ρ(z)

)∣∣∣∣∣
p

|dz| � 2p−1 + 2p−1

∫
T

∣∣∣∣∣1 + �
(
z
φ′′δ,ρ(z)
φ′δ,ρ(z)

)∣∣∣∣∣
p

|dz|

� 2p−1 + 2p−1Cp
2

∫
T

|φ′δ,ρ(z)|p|dz|,

and hence [12, Theorem 1.5, p. 104] and (3.2) yield
∫

T

∣∣∣∣∣φ
′′
δ,ρ(z)
φ′δ,ρ(z)

∣∣∣∣∣
p

|dz| � 2p + 2pCp
2C1, (3.4)

that is, (log φ′δ,ρ)
′ ∈ Hp. As both φ′δ,ρ and (log φ′δ,ρ)

′ belong to Hp for all 0 < p <∞, the
Cauchy–Schwarz inequality yields φ′′δ,ρ ∈ Hp for all 0 < p <∞ as claimed.

To see (3.1), let ε > 0 be given and choose rε ∈ (0, 1) such that
∫

D\D(0,rε)

∣∣∣∣∣φ
′′
δ,ρ(z)
φ′δ,ρ(z)

∣∣∣∣∣
p

dA(z) <
ε

2
.

By the uniform convergence, there exists δ0 ∈ (0, (1 − ρ)/2) such that
∫
D(0,rε)

∣∣∣∣∣φ
′′
δ,ρ(z)
φ′δ,ρ(z)

∣∣∣∣∣
p

dA(z) <
ε

2

for all δ ∈ (0, δ0). These inequalities yield (3.1).

Remarks. (1) The conformal map φδ,ρ satisfies

φ′δ,ρ ∈ Hp ⇒ (log φ′δ,ρ)
′ ∈ Hp, 1 < p <∞,

by the proof of Lemma 8. This implication is not true in general, that is, ef ∈ Hp 	⇒ f ′ ∈ Hp,
as the function fλ(z) := −λ log(1 − z) with λ ∈ (0, 1/p) shows. Note that, setting φ′λ := efλ ,
the curvature of φλ(T) at φλ(z) equals to |1 − z|λ(1 − λ/2) when z ∈ T \ {1}.

(2) By Lemma 8, φ′′δ,ρ ∈ Hp for all 0 < p <∞. It follows that there exists a constant C > 0,
depending only on p, such that M∞(r, φ′′δ,ρ) � C(1 − r)−1/p. Choosing p > 1, this implies that
φ′δ,ρ is continuous on D̄.

Lemma 9. Let g ∈ H(D) be a locally univalent function, and denote g̃δ,ρ := g ◦ φδ,ρ. Assume
X ∈ {VMOA,D}. If log g′ ∈ B0 ∩X, then for any C > 0 there exist ρ ∈ (0, 1) and δ0 ∈ (0, (1 −
ρ)/2) such that

‖ log g̃′δ,ρ‖B < C and log g̃′δ,ρ ∈ B0 ∩X (3.5)

for all δ ∈ (0, δ0).

Proof. To establish the first property in (3.5), assume log g′ ∈ B0, and fix ρ ∈ (0, 1) such
that |(log g′)′(z)|(1 − |z|2) < C/2 for all z ∈ D with |z| ∈ (ρ, 1). Then

(log g̃′δ,ρ)
′(z) =

g̃′′δ,ρ(z)
g̃′δ,ρ(z)

=
g′′(φδ,ρ(z))
g′(φδ,ρ(z))

φ′δ,ρ(z) +
φ′′δ,ρ(z)
φ′δ,ρ(z)

, (3.6)

and hence the Schwarz–Pick lemma yields

‖ log g̃′δ,ρ‖B � sup
z∈D

|(log g′)′(φδ,ρ(z))|(1 − |φδ,ρ(z)|2) + ‖ log φ′δ,ρ‖B

� C

2
+ C1‖ log φ′δ,ρ‖D
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for some constant C1 > 0, independent of δ and ρ. By Lemma 8, there exists δ0 ∈ (0, (1 − ρ)/2)
such that ‖ log φ′δ,ρ‖D < C/(2C1) for all δ ∈ (0, δ0). It follows that ‖ log g̃′δ,ρ‖B < C for all δ ∈
(0, δ0).

To prove the second property in (3.5), recall that log φ′δ,ρ ∈ D by Lemma 8. Since D ⊂
VMOA ⊂ B0, the identity (3.6) implies that it suffices to show f ◦ φδ,ρ ∈ X for any f ∈ X ∈
{B0,VMOA,D}. These three cases are considered separately.

Let f ∈ B0, and consider

I(z) := |(f ◦ φδ,ρ)′(z)|(1 − |z|2) = |f ′(φδ,ρ(z))|(1 − |φδ,ρ(z)|2)
|φ′δ,ρ(z)|(1 − |z|2)

1 − |φδ,ρ(z)|2 .

Since φ′′δ,ρ ∈ Hp for all 0 < p <∞ by Lemma 8, φ′δ,ρ ∈ H∞, and hence, in particular, φδ,ρ ∈ B0.
This and the assumption f ∈ B0 yields I(z) → 0, as |z| → 1−.

Let now f ∈ VMOA, and consider

Tk(f) :=
1
|Ik|

∫
S(Ik)

|(f ◦ φδ,ρ)′(z)|2(1 − |z|2) dA(z),

where {Ik} is a sequence of arcs on T such that |Ik| → 0, as k → ∞, and S(Ik) := {z : 1 − |Ik| �
|z|, z/|z| ∈ Ik}. Let ξk ∈ T be the midpoint of Ik, and set ak := (1 − |Ik|)ξk. Without loss
of generality, assume φδ,ρ(ak) → ζ ∈ D̄, as k → ∞. To prove f ◦ φδ,ρ ∈ VMOA, it suffices to
show that Tk(f) → 0, as k → ∞. If |φδ,ρ(ak)| 	→ 1, as k → ∞, then there exist r0 ∈ (0, 1) and
Nr0 ∈ N such that |φδ,ρ(z)| � r0 ∈ (0, 1) for all z ∈ S(Ik) when k � Nr0 . Moreover, φ′δ,ρ ∈ H∞

by Lemma 8, and therefore

Tk(f) � M2
∞(r0, f ′)2

|Ik|
∫
S(Ik)

|φ′δ,ρ(z)|2(1 − |z|2) dA(z)

� M2
∞(r0, f ′)2C‖φ′δ,ρ‖2

H∞ |Ik|2 −→ 0, k −→ ∞.

Assume now that |φδ,ρ(ak)| → 1, as k → ∞. Since |Ik|−1 � 10|ϕ′
ak

(z)| for all z ∈ S(Ik), and
1 − r2 � −2 log r for all r ∈ (0, 1], we have

Tk(f) � 20
∫

D

|(f ◦ φδ,ρ)′(z)|2 log
1

|ϕak
(z)| dA(z).

The Littlewood–Paley identity [12, Lemma 3.1, p. 228] (the case p = 2 of the first formula in
Subsection 2.1) along with the Littlewood’s Subordination Principle [11, Theorem 1.7] yields

Tk(f) � 5
∫

T

|(f ◦ φδ,ρ ◦ ϕak
)(z) − f(φδ,ρ(ak))|2|dz|

� 5
∫

T

|f ◦ ϕφδ,ρ(ak)(z) − f(φδ,ρ(ak))|2|dz|.

Since f ∈ VMOA and |φδ,ρ(ak)| → 1, as k → ∞, it follows that Tk(f) → 0 as k → ∞. It is well
known that this implies f ◦ φδ,ρ ∈ VMOA.

If f ∈ D, then clearly ‖f ◦ φδ,ρ‖D � ‖f‖D, and thus f ◦ φδ,ρ ∈ D.

We are now ready to prove the sufficiency part of Theorem 3. To this end, assume log g′ ∈
B0 ∩X, where X ∈ {VMOA,B0}. Then g is continuous on D̄ by part (1) in Theorem 1, and
further g′ ∈ H1 if X = VMOA by part (2) in Theorem 1. Furthermore, by Lemma 9, there
exist ρ ∈ (0, 1) and δ0 ∈ (0, (1 − ρ)/2) such that

‖ log g̃′δ,ρ‖B < 1 and log g̃′δ,ρ ∈ B0 ∩X
for all δ ∈ (0, δ0). Becker’s univalence criterion [21, Theorem 1.11] shows that g̃δ,ρ is univalent,
and since g(T) is closed by the assumption, g̃δ,ρ(T) is a Jordan curve. Hence, g̃δ,ρ(T) is
asymptotically conformal by Pommerenke [20, Theorem 1]. Moreover, g̃δ,ρ(T) is asymptotically
smooth by Pommerenke [20, Theorem 2] if X = VMOA.
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Let I be an arc on T such that |I| < 2δ0, and let ζ = eit ∈ T be the midpoint of I. Set
φI := eitφ|I|,ρ(z) and define gI := g ◦ φI . Since the spaces B, B0 and VMOA are invariant
under rotations, the Jordan curve gI(T) must have the same properties as g̃|I|,ρ(T). But now
g(I) = g(φI(T) ∩ T) ⊂ gI(T) and therefore g(I) has the desired properties according to X.

3.2. Necessity

(1) Assume that g is a locally univalent function on D, continuous on D̄, and that there
exists δ0 > 0 such that g(I) is an asymptotically conformal Jordan arc for any interval I
on T with |I| < δ0. Let τν ∈ R such that the intervals Iν := {eit : τν � t � τν+2} satisfy T =
I0 ∪ I2 ∪ · · · ∪ In−1 = I1 ∪ I3 ∪ · · · ∪ In and |Iν | = |Iν+1| =: δ < δ0 for all ν = 0, . . . , n− 1. We
aim to show that f = log g′ ∈ B0. To see this, let ζ ∈ T be arbitrary but fixed and let wk → ζ,
as k → ∞. Let Iζ be the interval on T with midpoint ζ such that |Iζ | = δ/2. Then there exists
ν ∈ {0, . . . , n} such that Iζ ⊂ Iν . Set φν(z) := eiτν+1φδ/2,ρ(z) so that T ∩ φν(T) = Iν , where ρ
is chosen to be large enough such that gν := g ◦ φν is univalent by Lemma 8. Then gν(T) is
an asymptotically conformal Jordan curve and hence fν := log g′ν ∈ B0 by Pommerenke [20,
Theorem 1]. Moreover, there exists Nν ∈ N such that wk ∈ φν(D) for all k � Nν . Let zk ∈ D

such that φν(zk) = wk for k � Nν . Then clearly |zk| → 1− as k → ∞, and since φ′ν ∈ H∞ by
Lemma 8, it follows that 1 − |φν(zk)|2 � C(1 − |zk|) for all sufficiently large k and for some
constant C > 0. This combined with (3.6) yields

|f ′(wk)|(1 − |wk|2) � |f ′ν(zk)|1 − |φν(zk)|2
|φ′ν(zk)| +

∣∣∣∣φ′′ν(zk)
φ′ν(zk)

∣∣∣∣ (1 − |φν(zk)|2)

� |f ′ν(zk)|(1 − |zk|2) 1 − |φν(zk)|2
|φ′ν(zk)|(1 − |zk|2)

+ C

∣∣∣∣φ′′ν(zk)
φ′ν(zk)

∣∣∣∣ (1 − |zk|2)

for all sufficiently large k. As fν ∈ B0 by the assumption and log φ′ν ∈ B0 by Lemma 8,
[21, Corollary 1.4] yields |f ′(wk)|(1 − |wk|2) → 0 as k → ∞. Since ζ ∈ T was arbitrary, we
deduce log g′ ∈ B0.

(2) Assume that g is a locally univalent function on D with g′ ∈ H1 and that there exists
δ0 > 0 such that g(I) is an asymptotically smooth Jordan arc for any interval I on T with
|I| < δ0. With the same notation as in Part (1), we deduce that gν(T) is an asymptotically
smooth Jordan curve, and thus fν = log g′ν ∈ VMOA for all ν = 0, . . . , n by Pommerenke [20,
Theorem 2]. To prove f = log g′ ∈ VMOA, consider

Tk(f) :=
1

|Jk|
∫
S(Jk)

|f ′(w)|2(1 − |w|2) dA(w),

where {Jk} is a sequence of arcs on T such that |Jk| → 0, as k → ∞. Let ξk ∈ T be the midpoint
of Jk. Without loss of generality, assume ξk → ζ ∈ T, as k → ∞. By the proof of Part (1),
Iζ ⊂ Iν for some ν ∈ {0, . . . , n}, and hence there exists Mν ∈ N such that S(Jk) ⊂ φν(D) for
all k � Mν . Therefore,

Tk(f) � 2
|Jk|

∫
φ−1

ν (S(Jk))

|f ′ν(z)|2(1 − |φν(z)|2) dA(z)

+
2

|Jk|
∫
φ−1

ν (S(Jk))

∣∣∣∣φ′′ν(z)
φ′ν(z)

∣∣∣∣
2

(1 − |φν(z)|2) dA(z), k � Mν .

For each k � Mν sufficiently large there exists an interval Lk on T such that φ−1
ν (S(Jk)) ⊂

S(Lk), and further |Lk| � C1|Jk| for every such k. Moreover, by Lemma 8, there exists a
constant C2 > 0 such that 1 − |φν(z)|2 � C2(1 − |z|) for all z ∈ S(Lk) when k is sufficiently
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large, and it follows that

Tk(f) � 2C1C2

|Lk|
∫
S(Lk)

|f ′ν(z)|2(1 − |z|2) dA(z)

+
2C1C2

|Lk|
∫
S(Lk)

∣∣∣∣φ′′ν(z)
φ′ν(z)

∣∣∣∣
2

(1 − |z|2) dA(z) −→ 0, k −→ ∞,

as fν ∈ VMOA and log φ′ν ∈ D ⊂ VMOA by Lemma 8. Thus, f = log g′ ∈ VMOA as desired.

4. Proof of Theorem 2

4.1. Proof of (1)

If g maps D conformally onto the inner domain of a Jordan curve, then the assertion in
Part (1) is a direct consequence of Pommerenke [20, Corollary 2]. Let now g ∈ H(D) be locally
univalent such that log g′ ∈ B0 and g′(ζ) = limr→1− g(rζ) 	= 0,∞ exists for ζ ∈ T. By part (1)
in Theorem 1, g is continuous on D̄ and thus C = g(T) is closed. Moreover, since log g′ ∈ B0,
the spherical derivative (g′)#(z) = |g′′(z)|/(1 + |g′(z)|2) of g′ at z satisfies

(g′)#(z)(1 − |z|2) �
∣∣∣∣g′′(z)g′(z)

∣∣∣∣ (1 − |z|2) −→ 0, |z| −→ 1−.

Therefore, g′ is (strongly) normal in the sense of Lehto and Virtanen [16], and hence the
non-tangential limit limz→ζ g

′(z) equals to g′(ζ) 	= 0,∞.
Define φ(t) := eiζφδ,ρ(t), where φδ,ρ is as in Lemma 8, and set φ(t) = z and φ(τ) = ζ.

Lemma 9 and Becker’s univalence criterion [21, Theorem 1.11] show that g ◦ φ is univalent
and log(g ◦ φ)′ ∈ B0 for suitably chosen δ and ρ. Moreover, by Lemma 8, the conformal map
φ satisfies log φ′ ∈ B0 and limr→1− φ′(rτ) = φ′(τ) 	= 0,∞. But now the non-tangential limit
limz→ζ g

′(z) equals to g′(ζ) 	= 0,∞, and hence limr→1−(g ◦ φ)′(rτ) 	= 0,∞ exists. Since both
g ◦ φ and φ are conformal, it follows that

g(z) − g(ζ)
z − ζ

=
g(φ(t)) − g(φ(τ))

t− τ

t− τ

φ(t) − φ(τ)
−→ (g ◦ φ)′(τ)

φ′(τ)
= g′(ζ)

as t→ τ , that is, z → ζ.

4.2. Proof of (2)

In order to prove Part (2), we need the following auxiliary result which follows, for instance,
from [20, Lemma 2].

Lemma A. Let I ⊂ T be an interval with midpoint ξ, and denote tI := ξ(1 − |I|/2). If g is
locally univalent and log g′ ∈ VMOA, then

1
|I|

∫
I

∣∣∣∣ g′(t)g′(tI)
− 1
∣∣∣∣ |dt| −→ 0, |I| −→ 0.

We now turn to prove (1.6). Without loss of generality, assume s > σ. Write z = ψ(s) and
ζ = ψ(σ), and denote T(ζ, z) := {eit : arg ζ � t � arg z}. An application of Lemma A to I =
{eit : 2 arg ζ − arg z � t � arg z} yields

1
|z − ζ|

∫
T(ζ,z)

∣∣∣∣ g′(t)g′(tI)

∣∣∣∣ |dt| −→ 1, z −→ ζ.
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Since s→ σ, as z → ζ, this and Part (1) give

ω(s) − ω(σ)
s− σ

=
g(z) − g(ζ)
z − ζ

(
|g′(tI)|
z − ζ

∫
T(ζ,z)

∣∣∣∣ g′(t)g′(tI)

∣∣∣∣ |dt|
)−1

−→ iζ
g′(ζ)
|g′(ζ)| ,

when s→ σ. Moreover,

arg
ω(s) − ω(σ)

s− σ
−→ arg iζ

g′(ζ)
|g′(ζ)| =

π

2
+ arg(ζg′(ζ)) = θ(σ), s −→ σ,

and so ω′(σ) = eiθ(σ).

4.3. Proof of (3)

Recall that if f ∈ D, then f(ζ) = limr→1− f(rζ) 	= ∞ exists for all ζ ∈ T outside of a possible
exceptional set of zero logarithmic capacity by a classical result due to Beurling [4]. Hence, by
Part (2), equation (1.6) is satisfied for all ζ ∈ T outside of a set A with cap(A) = 0. Hence,
it is satisfied for all σ ∈ [0, l] \ E, where E = g(A). Now g′ ∈ H2 by Theorem 1, and therefore
the inequality

|g(z) − g(ζ)|2 �
(∫

T(ζ,z)

|g′(t)||dt|
)2

� ‖g′‖2
H2 |z − ζ|

shows that g is 1
2 -Lipschitz, and hence

cap(E) = cap(g(A)) � ‖g′‖H2cap(A) = 0,

by Ransford [23, Theorem 5.3.1].

5. Proof of Theorem 4

To prove (1.7), we may either first consider conformal maps and then apply the localization
technique to deal with locally univalent functions, or prove the assertion directly for locally
univalent functions. We will use the first option since the latter one requires a special
care with notation as the preimages of points on self-intersecting curves are not necessarily
unique.

We begin with an auxiliary result which yields an upper estimate for the difference
between the length of an arc and the distance between its end points in terms of a certain
Poisson integral. To state the result in its full generality, we denote the Poisson kernel
at a by

Pa(t) :=
1
2π

1 − |a|2
|a− t|2 , a ∈ D, t ∈ T,

and let Ia := {z ∈ T : | arg z − arg a| < π(1 − |a|)} be the interval on T, induced by a ∈ D, and
of length 2π(1 − |a|).

Lemma 10. Let h ∈ H1 and a ∈ D. Then

1
|Ia|

∫
Ia

|h(t)||dt| −
∣∣∣∣ 1
|Ia|

∫
Ia

h(t)dt
∣∣∣∣ � 20

(∫
T

|h(t)|Pa(t)|dt| − |h(a)|
)
.
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Proof. Let a ∈ D. Then Pa(t) � (20|Ia|)−1 for all t ∈ Ia. Therefore,

|h(a)| −
∣∣∣∣ 1
20|Ia|

∫
Ia

h(t)dt
∣∣∣∣ �

∣∣∣∣
∫

T

(
h(t)Pa(t) − h(t)χIa

(t)
20|Ia|

)
dt

∣∣∣∣
�

∫
Ia

|h(t)|
(
Pa(t) − 1

20|Ia|
)
|dt| +

∫
T\Ia

|h(t)|Pa(t)|dt|

=
∫

T

|h(t)|Pa(t)|dt| − 1
20|Ia|

∫
Ia

|h(t)||dt|,

and the assertion follows by rearranging terms.

To prove Theorem 4, let first g be a conformal map of D onto the inner domain of a Jordan
curve C such that log g′ ∈ D. Then C is rectifiable by part (3) in Theorem 1, and asymptotically
smooth by Pommerenke [20, Theorem 2] as D ⊂ VMOA.

Let w1, w2 ∈ C, and let ζ1, ζ2 ∈ T such that g(ζi) = wi, i = 1, 2. To each pair w1, w2 of distinct
points on C, there corresponds a unique a = a(w1, w2) ∈ D such that Ia is the interval on T

joining ζ1 and ζ2. With this notation, Lemma 10 yields

I(g) : =
∫
C

∫
C

l(w1, w2) − |w1 − w2|
|w1 − w2|3 |dw1||dw2|

=
∫
C

∫
C

(1/|Ia|)
∫

Ia
|g′(t)||dt| − |(1/|Ia|)

∫
Ia
g′(t)dt|

|w1 − w2|3 |Ia||dw1||dw2|

� 20
∫
C

∫
C

|Ia|
|w1 − w2|3

(∫
T

|g′(t)|Pa(t)|dt| − |g′(a)|
)
|dw1||dw2|.

To estimate the Poisson integral above, we use the relation∫
T

|h(t)|2Pa(t)|dt| − |h(a)|2 �
∫

D

|h′(z)|2(1 − |ϕa(z)|2) dA(z), h ∈ H2, (5.1)

where the constants of comparison are independent of a. This fact can be deduced by a standard
application of Green’s theorem; see, for example, [12, Chapter VI, Section 3]. Since g is assumed
to be univalent, we may apply (5.1) to h = (g′)1/2 to obtain

∫
T

|g′(t)|Pa(t)|dt| − |g′(a)| �
∫

D

|g′′(z)|2
|g′(z)| (1 − |ϕa(z)|2)dA(z).

It follows that there exists a constant C1 > 0 such that

I(g) � C1

∫
C

∫
C

|Ia|
|w1 − w2|3

(∫
D

|g′′(z)|2
|g′(z)| (1 − |ϕa(z)|2)dA(z)

)
|dw1||dw2|.

To estimate the integral over D, we split D into pieces by using Carleson boxes. To do this, for
a ∈ D, choose N = N(a) ∈ N such that 2N (1 − |a|) < 1 and 2N+1(1 − |a|) � 1. Set S−1 = ∅,

Sk(a) := {z ∈ D : 1 − |z| < 2k(1 − |a|), | arg z − arg a| < 2kπ(1 − |a|)}
for k = 0, . . . , N and SN+1(a) = D \ SN (a). Then there exists a constant C2 > 0 such that

C−1
2 2k(1 − |a|) � |1 − āz| � C22k(1 − |a|)

for all z ∈ Sk(a) \ Sk−1(a) and k = 0, . . . , N + 1. It follows that

∫
D

|g′′(z)|2
|g′(z)| (1 − |ϕa(z)|2)dA(z) �

N+1∑
k=0

2C2
2

4k|Ia|
∫
Sk(a)

|g′′(z)|2
|g′(z)| (1 − |z|2)dA(z).
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This together with Fubini’s theorem give

I(g) � C3

∫
C

∫
C

1
|w1 − w2|3

(
N+1∑
k=0

1
4k

∫
Sk(a)

|g′′(z)|2
|g′(z)| (1 − |z|2) dA(z)

)
|dw1||dw2|

= C3

N+1∑
k=0

1
4k

∫
C

∫
C

1
|w1 − w2|3

(∫
Sk(a)

|g′′(z)|2
|g′(z)| (1 − |z|2) dA(z)

)
|dw1||dw2|

= C3

∫
D

|g′′(z)|2
|g′(z)| (1 − |z|2)

N+1∑
k=0

1
4k

(∫
E1,k(z)

∫
E2,k(z)

|dw1||dw2|
|w1 − w2|3

)
dA(z),

where C3 = 2C1C
2
2 and the sets E1,k(z) and E2,k(z) consist of those w1 and w2 on C for which

Sk(a) contains the point z. To estimate the double integral involving these sets, the following
lemma is used.

Lemma 11. Let t and τ such that 0 < τ − t < 2π, and define

S(eit, eiτ ) := {z = reiφ ∈ D : t < φ < τ, r > 1 − (τ − t)/2π}.
Let z ∈ D and let F1(z) and F2(z) be the sets of points ζ1 and ζ2 on T for which S(ζ1, ζ2)
contains z. Then

A(z) :=
∫
F1(z)

∫
F2(z)

|dζ1||dζ2|
|ζ1 − ζ2|p �

⎧⎪⎪⎨
⎪⎪⎩

(1 − |z|)2−p, p > 2,

log
1

1 − |z| , p = 2,

1, p < 2.

Proof. The quantity A(z) depends only on |z|, so we may consider |z| instead of z. Then
the definition of S(ζ1, ζ2) yields

A(|z|) =
∫2π(1−|z|)

0

∫θ−2π(1−|z|)

θ−2π

dφdθ

|eiθ − eiφ|p +
∫2π

2π(1−|z|)

∫0

θ−2π

dφdθ

|eiθ − eiφ|p

=
∫2π(1−|z|)

0

∫−2π(1−|z|)

−2π

dtdθ

(2(1 − cos t))p/2
+

∫2π

2π(1−|z|)

∫−θ

−2π

dtdθ

(2(1 − cos t))p/2

= 2π(1 − |z|)
∫2π

2π(1−|z|)

dt

(2(1 − cos t))p/2
+

∫2π

2π(1−|z|)

∫2π

θ

dtdθ

(2(1 − cos t))p/2

=: A1(|z|) +A2(|z|).
By using the Taylor series expansion of cos t, we obtain

A1(|z|) �
⎧⎨
⎩

1
(1 − |z|)p−2

− (1 − |z|) if p > 1,

o(1), |z| −→ 1− if p � 1

and

A2(|z|) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
(1 − |z|)p−2

− 1
p− 2

− |z| if p > 2,

log
1

1 − |z| − |z| if p = 2,

O(1), |z| −→ 1− if p < 2.

The assertions follow by combining these asymptotic relations.
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We turn back to the proof of Theorem 4. It is clear that

t ∈ Sk(|a|) ⇔ (1 − (1 − |t|)/2k) exp
(
i
arg t
2k

)
∈ S0(|a|), k = 1, . . . , N,

and hence Lemma 11 yields

∫
F1,k(z)

∫
F2,k(z)

|dζ1||dζ2|
|ζ1 − ζ2|3 � 2k

1 − |z| =
2k

dist(z,T)
,

where F1,k(z) and F2,k(z) are the sets of points ζ1 and ζ2 on T for which Sk(a) contains z ∈ D.
Since C is asymptotically smooth, and thus a quasi circle, the conformal map g has a quasi-
conformal extension over the whole plane. Therefore, we may apply the circular distortion
theorem [15, Theorem 2.4] to find a constant C4 > 0 such that

1
C4

2k

dist(g(z), C)
�

∫
E1,k(z)

∫
E2,k(z)

|dw1||dw2|
|w1 − w2|3 � C4

2k

dist(g(z), C)

for all z ∈ D. This along with the inequality dist(g(z), C) � |g′(z)|(1 − |z|2)/4 (see [21,
Corollary 1.4], for instance) yields

I(g) � 4C3C4

∫
D

∣∣∣∣g′′(z)g′(z)

∣∣∣∣
2

dA(z)
∞∑

k=0

1
2k

� 4C3C4‖ log g′‖2
D <∞.

This concludes the proof of Theorem 4 in the case when g maps D conformally onto the inner
domain of a Jordan curve C.

Let now g be locally univalent such that log g′ ∈ D. Then g(T) must be closed by Theorem 1,
and hence asymptotically smooth by Theorem 3. Further, by Lemma 9, there exist ρ ∈ (0, 1)
and δ0 ∈ (0, (1 − ρ)/2) such that g̃δ,ρ = g ◦ φδ,ρ satisfies

‖ log g̃′δ,ρ‖B < 1 and log g̃′δ,ρ ∈ D

for all δ ∈ (0, δ0). Becker’s univalence criterion [21, Theorem 1.11] shows that g̃δ,ρ is univalent,
and hence g̃δ,ρ(T) is a Jordan curve. Therefore, the first part of the proof shows that (1.8),
with g̃δ,ρ(T) in place of C, is satisfied.

Let I be an arc on T such that |I| < 2δ0, and let ζ = eit ∈ T be the midpoint of I. Set φI :=
eitφ|I|,ρ(z) and define gI := g ◦ φI . Since the Dirichlet space D is invariant under rotations, the
Jordan curve gI(T) must have the same properties as g̃|I|,ρ(T). It follows that

∫
g(I)

∫
g(I)

l(w1, w2) − |w1 − w2|
|w1 − w2|3 |dw1| |dw2| <∞

for any interval I on T such that |I| < 2δ0. This clearly implies that (1.7) must be
satisfied.

6. Proof of Theorem 5

Theorem 5 is based on the following known result which proof is given for the convenience of
the reader. The work of Douglas [10] is probably the most original reference regarding to the
identity (6.1).
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Theorem B. If f ∈ H2, then

‖f‖2
D − |f(0)|2 =

1
4π2

∫
T

∫
T

∣∣∣∣f(z) − f(ζ)
z − ζ

∣∣∣∣
2

|dz||dζ| (6.1)

=
1

2π2

∫2π

0

∫2π

0

(�(f(eit) − f(eiτ ))
2 sin((t− τ)/2)

)2

dt dτ (6.2)

=
1

2π2

∫2π

0

∫2π

0

(�(f(eit) − f(eiτ ))
2 sin((t− τ)/2)

)2

dt dτ. (6.3)

Proof. To prove (6.1), write f(z) =
∑∞

n=0 anz
n and set ζ = zeiτ . Then the identity

1 − cos τ = 2 sin2(τ/2) (6.4)

shows that the integral in (6.1) equals to

I1(f) :=
1
2π

∫2π

0

(
1
2π

∫
T

|f(z) − f(zeiτ )|2|dz|
)

dτ

4 sin2(τ/2)
,

where

f(z) − f(zeiτ ) =
∞∑

n=1

an(1 − einτ )zn.

Parseval’s formula, (6.4) and the identity
∫2π

0

sin2(nτ/2)
sin2(τ/2)

dτ = πn

yield

I1(f) =
1
2π

∫2π

0

∞∑
n=1

|an|2 sin2(nτ/2)
sin2(τ/2)

dτ =
∞∑

n=1

n|an|2 = ‖f‖2
D − |f(0)|2.

To prove (6.2) and (6.3), note first that for h ∈ H2 with h(0) = 0 we have

1
2π

∫
T

|h(z)|2|dz| =
1
π

∫
T

(�h(z))2|dz| =
1
π

∫
T

(�h(z))2|dz|, (6.5)

by Garnett [12, Theorem 1.5, p. 104]. For ζ ∈ T, set

hζ(z) := zζ
f(z2) − f(ζ2)

z2 − ζ2
, z ∈ D.

Then hζ(0) = 0 and, since (6.1) is proved, we may assume hζ ∈ H2. Setting z = eit/2 and
ζ = eiτ/2, we have

|hζ(z)| =
∣∣∣∣f(eit) − f(eiτ )

eit − eiτ

∣∣∣∣ .
A direct calculation based on (6.4) shows that zζ/(z2 − ζ2) = (2i sin((t− τ)/2))−1, and hence

�hζ(z) =
�(f(eit) − f(eiτ ))
2 sin((t− τ)/2)

and �hζ(z) = −�(f(eit) − f(eiτ ))
2 sin((t− τ)/2)

.

The identities (6.2) and (6.3) now follow at once by integrating (6.5) with respect to ζ.
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To prove Theorem 5, set f = log g′ in (6.3) to obtain

‖ log g′‖2
D = | log g′(0)|2 +

1
2π2

∫2π

0

∫2π

0

(
arg g′(eit) − arg g′(eiτ )

2 sin((t− τ)/2)

)2

dt dτ.

Since
|eit − eiτ |

π
� |t− τ |

π
�
∣∣∣∣sin t− τ

2

∣∣∣∣ � |t− τ |
2

� π

4
|eit − eiτ |,

whenever |t− τ | � π/2, it follows that log g′ ∈ D if and only if log g′ ∈ H2 and (1.9) is satisfied.
Consider now the arc length parametrization ω for which

ω(s) = g(ψ(s)), ω′(s) = g′(ψ(s))ψ′(s) (6.6)

almost everywhere on [0, l(g(T))]. It is known that

|ψ(s)| = 1, �ψ
′(s)
ψ(s)

= 0 and argψ′(s) = argψ(s) +
π

2
,

and therefore, for z = ψ(s) and ζ = ψ(σ), we have

arg g′(z) − arg g′(ζ) = argω′(s) − argω′(σ) − (argψ(s) − argψ(σ)).

It follows that
arg g′(z) − arg g′(ζ)

z − ζ
=

argω′(s) − argω′(σ)
z − ζ

− arg z − arg ζ
z − ζ

.

Since the last quotient is uniformly bounded for z, ζ ∈ D, we deduce that the conditions (1.9)
and (1.10) are equivalent.

7. Proof of Corollary 6

Note first that the assumption (1.11) yields |� log g′(z)| � log(1/c) and therefore log g′ ∈ H2.
Setting z = ψ(s) and ζ = ψ(σ), the integral in (1.10) becomes

∫ l

0

∫ l

0

(
argω′(s) − argω′(σ)

s− σ

)2 |ψ′(s)ψ′(σ)||s− σ|2
|ψ(s) − ψ(σ)|2 ds dσ. (7.1)

Now |ψ′(s)| = |g′(z)|−1 by (6.6), and hence

|ψ′(s)ψ′(σ)||s− σ|2
|ψ(s) − ψ(σ)|2 =

1
|g′(z)g′(ζ)|

(∫
T(z,ζ)

|g′(t)| |dt|
)2

1
|z − ζ|2 .

Therefore, (1.11) yields

c4 � |ψ′(s)ψ′(σ)||s− σ|2
|ψ(s) − ψ(σ)|2 � π2

c4
,

and thus Corollary 6 follows by (7.1).

8. Proof of Theorem 7

To prove (1), assume C ∈ Λ1,α for some α ∈ ( 1
2 , 1). The substitutions z = eit and w = ei(t+τ)

in (1.9) yields

I2(g) :=
∫2π

0

(∫2π

0

(arg g′(eit) − arg g′(ei(t+τ)))2dt
)

dτ

|1 − eiτ |2 .
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By the assumption C ∈ Λ1,α, (1.14) and (6.4) we obtain

I2(g) � 2πC2
2

∫2π

0

|1 − eiτ |2(α−1)dτ � 2πC2
2

∫2π

0

(
sin

τ

2

)2(α−1)

dτ.

The last integral converges since α > 1
2 , and hence log g′ ∈ D by Theorem 5.

To show (2), consider the lacunary series f(z) :=
∑∞

n=0 2−nz4n

, z ∈ D. By using the standard
method for estimating such series, we obtain

rf ′(r)
1 − r

=
1

1 − r

∞∑
n=0

2nr4
n

=
∞∑

k=1

⎛
⎝∑

4n�k

2n

⎞
⎠ rk �

∞∑
k=1

2
√
krk � C3r(1 − r)−3/2

for all 0 < r < 1. Therefore,

|f ′(z)| � C3(1 − |z|2)−1/2, z ∈ D, (8.1)

from which [11, Theorem 5.1] yields

|f(z) − f(w)| � C4|z − w|1/2, z, w ∈ D̄. (8.2)

Define g by log g′ = λf , where λ > 0. Since f ∈ B by (8.1), we may choose λ such that
‖ log g′‖B < 1 and then g is univalent by Becker’s univalence criterion [21, Theorem 1.11].
Moreover,

| arg g′(z) − arg g′(w)| � | log g′(z) − log g′(w)| = λ|f(z) − f(w)|,
and so C ∈ Λ1, 1

2 by (8.2). But log g′ = λf 	∈ D since
∑∞

n=0 4n(2−n)2 diverges.
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Maŕıa J. González
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